
A SYSTEM FOR END-TO-END AUTHENTICATION
OF ADAPTIVE MULTIMEDIA CONTENT

Takashi Suzuki,1 Zulfikar Ramzan,2 Hiroshi Fujimoto,1 Craig Gentry,2 Take-
hiro Nakayama,1 and Ravi Jain2

1NTT DoCoMo Media Computing Group
lastname@mml.yrp.nttdocomo.co.jp

2DoCoMo Communications Laboratories, USA
lastname@docomolabs-usa.com

Abstract We present a multimedia content delivery system that preserves the end-to-end
authenticity of original content while allowing content adaptation by intermedi-
aries. Our system utilizes a novel multi-hop signature scheme using Merkle trees
that permits selective element removal and insertion. To permit secure element
insertion we introduce the notion of a placeholder. We propose a computation-
ally efficient scheme to instantiate placeholders based on the hash-sign-switch
paradigm using trapdoor hash functions. We developed a system prototype in
which the proposed signature scheme is implemented as an extension of the
W3C XML signature standard and is applied to content meta-data written in
XML. Evaluation results show that the proposed scheme improves scalability
and response time of protected adaptive content delivery systems by reducing
computational overhead for intermediaries to commit to the inserted element by
95% compared to schemes that use conventional digital signatures.

Keywords: Digital signatures, content adaptation, multimedia security

1. Introduction
The popularity of mobile internet services, such as NTT DoCoMo’s i-mode [1],
has dramatically increased the amount of content delivered to mobile devices.
The recent proliferation of third-generation (3G) mobile networks has not only
accelerated the increase but also made richer (i.e., bandwidth and CPU inten-
sive) multimedia content available to mobile devices. Due to various service
contexts or user preferences that mobile devices can signal to service providers,
coupled with the usual mobile device constraints (e.g., viewing time, battery
life, and display), content adaptation is expected to play an important role in
multimedia content delivery for mobile environments [2]. While such adap-
tation is useful, there is a cost. In particular, existing systems cannot han-
dle dynamic data adaptation while preserving end-to-end security. The IETF



238 Takashi Suzuki et al.

OPES working group pointed out security issues related to services deployed
at application-level network intermediaries [7]. The present paper addresses
integrity among the issues. Consider digital signatures - once data is signed,
subsequent modifications to it invalidate the signature. Our goal is to concur-
rently achieve multimedia content adaptation and end-to-end authenticity.

We assume a multimedia streaming system where meta-data specifying how
media components are handled is provided prior to actual content delivery.
Adaptation for such a system can be performed at the meta-data level and the
media-data level. For media-data adaption, one may apply transcoding tech-
niques such as multi-rate switching or scalable compression. For meta-data
adaptation, one may manipulate the composition of audio and video compo-
nents in the scene according to user preferences or service contexts.

Several works provide related but different features for adaptive content pro-
tection. Teranishi et al. propose an information sharing system with manage-
ment of content derivation [10]. The primary content provider in their system
(called the tier-1 provider here) manages content adaptation by binding usage
rules to the meta-data. Their system does not, however, protect content from
malicious corruption; instead, they assume that all modifications are performed
on trusted hosts. We, on the other hand, lift this assumption by employing, at
our cryptographic core, a novel multi-hop message signature scheme that en-
ables end-to-end authenticity of the usage rule and meta-data.

Our new signature scheme incorporates techniques from [22, 12] which per-
mit selective adaptive content removal. Merkle trees are used to create a mes-
sage digest, and deletions involve creating a small cover for the subset of re-
moved data items. Our contribution is to enable secure insertion of secondary
content by extending the Merkle hash tree based signature scheme to support
placeholders where the tier-2 provider can add its content. We propose a com-
putationally efficient scheme to accommodate the placeholder based on the
hash-sign-switch paradigm utilizing trapdoor hash functions [18].

In this paper we focus on the meta-data level signature scheme, although
media-data level signatures for streaming media has additional challenges such
as delay and scalability – see [4] for a discussion of such issues.

The paper is organized as follows. Section 2 discusses related work. Sec-
tion 3 explains the proposed system architecture. Section 4 describes the multi-
hop signature at our cryptographic core. Section 5 details the system prototype
we built and gives performance results. Section 6 makes concluding remarks.

2. Background and Related Work
Many content protection systems [5, 21] take an approach where a content au-
thor packages multimedia content with meta-data that contains usage rights
information regarding how the content should be used. However, these exist-



A System for End-to-End Authentication of Adaptive Multimedia Content 239

ing systems presume content delivery with end-to-end consistency and thwart
malicious entities who wish to tamper with content or meta-data; thus they do
not permit tier-2 providers to perform adaptation.

The OPES (open pluggable edge services) working group [8] investigates
security threats and risks for services deployed at application-level intermedi-
aries, which are relevant to our adaptive content delivery system. In our sig-
nature scheme, we introduce placeholders in the Merkle hash tree to support
dynamic content insertion by tier-2 providers. Placeholders can be viewed
as indicators for OPES callout servers to identify the place for their content.
Amongst security threats, this paper addresses policy enforcement at interme-
diaries that are innately un-trusted by original content providers, and end-to-
end authentication of content. Other threats, such as denial of service attacks,
end-to-end encryption, are out of the scope of this paper.

To allow adaptation by intermediaries, an information sharing system that
enables tier-1 content providers to manage derivative works is proposed in
[10]. They define a language for providers to write content usage rules that ex-
press the restrictions imposed on derivative works. Modifications are checked
against the rules to detect malicious behavior. Their system does not, how-
ever, protect content and usage rules from malicious corruption; instead, they
assume all modifications are performed on trusted hosts, and the content and
usage rules never leave a trusted domain. Although one may argue the assump-
tion can be lifted using a conventional signature scheme, the solution assumes
that the tier-1 provider trusts tier-2 providers to sign content and usage rules
on its behalf. Another solution is that the tier-1 provider sends a signed con-
tent with callout indicators that locate content to be inserted. This requires
tier-2 providers to register content pointers which they cannot change after the
original content is signed.

We alleviate these assumptions by using a novel multi-hop message signa-
ture scheme that enables end-to-end authenticity even with content-adapting
tier-2 providers. Such trust alleviation enables various service scenarios where
tier-2 providers are not trusted entities. For example, it enables personal users
to legitimately use commercial music clips to create personal video clips, and
distribute them subject to usage policies of original content.

3. Proposed System Architecture
Figure 1 illustrates the basic architecture of our adaptive multimedia content
delivery system. It supports both meta-data and media-data content adapta-
tion. The tier-1 provider (T1) creates media files which constitute multimedia
content and generates meta-data containing information on how to access the
media files and how to compose them. Meta-data is delivered to user devices
through tier-2 providers (T2). The actual media files are stored in media servers



240 Takashi Suzuki et al.

T1(Tier-1 Provider)

Content User

Media Servers

T2(Tier-2 Provider)

Original
Meta-data

Primary
Media File

Secondary
Media File

Meta-data level 
adaptation
Meta-data level 
adaptation

Modified
Meta-data

Modified
Media File/Stream

Media level
adaptation
Media level
adaptation

Figure 1. Basic architecture of adaptive content delivery system which supports two-level
adaptation: meta-data level and media-data level.

and are delivered to user devices by downloading or streaming. These media
servers may be operated by T1, T2, or other third-party providers. T2 may
perform adaption on meta-data elements. Each element represents an actual
media file; T2 inserts/deletes a media file to/from a composition by manipulat-
ing meta-data without touching the internal content of the files. Examples of
such adaptation are dynamic insertion of (targeted) advertisements or remov-
ing elements to create a digest.

We assume weak trust between T1 and T2. T2 acquires from T1 the right to
create and re-distribute content derived from the primary content, subject to us-
age rules specified by T1. We envision that their relationship is as loose as that
between an e-commerce site and consumers. T1 may have no reason to trust
T2, and presumes it might try to perform illegal modifications on the content
and usage rules. Further, T2 does not trust other tier-2 providers or end-users,
and assumes they may try to "remove" T2’s adaptation (e.g., delete its adver-
tisements). We do, however, assume that a trusted end-user media player; e.g.,
it uses attestation to a trusted platform or a tamper-resistance mechanism (with
the usual caveat that such measures can often be circumvented by highly de-
termined adversaries). If the media player detects usage rule violations it takes
the appropriate action; e.g., prohibits the client from downloading necessary
media files. To realize secure adaptive content delivery under these assump-
tions, we need a signature scheme with the following properties:

1 T2 can delete or insert elements from/to meta-data subject to the usage
rule specified by T1. Rule violation must be detected by the verifier.

2 T2 can insert additional elements only at positions specified by T1. The
verifier can detect insertions to an un-designated position.

3 Once T2 commits to the element it inserts, the element cannot be altered
or deleted without detection by verifiers. (As in any signature scheme,
what happens after malicious behavior is detected is orthogonal.)

The “commitment" above does not bind T2 to a particular element; instead it
forms a secure placeholder into which content can be dynamically inserted.



A System for End-to-End Authentication of Adaptive Multimedia Content 241

Tier-2 providerTier-2 providerTier-2 providerTier-2 providerTier-1 providerTier-1 provider

Placeholder provisioning service

Build hash tree

with placeholder

デ ー タデ ーメニューメニュー '()'() デ ーデ ーメニューメニュー '()'()

Space for Ad.
phid=n

Space for Ad.
phid=m

Tier-2 providerTier-2 provider

Request

Placeholder
Information for

placeholder

Insert

elements
Commit

User deviceUser device

Sign Verify

Figure 2. Placeholder request procedure between tier-1 & tier-2 providers; the tier-2 provider
sends a request with placeholder information to purchase space.

The next section describes a scheme that achieves these properties. The
scheme uses Merkle trees and achieves the first property by binding a hash of
the usage rules to the Merkle root prior to signing. The verifier checks both
rule compliancy of the modification and signature validation. To realize ir-
reversible inserts, the scheme introduces an extension, called a placeholder,
which specifies a position in the meta-data into which a designated entity can
insert an additional meta-data element. The placeholder contains information
that uniquely identifies the entity who will insert data. After the placeholder is
set to the meta-data, T1 constructs its hash tree and signs the root. Before it
signs the meta-data, T1 must obtain T2’s information for inclusion in the place-
holder. This can happen via a directory service or by using a placeholder re-
quest procedure between T1 and T2. We adopt the second approach, imagining
a scenario where T2 purchases advertisement space by sending a placeholder
request message (see Figure 2). Upon receipt of the signed meta-data, T2 se-
curely inserts an element (e.g., advertisement) to the assigned placeholder.

Although our focus is meta-data adaptation and protection, our system can
incorporate the authenticated media-level adaption techniques proposed by
Gentry et al. [4] which permit transcoding of the media content itself while
preserving end-to-end authenticity.

4. Proposed Signature Scheme
We propose signature schemes that allow one or more T2s to modify original
content by dynamically deleting or inserting elements (subject to T1’s pol-
icy), while preserving a receiver’s signature verification ability. We first de-
scribe Merkle trees and how they permit dynamic deletion. We then introduce
placeholders, which allow for dynamic insertion; our main scheme instanti-
ates placeholders using trapdoor hash functions at select Merkle tree leaves.
Finally, we discuss two mechanisms that make content insertion irreversible.



242 Takashi Suzuki et al.

Model and Notation. Let S denote the sender or T1 who creates and signs
the original data and let R denote the receiver who verifies the signature. The
data may pass through a proxy P such as T2. Our schemes extend to multiple
proxies, but for simplicity, we only consider the case of one P . P may insert
content or remove portions of the data. It further determines what information,
if any, R requires to verify the signature. We implicitly assume S 6= P , but our
schemes work when they are the same. We assume the existence of an open
or closed public-key infrastructure where S has key pair (Pk, Sk). Here Sk is
S’s private key for computing a traditional signature on a message, and Pk is
the public verification key. Sign(Sk, M) denotes an algorithm that outputs a
signature σ on message M under signing key Sk and Vf(Pk, M, σ) denotes
the verification algorithm. P need not know Pk or Sk. Our schemes may also
work with a message authentication code or MAC, in which case both S and
R share knowledge of a symmetric key (which P need not know).

Let {0, 1}∗ denote the set of all bit strings. Let M denote the initial con-
tent that can be broken up into n blocks which may have different lengths:
M = M1M2 · · ·Mn, Mi ∈ {0, 1}∗, 1 ≤ i ≤ n. Where convenient, we assume
n is a power of 2. In our scheme, the intermediary may choose to either keep
or remove an entire block, but he cannot perform transformations involving a
portion of a block. Let H denote a cryptographic hash function that takes as
input a string in {0, 1}∗ and a (fixed and publicly known) v-bit initialization
vector (IV), and produces a v-bit output. We assume these cryptographic hash
functions are collision resistant; i.e., finding two inputs m1 6= m2 such that
H(IV, m1) = H(IV, m2) is difficult. A practical example of such a crypto-
graphic hash function is SHA-1 [15] which has a 20-byte output and IV.
Merkle Trees, Signing, and Deletion. The Merkle tree associated with M is
a balanced binary tree in which each node v is assigned a value V(v) – we
often refer to v and V(v) interchangeably. There are n leaves, and for each
leaf `i, V(`i) = H(IV, Mi), 1 ≤ i ≤ n. For an interior vertex v, V(v) =
H(IV,V(C0(v)) ◦ V(C1(v))), where C0(v) and C1(v) are v’s left and right
children respectively, and ◦ denotes concatenation. To sign M , the content
creator computes the root value r of the Merkle tree associated with M . The
signature is σ = Sign(Sk, r). Deletion is supported by supplying a modicum
of extra verification data so that the verifier can still compute the root of the
Merkle tree, as we now describe. First, let M ′ denote the transformed data
after the removal of blocks. The intermediary does the following:

1 Let S = {(` | ` is a leaf of a block to dropped.}
2 If there exist u, v ∈ S such that u, v are siblings in the tree, then set

S = S − {u, v} ∪ {w}, where w is the parent of u, v. Repeat this until
S has no siblings. Suppose that at the end S = {wi | 1 ≤ i ≤ ρ}.

3 Let µi = V(wi) for 1 ≤ i ≤ ρ. P transmits M ′, σ, µi, and the tree node
position for each wi, 1 ≤ i ≤ ρ.



A System for End-to-End Authentication of Adaptive Multimedia Content 243

Verification. R verifies the signature as follows:

1 For each received message block Mik , compute yk = H(IV, Mik).
2 Consider the set of all hash values computed in the previous step as well

the hash values µ1, . . . , µρ. If any pair correspond to siblings, replace
the pair with their hash (which corresponds to their Merkle tree parent).
Repeat this step until only one value remains – call it r′.

3 Run Vf(Pk, r′, σ).

We show that r′ = r, from which it is easy to see why the above algorithm
works. If one has all the initial blocks, then the above procedure is the standard
algorithm for computing the Merkle tree root. Now, observe that whenever R
receives some hashes µ1, . . . , µρ, these come from P running the same algo-
rithm on the subset of missing frames. Therefore, P and R have together run
the algorithm on all n blocks which yields the Merkle root value.

Insertion via Placeholders. We propose the CS and HSS schemes for realizing
placeholders. The former uses conventional public-key signatures (e.g., RSA)
and the latter uses the hash-sign-switch [13] technique. The CS scheme is
fairly trivial. S places P’s public key (or instructions on where to retrieve
it) in the placeholder block. S then creates a Merkle-tree digest and signs as
described above. P , in turn, attaches its content and signs it separately. R
checks the validity of both signatures. This approach is less efficient than the
HSS scheme which we now proceed to describe.

HSS Scheme. Trapdoor hash functions HY (m, r) consist of a public key Y and
a trapdoor X; they take two arguments and have following properties:

If X is unknown, there is no efficient algorithm that finds pairs (m1, r1)
and (m2, r2) such that HY (m1, r1) = HY (m2, r2), but m1 6= m2, ex-
cept with negligible probability.
If X is known, there is an efficient algorithm that given m1, m2, r1 with
m1 6= m2, finds r2 such that HY (m1, r1) = HY (m2, r2).

One can construct such trapdoor hash functions based on the discrete loga-
rithm assumption (DLA) as follows (see [18] for details). Let p, q be primes
such that q|p − 1, and let g be an element of order q in Z

∗

p – parameters are
global. The trapdoor is a value x chosen (randomly) from Z

∗

q . The public key is
y = gx mod p. Now, we define Hy(m, r) = gmyr, which can be computed by
anyone. However, for any given m1, m2, r1 ∈ Zq, knowledge of the trapdoor is
required to efficiently compute an r2 ∈ Z such that Hy(m1, r1) = Hy(m2, r2)
by setting r2 = (m1 − m2)x

−1 + r1. To create a placeholder, P sets up a
trapdoor hash function and hashes random values, m′, r′: TH = HY (m′, r′).
It sends TH and Y to S . S treats the received parameters as a message block,
and signs everything using the above hash tree technique. To insert content
m, P uses x to compute r such that HY (m, r) = TH . These values together



244 Takashi Suzuki et al.

with the original signature are sent to R. In turn, R verifies the original sig-
nature using TH as a placeholder, and then determines placeholder validity by
checking if HY (m, r) = TH .

Comparison. HSS is more efficient than CS for P . Assuming the DLA imple-
mentation, HSS requires one modular multiplication. CS using 1024-bit RSA
keys requires a full-length exponentiation, which involves about 1500 modular
multiplications on average. Also, in HSS, P need not rebuild the hash tree
after adding data, but merely attaches the commitment value r to the original
signature. R need only rebuild the hash tree to verify the original signature
and hash. In CS, however, P must re-build the hash tree since malicious enti-
ties can replace the added data with any data previously signed by P . R must
rebuild two hash trees from the meta-data with and without the added data. A
drawback of the DLA based HSS is that placeholders can only be used once,
otherwise x leaks by solving simultaneous equations. A simple modification
enables us to use placeholders k times. We generate k public keys {yi =
gxi(modp) : 1 ≤ i ≤ k} and compute hash value TH = gm′

yr′

1
(modp). To

use the ith message mi, P computes ri = (m′ + r′x1 − mi)x
−1

i mod q. R
checks that gmiyri

i = TH . The CS placeholder has unlimited reuse.

Preventing Removal. We should also prevent malicious deletion of T2’s in-
serted content by those who, say, do not want to see advertisements. There are
two approaches – each of which is compatible with both HSS and CS. In the
first approach, P signs each of its placeholders regardless of whether it wishes
to insert content into the corresponding slot. Then, any placeholder without
a corresponding signature constitutes evidence that P’s content was illegiti-
mately deleted. Since only P can produce signatures corresponding to its own
public key (which is embedded in the Merkle tree generated by S), no other
parties can remove or modify P’s inserted content without detection.

The second approach, which we have not yet implemented, uses aggregate
signatures [19], which is a single signature that convinces any verifier that
signer Si signed message Mi, 1 ≤ i ≤ n, for distinct signers and messages.
One advantage of aggregate signatures is compactness; ideally, the size of the
aggregate signature does not grow at all as n increases. Here, we use a dif-
ferent property of certain aggregate signatures: when two entities (e.g., T1 and
T2) aggregate their respective signatures, it is impossible for a third party (e.g.,
a second tier-2 provider or a receiver) to separate or "disaggregate" the signa-
tures. Using this property, T2 can ensure that its insertion cannot be removed
without detection by aggregating its signature on its insertion with T1’s signa-
ture on its content. Then, any deletion of T2’s content will be detected by a
receiver that attempts to verify the authenticity of T1’s content.

As an example, we consider the BGLS aggregate signature scheme [19],
which uses a function e : G1 × G1 → G2 called a "pairing", that maps two



A System for End-to-End Authentication of Adaptive Multimedia Content 245

elements of an elliptic curve group (or abelian varieties group) G1 to a second
group G2. (See [19] for details.) We assume that all users of the aggregate
signature scheme share certain parameters, such as a point P of order q on the
elliptic curve, a hash function H : {0, 1}∗ → G1, and a public key s1P . Sim-
ilarly, T2 has key pair (s2, s2P ). Let M1 denote T1’s content (including, of
course, the placeholder for T2), and let M2 denote T2’s content. T1 computes
its signature on M1 as s1PM1

, where PM1
= H(s1P, M1); the tier-2 provider

similarly computes its signature on M2 as s2PM2
, where PM2

= H(s2P, M2).
The aggregate signature is Sagg = s1PM1

+ s2PM2
, and it is verified by con-

firming that e(Sagg, P ) = e(PM1
, s1P )e(PM2

, s2P ). It is impossible (even
information theoretically) to recover s1PM1

or s2PM2
from Sagg.

To prevent the removal of T2’s inserted content, T1’s original signature (i.e.,
s1PM1

) must be sent to T2 over a secure channel; otherwise, anyone can re-
place the aggregate signature with T1’s non-aggregated signature. When com-
bining this scheme with HSS, T1 generates random values for m′ and r′, and
computes TH = HY (m′, r′) as usual. It then generates and stores the tenta-
tive signature s2PTH , where PTH = H(s2P, TH). To sign M2, T1 transmits
the r corresponding to M2 and aggregates s2PTH with T2’s signature. If T2

does not wish to insert content at a placeholder, it need not sign.
Under this approach P’s signature is shorter. The user’s verification time is

proportional to the number of used placeholders as opposed to the total number
allocated. However, verification time may be greater since computing a pair-
ing takes, as a rule-of-thumb, about the same time as five full-length 1024-bit
modular exponentiations.

Security Analysis. Our formal security analysis requires three standard as-
sumptions: the scheme used to sign the Merkle root resists existential forg-
eries under adaptive chosen message attack in the sense of [20]; H is collision-
resistant; and the trapdoor hash function is collision resistant (if the trapdoor is
unknown). The last assumption can, in turn, be based on the discrete logarithm
assumption. We can theoretically base H on this assumption as well, though in
practice we use SHA-1. The underlying reductions are tight in a concrete se-
curity sense. The proof is straightforward and combines techniques from [22]
(to address secure removal) and [13] (to address secure insertion).

5. Implementation and Evaluation Results
We built a prototype of our adaptive content delivery system with the proposed
signature schemes in Java. We used SMIL [11] for meta-data specifying the
composition of media files, and XACML [16] to write usage policies restricting
adaptation to the original SMIL file. We adopted XML digital signatures as a
basis of our signature scheme for meta-data, and implemented an extension to
support Merkle hash trees with placeholders.



246 Takashi Suzuki et al.

Signatures. Figure 3 shows a (simplified) example SMIL document before and
after signing. The document includes a placeholder for video with an iden-
tifier (phid) of 1. The Signature element is written in XML-DSIG with two
extensions: a new hash algorithm identifier, HashTreeConstruction (for the
Merkle tree) and a new element, TrapdoorHashMethod (for trapdoor hash
function parameters). The policy element specifies allow/deny rules of add and
delete operations for each element under the SMIL element. The add operation
rule specifies the placeholder identifier and attributes with which the inserted
data must comply. The Policy element is bound with the SMIL elements by in-
cluding its hash value in the Signature element. T2 sends a SOAP placeholder
request message containing the identifer and parameters associated with the
placeholder. T1 copies the parameters from the message to the PublicValue
element and the TrapdoorHashValue before calculating the signature.

<?xml version=“1.0”?>
<smil>

<head/>
<body>

<seq>
<par>

<video src=“rtsp://tyer-1/video1.rm”/>
<video src=“rtsp://tyer-1/music1.rm”/>

</par>
<par>

<video phid=“1”/>
</par>

</seq>
</body>

</smil>

<?xml version=“1.0”?>
<DocumentRoot>

<Policy/>
<smil/>
<Signature>

<SignedInfo>
<CanonicalizationMethod/>
<SignatureMethod/>
<Reference URI=/DocumentRoot/Policy />
<Reference URI=/DocumentRoot/smil/head />
<Reference URI=/DocumentRoot/smil/body>

<DigestMethod Algorithm=“HashTreeConstruction”/>
<DigestValue> root_node_of_hash_tree </DigestValue>

</Reference>
<TrapdoorHashMethod Algorithm=“Discrete Log” phid=“1”>

<PublicValue> public_values_of_trapdoor_hash </PublicValue>
<TrapdoorHashValue> trapdoor_hash_value 

</TrapdoorHashValue>
</TrapdoorHashMethod>

</SignedInfo>
<SignatureValue> Signature </SignatureValue>

</Signature>
</DocumentRoot>

(a) Before signed

(b) After signed (Bold: extended part)

<smil>
<head/>
<body> <seq>

<par>
<video src=“rtsp://tyer-1/video1.rm”/>
<video adaptation=“delete”/>

</par>
<par> <video phid=“1” src=“rtsp://tyer-2/xxx.rm” adaptation=“add”/>
</par>

</seq> </body>
</smil>

(c) After transformed

<Signature>
<SignedInfo>

<CanonicalizationMethod/>
<SignatureMethod/>
<Reference URI=/DocumentRoot/Policy />
<Reference URI=/DocumentRoot/smil/head />
<Reference URI=/DocumentRoot/smil/body />
<TrapdoorHashMethod Algorithm=

“Discrete Log” phid=“1”/>
</SignedInfo>
<SignatureValue/>
<AdditiveSignature phid=“1”>

<CommitmentValue>
Commitment_Value_of_TrapdoorHash

</CommitmentValue>
</AdditiveSignature>

</Signature>

(d) After commitment

Figure 3. SMIL documents (a) before, (b) after signing, (c) after transformation, and (d) after
committment.

Adaptation. T2 modifies the signed SMIL document subject to the Policy el-
ement restrictions. The transformed meta-data is checked against the Policy
Element restrictions. If the result is "allow", the added element’s commit-



A System for End-to-End Authentication of Adaptive Multimedia Content 247

ment value is calculated and set to the element ArgValue under the element
AdditiveSignature element. Otherwise, we interrupt the process.

Verification. The user device verification module is implemented as an HTTP
proxy which evaluates a signed document and outputs a SMIL document that
can be handled by existing SMIL players such as RealOne [6]. There are three
steps in the verification process: signature validation, policy compliance check
(identical to what is in the adaptation module), and transformation. The signa-
ture validation step reconstructs the hash tree from the leaves to the root. If an
element contains an adaptation attribute of "add", it fetches the hash value from
the corresponding TrapdoorHashMethod element with the same phid. After
hash tree reconstruction, the value in the SignatureValue element is vali-
dated. Commitment value for the added element is validated separately. The
trapdoor hash value is computed using the added data and the commitment
value, and compared with the trapdoor hash value in the Signature element. If
the signature is valid, the adaptation by T2 is checked against the restrictions
in the Policy element. The policy compliancy check step in the adaptation pro-
cess is reused here. If the check succeeds, the signed document is transformed
to a standard SMIL format by deleting system-specific elements and attributes.
If any of the above steps fails, the verification module sends an error message
to the SMIL player and terminates.

Performance. Modules in T2 are implemented on a 3.06 GHz Pentium 4 ma-
chines with 1 GB memory running Redhat Linux 2.4.20. The user device
modules are implemented on an 866MHz Pentium III machine with 512 MB
memory running Windows XP. Our experiments used 1024-bit DSA-SHA1 in
XML-DSIG for both the Hash-Sign-Switch (HSS) and Conventional Signa-
ture (CS) schemes. For HSS, the trapdoor hash function also uses a 1024-bit
modulus. All results are computed by averaging 10 trials.

Figure 4 shows processing delay in msec of each step in T2 (left) and the
user devices (right). In the figure, "XML-DSIG", "XML-DSIG (hash tree)",
"One delete", "One add (Conv.)", and "One add (Trapdoor)" mean processing
delay to handle a SMIL document with XML-DSIG, XML-DSIG with hash
tree extension but without adaptation, one delete operation, one add operation
using CS, and one add operation using HSS, respectively. The SMIL document
included 5 leaf elements. In T2, commitment using CS was implemented us-
ing the existing XML-DSIG implementation and took about 439msec for one
added element. On the other hand, commitment using HSS took only about
23 msec for the same added element. This commitment step includes insertion
of the commitment value to the Signature element. The processing delay of
adaptation and the policy compliance check took about 11msec and 10msec re-
spectively, rather insignificant compared to commitments implemented using
CS. In the user device, signature verification using the existing XML-DSIG



248 Takashi Suzuki et al.

Steps in tier-2 provider

0

200

400

600

800

1000

XML-DSIG XML-DSIG
(hash tree)

One
"delete"

One "add"
(Conv.)

One "add"
(Trapdoor)

D
e
la
y 
[m
se
c
]

commitment
policy check
adaptation

Steps in user device

0

200

400

600

800

1000

XML-DSIG XML-DSIG
(hash tree)

One
"delete"

One "add"
(Conv.)

One "add"
(Trapdoor)

D
e
la
y 
[m
se
c
]

Commitment verification
Signature verification
policy check

Figure 4. Processing delay in msec of each step in T2 (left) and the user devices (right).

implementation [9] took 282 msec in our setting. In case of using hash tree
construction, the verification delay increased by 52%. The processing delay of
the policy check was 38 msec, three times longer than that in T2 because of
lower CPU power. Verification of the commitment using HSS required about
32% more overhead than the commitment using CS.

We see that HSS reduces computational overhead for T2 to commit to the
element added to the original meta-data by 95% (400 msec in our setting). Al-
though this improvement comes at the cost of increased verification overhead
on the user device by 32% (70 msec), total end-to-end overhead is reduced by
30% (315 msec). This indicates that the HSS scheme improves scalability and
response time of secure adaptive content delivery systems.

6. Conclusions
We presented a protection system for adaptive multimedia content delivery that
preserves end-to-end authenticity while allowing content adaptation by inter-
mediaries. We proposed a new multi-hop digital signature scheme, and used
it to protect content meta-data and usage rules from illegal modifications. The
proposed signature scheme uses Merkle hash trees to allow selective element
removal, and achieves secure element insertion by adding a placeholder ex-
tension. We also suggested a computationally efficient scheme to instantiate
the placeholder based on the hash-sign-switch paradigm using trapdoor hash
functions. The proposed scheme can alleviate the trust level from T1 to tier-2
providers; otherwise T1 must have complete trust in them not to perform il-
legal modifications. We envision that this trust alleviation will give flexibility
to secure adaptive content delivery services. The evaluation results using our
prototype showed that HSS can reduce signature-related overhead in the tier-2
provider (commitment) and end-to-end (signature, commitment, and verifica-
tion) by 95% and 30% respectively, compared to CS. The proposed signature
scheme, thus, contributes to improvement of scalability and response time of
adaptive content delivery systems with the content protection scheme.



A System for End-to-End Authentication of Adaptive Multimedia Content 249

References
[1] NTT DoCoMo i-mode. http://www.nttdocomo.com/corebiz/imode.

[2] M. Etoh and S. Sekiguchi. MPEG-7 enabled digest video streaming over 3G mobile net-
work. 12th International Packet Video Workshop (PV2002), Apr ’02.

[3] O. Goldreich, S. Goldwasser, and S. Micali. How to Construct Random Functions. Journal
of the ACM, vol. 33, no. 4, 1986, pp 210-217.

[4] C. Gentry, A. Hevia, R. Jain, T. Kawahara, and Z. Ramzan. End-to-End Security in the
Presence of Intelligent Data Adapting Proxies: the Case of Authenticating Transcoded
Streaming Media. To Appear in J. Selected Areas of Communication, Q1, 2005.

[5] Microsoft Windows Media 9 Series. http://www.microsoft.com/windows.

[6] Real Networks. RealOne player. http://www.realnetworks.com.

[7] IETF RFC 3238. http://www.ietf.org/rfc/rfc3238.txt.

[8] IETF Open Pluggable Edge Services (OPES) Working Group.
http://www.ietf.org/html.charters/opes-charter.html.

[9] IBM alphaWorks XML Security Suite. http://www.alphaworks.ibm.com/tech/.

[10] T. Yuuichi, T. Kaori, O. Takeshi, S. Shinji, and M. Hideo. ASIA: Information Sharing
System with Derived Content Restriction Management. IEICE Transactions on Communi-
cations (Japanese Edition), vol. 428, pp 1463–1475, Aug ’03.

[11] W3C Recommendation. Synchronized Multimedia Integration Language (SMIL 2.0).
http://www.w3.org/TR/smil20. Aug ’01.

[12] R. Johnson, D. Molnar, D. Song, and D. Wagner. Homomorphic signature schemes. CT-
RSA, Lecture Notes in Computer Science, vol. 2271, pp 244-262, 2002.

[13] A. Shamir and Y. Tauman. Improved Online/Offline Signature Schemes. Proc. of Crypto
2001, pp 355-367.

[14] W3C Recommendation. XML-Signature Syntax and Processing.
http://www.w3.org/TR/xmldsig-core. Feb ’02.

[15] National Institute of Standards and Technology, U.S. Department of Commerce. Secure
Hash Standard. Federal Information Processing Standards Publication 180-1, Apr. 1995.

[16] OASIS Committee. eXtensible Access Control Markup Language v1.0.
http://www.oasis-open.org. Feb ’03.

[17] R. Merkle. Protocols for Public Key Cryptosystems. Proc. of the IEEE Symposium on
Security and Privacy, pp 122-134, 1980.

[18] H. Krawczyk and T. Rabin. Chameleon Hashing and Signature. Proc. of NDSS ’2000.

[19] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and verifiably encrypted sig-
natures from bilinear maps. Proc. of Eurocrypt ’03. LNCS 2656, pp. 416-432.

[20] S. Goldwasser, S. Micali, and R. L. Rivest. A Digital Signature Scheme Secure Against
Adaptive Chosen-Message Attacks. SIAM Journal on Computing. 17(2), pp281-308, 1988.

[21] OMA. DRM2.0 Enabler Release. http://www.openmobilealliance.org. Feb ’04.

[22] R. Steinfeld, L. Bull and Y. Zheng. Content Extraction Signatures. Proc. of ICISC 2001.
LNCS, vol.2288, pp.285-304.

[23] W3C Recommendation. SOAP v1.2. http://www.w3.org/TR/SOAP. June ’03.

[24] W3C Recommendation. XSL Transformations v1.0. http://www.w3.org/TR/xslt.
Nov ’99.


