A Comparison of the Akenti and
PERMIS Authorization Infrastructures

Authors: Sassa Otenko, David Chadwick
Information Systems Security Research Group
University of Salford

Document History

Version Date Comments

0.1 24.10.2002 First draft

0.2 3.12.2002 Pre-rel ease draft

0.3 11.12.2002 Almost ready!

0.4 17.01.2003 Done?

1.0 22 Jan. 03 Initial public release

1.1 17 April Minor eds. Added 2
advantages of Akenti

2.0 12 June 2003 Version 2 Draft. Added
Ease of Use and
Performance statistics and
updated Initial release due
to increased knowledge

21 30 July 2003 Final Version, incorporating
feedback from LBL

This report is the deliverable of the JISC funded project “A Comparison of the AKENTI
and PERMIS Authorisation Infrastructures’

© 2003 University of Salford




Table of Contents

L. INTRODUCTION. .ottt e e e e e e e e e e e e e e eaaaeaeeeeeeeeeeeeennnnnnn 2
D2 O AV L = YA YA 2
R T O ]I O I i T 3
4, POLICY CONDITIONS .. ..ottt ettt rr et e e s s e e s e e e s e e e e e e e e e e e ee e 5
5. INFRASTRUCTURES ...ttt ettt et e e s e e e e e e e e e e e e s s e s s s s s s s s s sassaanaes 6
B.  TRUST CHAINS. ..ot s et ettt ettt e ea e aeeeeseeeeeeeeeeraer i reees 7
7. ATTRIBUTE CERTIFICATES. ... ccccctttteeeeteee ettt e eeeeas e s s e s s s sesssssssssssssananes 8
8. DECISION MAKING .ottt vre e et e et e e teeeeeess e e e e s s e ssssssssssssssssaennes 8
9. SOFTWARE ARCHITECTURE ...ttt 9
10. AUTHORISATION ENGINE USER REQUIREMENTS........c. i 9
11. J AN o o I R 07N = N I 20O ORI 9
12. ADMINISTRATION: ALLOCATING PRIVILEGESAND SETTING
[ ]I 1O 8 PP 9
13. EASE OF INSTALLATION AND USE ...ttt 10
13.1. INSTALLINGAND USING PERMIS .ot 10
13.1.1  Obtaining the dOWNIOad............cceiieriiii e 10
13.1.2  Setting Up YOUr ENVIFONMENE........eiiiiitierieesieesteestiesiee st e e seee e e sree e 10
13.1.3 INStalling the SOFWAIE .......ccueeiieieee e e 10
1314 USING the SOfIWEIE. ......coiiiiiiiiceie ettt bbb 10
1315  Creating abasiC POlICY ......ccoieiiiiiiiie e 10
13.1.6  Creating attribute CertifiCates. ........oouiiiiiereee e 10
13.1.7 CommENtS 0N AOCUMENEBEION......eevteereeeeeeeeeeeie et ieeee e e sesseesseeeeresaarraasreseereeeeeeereeees 10
13.2. INSTALLING AND USING AKENT .ututttieiiiiiiiiieeeeeeieeeieieesssssssssssssssssssssssssssssees 11
13.21  Obtaining the dOWNlOad............coeiiiriiie e 11
13.22  Setting Up YOUr ENVIFONMENE........eiiiiriierieesieerteesteesieesiee e ssee e e e e e e e 11
13.2.3 INStalling the SOfIWEAIE .......cee e e 11
1324  USINGhE SOfIWEAIE.......cc ettt nee s 11
1325  Creating abasiC POlICY ......cccoieiiiiiiie e 12
13.26  Creating attribute CertifiCates. ........oouviiriierieieee e 13
13.2.7 [Belei0 1011017 1 10) o FETUUTRRRT TR 13
13.3. (0005 = 4 =S 13
14. PERFORMANCE TESTING THE AKENTI AND PERMISAPIS.............. 14
14.1. TEST ENVIRONMENT cttti e i e eeeeeeeeeeesssssss s s s s s essseerssssssssssssssssssssssresssssssnsssssssssees 14
14.2. HARDWARE AND SOFTWARE CONFIGURATION ..vvviirtieitieeeeeeereeesssssssssssssssssssnes 14
14.3. [ NI N T Y/ 1 TR 15
14.4. LDAP AND WEB. . .ceeeeiiieeeee ettt ettt e et et ea e e e eeteeeeeeeaaeesereennseeeeennaaeeeees 15
14.5. SIMPLE POLICY 1vttttttitiiiiieiiiiiieiisiiiiesssssssessssssssssssssseseeesssessssssssssssssssssssssssssssnns 16
14.6. Y =T L0 = T 22 16
14.7. OVERVIEW OF TEST RESULTS ..eieeeeeeeeaeeeeeeeeeeeeeeeeesaaaaeeeseeeeseeeemennnnaaaeeeeeees 17



14.8. THE TEST RESUL TS i tittttuieeeeeteeeeetesaeeeseeaasseesessasseesesnsssesessnssesensnsseeesnnnn 19

14.8.1 PERMIS RESUILS. ....cceeee ettt et e e e e e e ete e e e e eetaeeeeeenaeeeeeenaaeseeennaaaeees 19
14.8.2 AKENE RESUIES. ...ttt e e e e et e e e e e ettt e e e ee e aeeeeesnaseeeesnaaeseeenaaeerees 21
14.9. COMPARISON OF THE PERFORMANCE RESULTS...ccvvtttiiiiieieieeeeeeeeeessninssesesees 23
14.10. AKENTI MEDIUM POLICY CONSIDERATIONS. . uuuietieeeeeeeeeeeersssssiaasssssseseeeeeeees 24
15. SUMMARY TABLE OF FEATURES. ..ottt 26
16. REFERENGCES. ... oottt e e e e e e e e e e e e e reea e e e e e e eeaees 28
17. APPENDIX A. THE LDAP SCHEMA ..ot 29
18. APPENDIX B. THE POLICIES......o oottt 30
18.1. PERMIS SIMPLE POLICY ..ottt e e eeeaa e e e e eeeeeeeee s 30
18.2. AKENTI SMPLE PoLICY AND USE CONDITION CERTIFICATES. ..uuceeeeeeeeeeeeeeeens 31
18.3. PERMIS MEDIUM POLICY oottt ettt ettt sens s s e s s aasseeeeessnnnnnnas 36
19. APPENDIX C. ANALYSISOF AKENTI DEFICIENCY IN DISTRIBUTED
MANAGEMENT OF RESOURCES ...ttt eeae e e eneeeees 41



Glossary of Terms

ACI — Access Control Information (from 1SO 10181-3). Any information used for access
control purposes, including contextual information.

ADF — Access control Decision Function (from 1SO 10181-3). A specialized function
that makes access control decisions by applying access control policy rules to an access
request, ADI (of users, targets, access requests, or that retained from prior decisions), and
the context in which the access request is made.

ADI — Access control Decision Information (from 1SO 10181-3). The portion (possibly
al) of the ACI made available to the ADF in making a particular access control decision.

AEF — Access control Enforcement Function (from SO 10181-3). A specialized function
that is part of the access path between a user and atarget on each access request and
enforces the decision made by the ADF.

Client —the entity making a decision request to the ADF (it could be the target, the user,
or aproxy acting on behalf of the user)

Contextual information — Information about or derived from the context in which an
access request is made (e.g. time of day).

Environmental parameters — same as contextual information.

User —An entity (e.g. human user or computer-based entity) that attempts to access other
entities (from 1SO 10181-3).

Privilege — An attribute or property assigned to a user by an authority

Target — An entity, usually aresource, to which access may be attempted (from SO
10181-3).



1. Introduction

This report describes the similarities and differences between the Akenti and PERMIS
authorisation infrastructures. It describes the features, ease of use and performance
statistics of both authorisation infrastructures. This report has been produced from a desk
comparison of the available published documentation, by talking to the authors of both
infrastructures, and by building both infrastructures along with atest application. The
performance statistics are limited to some extent, in that it was not possible to build
multiple arbitrarily complex policiesin the time available, and also in order to perform a
fair comparison between the two, we did not run Akenti as a stand alone server.

2. Overview

Akenti [Akenti] is an authorisation infrastructure from the Lawrence Berkeley National
Laboratory in the USA. PERMIS is an authorisation infrastructure from the EC funded
PrivilEge and Role Management Infrastructure Standards validation (PERMIS) project
[Permis]. Both the Akenti and PERMIS Authorisation Infrastructures are trust
management infrastructures according to the definition of Blaze [Blaze], and have the 5
components necessary for this, which are:

i) A language for describing “actions, which are operations with security
consequences that are to be controlled by the system.

i) A mechanism for identifying “principals, which are entities that can be authorized
to perform actions.

iii) A language for specifying application “policies, which govern the actions that
principals are authorized to perform.

iv) A language for specifying "credentials, which allow principalsto delegate
authorization to other principals.

V) A “compliance checker', which provides a service to applications for determining
how an action requested by principals should be handled, given a policy and a set
of credentials.

Both infrastructures have similar architectures [Johnston] [ Chadwick]. This comprises the
compliance checker, called the Akenti server by Akenti [ Thompson], and the Access
Control Decision Function (ADF) by PERMIS (after the I SO Access Control Framework
[ISQ]). Both have a gateway controlling user access to resources, called the Resource
Gateway by Akenti and the Application Gateway by PERMIS. Both of them write their
policiesin XML, and store their policiesin certificates. Both of them store their user
credentials as certificates in LDAP directories. Hence on the face of it, the Akenti and
PERMI S authorisation infrastructures seem to be almost identical.

However at the implementation level Akenti and PERMIS are very different. Akenti is
written in C++, Permisin Java. The Akenti compliance checker can be called either viaa
function call in the gateway or as a standalone server via TCP/IP, whereas the PERMIS
compliance checker isinvoked as a Java object in the gateway. PERMIS credentials are
built according to the latest X.509 standard [ X509], whereas Akenti credentials are built
in aproprietary format using XML syntax [Akenti]. Akenti requires the user to be PKI



enabled and to present an X.509 public key certificate at authentication time, whereas
PERMIS is authentication agnostic and leaves it up to the application to determine what
type of authentication to use. Whilst both PERMIS and Akenti policies are written in
XML, their DTDs are very different [Thompson] [IFIP]. PERMIS policies are held in one
policy X.509 Attribute Certificate, whereas Akenti policies are hierarchical and
distributed between proprietary Policy Certificates and Use-Condition Certificates.
Akenti has concentrated on classical access control lists (discretionary access controls)
whereas PERMIS has implemented role based access controls. Therefore at a practical
level there are a significant number of differences between the two infrastructures, and it
is these differences that are described in more depth below.

3. Policies

The Akenti policy is distributed and hierarchical. It comprises two components. Use-
Condition certificates and Policy Certificates. A Use-Condition certificate places
reguirements on the attribute certificates that users must have in order to gain accessto a
resource. A Policy Certificate states the overall policy for controlling accessto a
resource, and holds the trusted CAs and Stakeholders, and pointers (URLS") for searching
for Use-Condition certificates that are applicable.

Policy Certificates comprise aroot policy certificate, and optionally subordinate policy
certificates that inherit from the root policy. Akenti sees the target as atree of resources,
e.g. afilesystem with subdirectories. Each of the branches (subdirectories) can have a
policy of its own, but in addition to that the policy of the superior branch (directory) is
inherited. Each of the policies can beissued by a different Stakeholder.

A stakeholder isaspecia kind of authority that is trusted to issue Use-Condition
certificates. Each stakeholder can impose his own access control requirements
independently of other stakeholders. One of the stakeholders signs the Policy Certificate.
A stakeholder in Akenti is equivalent to a Source of Authority (SOA) in PERMIS.

Use-Condition certificates contain the name of atarget resource, a condition (which can
be a constraint), acritical flag?, the authorities (CAs for X509 attributes, AAs for Akenti
attributes) of the certificates with the attributes to be matched against these conditions,
plusalist of rights/privileges that are granted. Conditions may include identity attributes
that users must have (e.g. CN), role or group memberships (e.g. groupX) and
environmental parameters (e.g. time of day). Rights are comma separated lists of actions

1

Page: 3
http:, https:, Idap: and file: protocols are possible, thus enabling storage of the certificatesin Web
directories, LDAP directories and filestores. However, Akenti does not specify the LDAP schemafor
storing their UCCs and Attribute Certificates, which thus makes LDAP effectively unusable.

2 page: 3

If the UCC is Critical (flag set to true), the UCC must be satisfied, in the sense that if the condition fails to
be satisfied, no access can be granted at all, irrespective of what other UCCs allow. If the UCC is Non-
critical (flag set to false), the UCC only defines rules for one access control condition and it does not affect
the decisions made by other UCCs.



on targets. Action names have to be unique for the whole domain of resources,
irrespective of the target type. The AA trusted to issue each attribute value must be
specified exactly (no ordering of valuesis provided to allow for implied permissions to
issue certificates with subordinate values), but each Use-Condition can include different
AAsfor each attribute. By way of example, a stakeholder can specify that in order to read
or execute a process on atarget the user has to possess an attribute named CN with a
value matching one from agiven list (thus modelling DAC), signed by CA A. A detailed
description of a Use-Condition certificates can be found in [UCC] [AkentiCerts].

The attributes issued to the users in attribute certificates, are independent of each other,
and cannot form arole hierarchy (i.e, in which superior roles inherit the privileges of
subordinate roles). Akenti supports the distributed management of attribute certificates,
and an external AA may assign attributes to usersif the Use-Condition certificate lists the
AA under the relevant attribute value.

Contents of an Akenti Policy Certificate:

?? Name of the resource to which this policy applies
?? List of information about trusted CAs including:
?? Distinguished Name
?? public key certificate (can be self signed).
?? list of placesto search for Identity Certificatesissued by this CA (optional)
?? list of locations where CA stores its CRLs (optional)

?? list of Use-Condition issuers (defines the resource stakehol ders)

?? list of URLsto search for Use-Condition certificates (could name a single Use-
Condition, adirectory containing hash-named Use-Conditions, or could be a search
script)

?? optionally URLsto search for user attribute certificates

?? maximum time in seconds that any certificates that are used in satisfying conditions
for this resource may be cached.

The whole policy is signed by one of the stakeholders and must be stored securely to stop
it being switched for another one (or deleted altogether). Similarly, policy hierarchies are
not specified in a secure way, since there are no pointers from superior to subordinate
policies or vice versa. Consequently the policies must be stored in secure directory
hierarchies, and the directory hierarchy determines the policy hierarchy.

A full description of the Akenti policy can be found in [AkentiPolicy] [AkentiCerts]

The PERMIS policy isone object, and is stored in an LDAP directory as apolicy
attribute certificate. It supports classical hierarchical RBAC, in which roles are allocated
to users and privilegesto roles. Superior roles inherit the privileges of subordinate roles
in the hierarchy. Multiple digoint role hierarchies can be specified. PERMIS has avery
loose definition of arole; arole may be any attribute assigned to a user, not just a
conventional organisational role. PERMIS supports the distributed management of
attribute certificates, and multiple external SOAs can be trusted to issue roles/attributes.



Thus users can be certified externally to the domain the attribute certificates will be used
in. The policies are kept in the LDAP entry of the policy issuer, and different policies are
distinguished by their unique object identifiers (OIDs). There is no need for the policies
to be kept securely, since the PERMIS engine validates the policy at run time to ensure it
isthe correct one (i.e. has the correct OID and is signed by the SOA). However, the name
of the SOA has to be securely configured into the PERMIS application at start up. Policy
hierarchies are not supported by PERMIS. These can either be enforced organisationally
by management, or by the application instantiating several PERMIS decision engines,
one per level of the hierarchy, and ensuring that each level grants permission.

The PERMIS Policy components comprise:

?? Policy OID, so the policy can be distinguished among others stored in the SOA’s
entry

?? Subject domains, specified as LDAP subtrees, which are the subjects who can assert
roles

?? Target domains, specified as LDAP subtrees, which are the targets governed by the
Target Access Policy

?? List of the distinguished names of trusted external attribute certificate issuing

authorities (SOAS) which are treated as roots of the delegation trees

Role hierarchy specification (lists the roles as ordered attribute values)

Role assignment policy, telling which attribute authorities are trusted to issue which

roles to which subject domains, and whether delegation is supported or not

?? Action policy, saying what the actions and their parameters are, so they can be
referenced in the Target Access Policy

?? Target Access Policy, which specifies the set of roled/attributes required to perform a
particular action along with any conditions.

33

A full description of the PERMIS policy can be found in [IFIP].

4. Policy Conditions

In PERMIS conditions are placed on which attribute certificates can be trusted (in the
Role Assignment Policy) and on which attributes have which privileges and when (in the
Target Access Policy).

In Akenti conditions are placed on which attributes certificates can be trusted and on
which attributes have which privileges and when (in the Use-Condition certificates).

PERMIS therefore contains alevel of indirection, in that principals are assigned
attributes, and attributes are given privileges (i.e. RBAC). Akenti however can support
DAC and RBAC,, in that principals can be given privileges or group membership, and
group attributes can be given privileges.



5. Infrastructures

Both PERMIS and Akenti have a Source of Authority (SOA) or equivalent entity that
creates a Policy. PERMI S uses the X.509 terminology SOA, Akenti callsit a
Stakeholder. In Akenti terminology there can be multiple stakeholders participating in
administering the resource, in PERMI S there can only be one SOA for the target resource
(although external SOASs can be trusted to issue ACs). In Akenti all the stakeholders can
issue Use-Condition certificates, in PERMIS only the SOA can issue the equivalent
functionality as part of the overall Policy. In PERMIS only the SOA creates the Policy
and digitally signsit. In Akenti, one of the stakeholder peers creates and signs the root
policy and should placesit in a secure store. Any stakeholder named in the root policy
can sign the subordinate policies. Both infrastructures must be configured with the CA
(authentication) roots of trust. In PERMIS it is an application dependent matter how this
is configured into the system. In Akenti it is part of the policy.

Both PERMIS and Akenti recognise separate hierarchies for authentication (CAs) and
authorisation (SOAs or stakeholders). The Akenti authorisation hierarchy leads from the
policy signing stakeholder to other stakeholders, and via Use-Condition certificates to
subordinate Attribute Authorities (so it is more a mesh than a hierarchy).

Fig. 1 below showsthe Akenti PMI. In it thereis a Policy object, specifying trusted
stakeholders, who can issue Use-Condition Certificates (UCC) to the resource (the Target
domain). The Use-Condition certificates specify the trusted AAs. Each of the AAs can
issue Attribute Certificates (AC) to the users of the system (the Origin domain).

Origin Target

AC A/

Jucc
al |'\/' Stekehol der
e

AC Stakeholder UCC
()

Figure 1. Akenti Privilege Management Infrastructure

In the PERMIS infrastructure the AAs form a hierarchy. Fig. 2 displays the PERMIS
PMI. Init the Policy isissued by the root SOA and specifies a set of trusted foreign
SOAs (each being the root of aforeign PMI). These SOAs (and their subordinate
Attribute Authorities if allowed by the policy) can issue Attribute Certificates to the
users. (Note that the current release does not interpret AAS).



Origin Target

AC

S

‘ ,/\/

AC e

S
2

Figure 2. PERMIS Privilege Management Infrastructure

6. Trust Chains

In PERMIS, the target trustsitself and is securely configured with its SOA name
(authorisation root of trust). The policy is signed by this SOA so the policy can be
trusted. The policy contains the names of remote SOAs who are also trusted to issue
attribute certificates. Attribute certificates must be signed by one of the trusted SOAs or
their subordinates (and conform to the Role Assignment Policy) or they will be discarded.
Attribute certificates contain the distinguished names of their holders (users). In
PERMIS, the root of trust in authentication is the responsibility of the application, and
PERMI S trusts the application to properly authenticate the users and to validate the
digital signatures on attribute certificates. A user must authenticate himself to the
application to prove that heisidentified by agiven DN, and then PERMIS can trust that
attribute certificates containing this DN belong to the user.

In Akenti, the root policy is signed by atrusted stakeholder and must be securely
configured into Akenti. The root policy lists the other stakeholders who are trusted to
issue subordinate policies and Use-Condition certificates. Use-condition certificates state
which AAs are trusted to issue which attribute certificates. Users who present attribute
certificates must eventually digitally sign something to prove that they are the holder of
the private key corresponding to the public key held in both the returned Capability
Certificate and in the PKC referred to in the attribute certificate (the AC holder isreferred
to by his DN and the DN of his CA issuing his PKC). Akenti can then trust that this



attribute certificate belongs to this user. The attribute certificate is further checked to
ensure that it is signed by atrusted AA, and that it conforms to a trusted Use-Condition
certificate. Finally, Akenti issues a Capability Certificate to the client and inserts the
user’s public key into this.

7. Attribute Certificates

In both systems, attribute certificates are issued to users, and hold their privileges (either
directly or indirectly via an attribute/role).

Akenti uses XML certificatesin their own proprietary format. (Note that this format has
changed between releases, so that V1.1 wont work with V1.2). The certificates can be
stored in LDAP, HTTP or afile repository (but since no LDAP schemais defined this
effectively rules out the use of LDAP). A user isidentified viahis LDAP DN and the DN
of the CA issuing his public key certificate (and he has to prove ownership of the private
key corresponding to this public key certificate). Attributes comprise atype and value.

PERMIS uses BER/DER-encoded attribute certificates in X.509 standard format. A user
isidentified by his globally unique X.500/L DAP distinguished name, and a user has to be
authenticated against that name. Attributes have atype and value, and attributes can form
arbitrarily complex role hierarchies. The certificates are stored in LDAP repositories,
using standard LDAP/X.500 schema. The base code can be extended to support other
repositories with L DA P-based naming conventions.

8. Decision Making

PERMI S operates in multi-step decision making mode. In step 1, getCreds, the user’s
credentials are obtained and validated, and roles conforming to the policy are passed back
to the calling application for caching. This typically takes place during user login. In step
2, decision, the requested action and target are passed, along with the user’s validated
roles, and a simple Boolean decision is returned, either granting or denying access. Step 2
can be repeated as often and as many times as required for different targets and different
actions, as the user attempts to perform different tasks.

Akenti only operates in single step decision making mode, but is able to make different
types of decisions. The client can ask “What can auser do?’, aswell as the traditional
“Can this user perform this action on thistarget?’.

Akenti always embeds its response in a Capability Certificate for export back to the
client. The Capability Certificate comprises the public key of the user, the DN of the user
and his CA’s DN, the name of the resource, and the privileges that the user enjoys,
optionally with alist of conditions attached to each of them. The Capability Certificateis
then signed by Akenti and given to the client. The user can subsequently present thisto a
gatekeeper for improved performance. The gatekeeper, which holds the Akenti public
key, merely needs to check the signature on the capability, then ask the user to sign a
challenge, before granting (or denying) the user access to the resource.

PERMIS has no ability to return Capability Certificates.



9. Software Architecture

Akenti: C++ classes and dynamic link/shared libraries. The API classes can be used by
C++ programs. The standalone authorisation module can receive authorisation requests
viathe network over an insecure connection or SSL.

PERMIS: Java classes to be used by the authorisation Java program.

Akenti has a set of modules. Some of them are standal one, some represent the API
implementation that can be embedded into the application directly. The Akenti web-
security module can be attached to an Apache web-server for Unix platforms.

PERMISisan APl implementation only. There is no standal one authorisation module at
the moment.

10. Authorisation engine user requirements

The user sending arequest to the Akenti PMI must be PKI enabled. User authentication is
done viasignature verification. Akenti does not require the user to sign anything, but his
public key will be used for authentication by the gatekeeper receiving the user’s
Capability Certificate. The root of trust that issues the policy and stakeholders issuing the
use conditions must be PKI-enabled. So must the AAsissuing ACs.

The user sending arequest to the PERMIS PMI does not have to be PK1 enabled. Any
type of authentication can be used. PERMIS is authentication-agnostic. The only
requirement is that the AEF authenticates the user, and maps the authenticated identity
into the user’s DN in the attribute certificate (in many cases they will be the same).
However, the AAs and the SOASs have to be PK1-enabled, because the signatures on the
attribute certificates have to be verified.

11. Applicability

The Akenti standalone module can be applied in any system with a TCP connection to
the network. The Akenti Web-server authorisation module can be embedded into the
Apache web-server.

The PERMIS API does not have any “shell” that would receive requestsin any particular
manner. Bologna Municipality have developed an authorisation servlet for their web-
server.

12. Administration: Allocating Privileges and Setting
Policies

In Akenti thereis a special command line tool for creating the Policy, Use-Condition and
Attribute Certificates. A GUI tool can also be used, and if a Resource Definition Server is
running thiswill ensure that the administrator conforms to the policy when issuing ACs.



In PERMIS, thereis a GUI application, the PA (Privilege Allocator) that is used to create
and sign policy ACs and user ACs and store them in an LDAP directory. Thereisaso a
programmable API that can used for the bulk creation of ACs. (The piloting partners
from Barcelona have aso produced a programmable PAT (Privilege Allocating Tool) but
we are unsure about its release conditions). The PA and API will issue any type of AC,
and it isthe administrator’ s responsibility to ensure that the contents are correct.

13. Ease of Installation and Use

13.1. Installing and Using PERMIS
(text provided by Mary Thompson of LBL)

13.1.1  Obtaining the download

| downloaded onto a Solaris 5.7 machine, so | did not have the Word instruction file open
at the time. Thusit took me some time to find the pbs-sample.zip file. But looking at your
Web page today, | see that you have the instructions in html, so that would no longer be a
problem.

13.1.2  Setting up your environment
All | had to change were the pathnames in the samplel.cfg\->/.

13.1.3 Installing the software

Thiswas very straightforward. | did not need to compile anything and already had the
Xerces xalan software installed. Running the pab example worked just as advertised.

13.1.4  Using the software

The pab example was very simple to use. Editing the existing TEST1.xml was fairly
obvious. | gather that there are tools to at least sign a policy and maybe to help you edit
one. But al | could find was the class documentation, which did not make it clear which
classesto invoke or what the arguments might be. It looks like the kernel_app.bat will get
me some sort of GUI, but it islate and | am running the Java remotely which is never
very satisfactory.

13.1.5 Creating a basic policy

| created the "medium” ALS policy in about 2-3 hours using the two example policies,
the DTD and the "RBAC POLICIESIN XML FOR X.509 BASED PRIVILEGE
MANAGEMENT" document [IFIP].

13.1.6  Creating attribute certificates

| did not try this. | did not see any examples of text based certificates or find any tools to
create the ASN.1 certificates. The BER viewer {from Aram Perez } does not work on my
Linux, Solaris systems.

13.1.7 Comments on documentation
| downloaded the pa_doc021218.zip file which promised to contain a user manual but

10



seemed to be only the Java class documentation. If there is a user manual it would be
good to link to it from your tutorial page.
(Editor’ s Note. This has now been done)

13.2. Installing and Using Akenti
(Text provided by Sassa Otenko of University of Salford)

13.2.1 Obtaining the download
Thiswas very straightforward.

13.2.2 Setting up your environment

No specifications about Linux versions were given. | had problems with trying to compile
the code on Linux Red Hat 8.0. | aso had problems with running the JRE that they
provide on Linux Red Hat 8.0, and therefore could not create the certificates.

The instructions are quite detailed, but not all of them reflect what the code actually does.
E.g. the configuration file for the UCC and Attribute Certificate creation tool looks for
the .htauthority file only, athough there is a configuration parameter to specify an
alternative file name.

There were no instructions about the A pache configuration. However, the Akenti engine
refused to work with Apache 1.3.24 running several Virtual Hosts and could not retrieve
remotely stored certificates fromit.

There were no instructions about the naming convention for the certificates. After talking
to the developers | have been given imprecise instructions, which led to delays in setting
up the environment: Akenti refused to pick up seemingly correct certificates.

13.2.3 Installing the software
Installation was straightforward, because it consisted of unpacking the TAR-GZip
archive. No extralibraries were required. Compilation was necessary to get aworking
standalone Akenti server and the performance tester. Except for the af orementioned
problems with the compilation of Akenti on Linux Red Hat 8.0 with GCC3.2 compiler,
there were no problems with compiling both modules and they worked straightaway .

There were no problems connected with configuring the server or performance tester.

Installation of VM was required. The JRE provided with the binary distribution failed to
work on Linux Red Hat 8.0. There were no instructions as to what VM is preferred, but
it appeared that the IBM JVM does not provide the (optional) security provider the code
uses. | had to install the Sun VM.

13.2.4 Using the software

There are examples and test programs provided. Modification of the example program is
straightforward.

11



If using the standalone Akenti server, there would be more code required than when
using a built-in Akenti authorisation module accessed via API. In the latter case all the
coding required is only for collecting user request parameters and enforcing the decision
(the same as for PERMIS). Note that in the case where the returned Capability
Certificate/decision contains a conditional permission, more code would be needed to
evaluate the condition (i.e. additional code as compared to PERMIS, as PERMIS always
givesthefinal decision).

There were no instructions on how to compile your own program with the embedded
Akenti module, so | have copied the example program and updated the way the API calls
were made. The resulting performance tester cannot be moved from <akenti distribution
directory>/src/exampleTools, which is abit limiting.

The documentation does not specify what libraries are required for the Akenti standalone
server (or any program using the embedded Akenti decision making module). This makes
it impossible to move the program to a different location on the PC.

13.2.5 Creating a basic policy

There are acommand-line tool and a GUI tool for creating a policy. Writing abasic
policy is easy, but there were several problems with using the program itself, which
caused adelay of over two weeks and forced the Akenti team to release several updates
of their binary distribution.

| did not use the command-line tool. The problems with running the GUI tool are:

- the JRE provided with the binary distribution failed to run on Linux Red Hat 8.0;
| had to change the script running the GUI tool (some knowledge of the scripting
language was required)

- itignores some of the configuration parameters, like the name of the policy file,
when creating Use Condition Certificates

- it failed to sign the policy and certificates when running the IBM JVM instead of
the Sun JVM - no security provider was installed; the documentation does not say
anything about this

- there were severa problems with the GUI itself:

?? inconvenient LDAP search dialogs (they assume that the DN will always
contain an OU component in it)

?? thefile open dialog for the policy file does not display anything (when picking
up the policy for creating ACs and UCCs)

?? many Cancel buttons do not work (Akenti devel opers comment that thisisa
usual problem for various Linux versions)

?? theinitia version of Akenti tools (downloaded after April 25) generated a
wrong policy (generated 'AND' instead of '& &', so the engine failed to
understand the policy)

?? theinitia version of Akenti tools (downloaded after April 25) did not generate
the XML of the certificate, though this was expected, as per their
documentation

12



?? the subsequent versions of Akenti tools do put the XML into certificates, but it
is completely ignored by the decision-making engine (therefore it can be
tampered with and be of incorrect syntax altogether); having the XML
policies and certificates has no benefit, because they could rather be expressed
in English; indeed, having XML inserted in the certificates only deteriorates
performance, as the whole certificate has to be transmitted via the network

13.2.6 Creating attribute certificates

Same as above. The problems encountered were connected with running VM and the
interface was not especially convenient in certain respects (LDAP search facility, file
open dialog, cancel buttons). It isimportant that the GUI contains hints displayed at the
top of the window, which makes the process of certificate creation straightforward. Note
however, that the interface differs from what the documentation shows.

13.2.7 Documentation

From a user prospective the documentation does not fully correspond to what the code
does, or how the GUI looks. From an administrator prospective the documentation
dedicated to particular certificate types did not contain detailed enough information.
Thereisadocument with all the XML tags used in Akenti described in much detail, but it
isdifficult to use, because | don't know what tags to look for in a particular kind of
certificate.

The Akenti documentation seemsto allow UCCs and other certificates to be kept in
LDAP, but they do not provide the schema for that. The documentation contains old
names of the scripts to run.

13.3. Code Sizes

We compared the sizes of the test programs, assuming they provide the same
functionality. The PERMIS testing program with the PBA engineisa JAR file of
approximately 200K B, which makes it about 900K B with all the necessary libraries
(XML parsing, cryptography etc.).

We must also add the size of the JRE, which is about 130MB for IBM’s VM, but this
can be significantly reduced by removing all graphics related modules, if only the
PERMIS engine is used on the computer. Note that Sun’s VM is at least twice as small,
but we did not run tests on that VM. There are even smaller versions of VM, which are
sufficient to run PERMIS (i.e. Sun VM 1.2.2 for Windows is about 27MB in size).

The Akenti executable fileis about 16MB (compiled for Linux), plusit requires
additional shared libraries, the total size of which amounts to another 6MB. The Akenti
developers report that the engine is even bigger on Solaris computers and may exceed
50MB [Private Correspondence with LBL].

Note that Akenti also needs a JRE for certificate signing.

13



14. Performance Testing the Akenti and PERMIS APIs

14.1. Test Environment

Thisisan outline of the implementation of the test environment for the Akenti-PERMIS
performance testing. It describes the PKI structure, LDAP directory structure and the
number of certificates issued for each kind of test.

There will be two kinds of test: Basic and Medium, the level being defined by the
complexity of the policy and the number of users participating in it>. For each of them a
number of access requests will be issued and the following resource consumption
measured:

- timeit takesto collect and verify the subject’s credentials (Akenti ACs, PERMIS ACs
—acall to getCreds). PERMIS will also perform time measurement for a call to the
decision method, which will be output as a separate set of measurements to compare
how that affects the decision-making process. The Akenti engine does not have an
equivalent two-step decision process so this measurement cannot be taken for it.

- Memory used during the above processes

- CPU usage statistics

The requests will be fed into two specialised programs embedding the respective APIs.
The requests will be formed as a text file containing text input for the programs, i.e. User
DN, Target Name, Action Request, etc. The programs will process the files to the end
and output the statistics onto the standard output, which can be redirected into an
appropriate file.

The measurements will be output in text format, which can be parsed for processing
using MS Excel. Appropriate graphs can be built as aresult.

During the tests there will be the default cryptographic configuration for the Akenti API
(i.e. Public Key Cryptography). The PERMIS API will be tested in two modes: a) no
signature verification on the ACs; b) full signature verification on the ACs, using the
same PKI as Akenti. Users will be authenticated with no cryptography involved (i.e. the
users will simply provide their names), because the PERMIS API is user authentication
agnostic and it would be unfair to require Akenti to use cryptography for this purpose.
Therefore the Akenti test program will also be provided with a user name, and, asthe
engine prescribes, the CA name aswell. The CA *authenticating” the user will be set to
Akenti Root CA (see PKI section).

14.2. Hardware and Software configuration

Hardware: Pl 500MHz, 256MB RAM, 20GB SCASI hard drive.
Operating System: Linux Red Hat 8.0, kernel 2.4.18.
Software: JRE 1.4.0 IBM.

3 Note that we had initially wanted to perform three tests, including an Advanced one, but thiswas
frustrated by not being able to find an exemplar advanced policy to implement.

14



14.3. PKIl and PMI
Both authorisation engines will be configured with the same PK1 and similar PMIs.

The PKI consists of the Root CA that directly certifies al entities participating in the
authorisation process. These are: the root authorisation authority (Stakeholder in Akenti,
SOA in PERMIYS), other authorisation Attribute Authorities (Stakeholdersand AAsin
Akenti, multiple SOAsin PERMIS). The PKI entities will be issued with an RSA 1024-
bit key pair, using OpenSSL free software.

Root CA: cn=Root CA, 0=PERMIS, c=GB

Other subjects and authorities will be created as required by the policies and their PKCs
will be kept in the LDAP entries of their holders. In both cases the PK Cs will have to be
retrieved from the remote site for afair comparison, even though the retrieval algorithms
may differ (PERMIS will use a DefaultSecurity as a signature verification object, which
will retrieve a PKC each time a signature has to be verified; the Akenti algorithm of
retrieval of UCCsis unknown to us).

The Akenti PM1 will consist of one Stakeholder for the Basic tests, and of multiple
Stakeholders for the Medium tests. Thiswill measure how the number of stakeholders
affects performance. There will be as many Attribute Authorities as required for the
respective policy. The Akenti Policy will always contain only one CA, the root CA.

The PERMIS PMI will consist of one root SOA. There will be as many additional SOAs
asrequired for the respective policy.

Akenti is given asigning key (RSA 1024-bit) and a PKC, issued to:
Akenti DN: cn=Akenti Server, 0=PERMIS,c=GB

14.4. LDAP and Web

The PERMIS ACs and PKCs and the Akenti PKCs were stored in an LDAP server. It
was not possible to store the Akenti ACsin an LDAP server as we were unable to
determine the schema required for this. Instead, the Akenti certificates were stored on a
Web server as separate filesin aweb directory.

The LDAP and Web servers ran on the same Linux machine - aP166MHz with FPU
computer with 128MB RAM, 2GB+10GB IDE hard drives, 10MB Ethernet card. It had
Linux Red Hat 7.2 installed on it. The Web server was Apache Web-server v1.3.24. The
LDAP server was OpenLDAP version 2.0.23. The Linux machine was in the same
segment of the network (under the same router) as the PC running the test programs.

The performance measurements were taken at different times during the day to account

for the varying amount of local traffic, which may affect the LDAP and Web servers
performance.

15



The LDAP schemaisgivenin Appendix A.

The user entities of the tests will be entries with the pmiUser objectClass. Their Attribute
Certificates will be kept in the attributeCertificateAttribute for PERMIS. It was not
possible to store Akenti ACsin LDAP.

The SOAs, Stakeholders and Attribute Authorities will also be entries with pkiUser
objectClass and will have their PKCs kept in the userCertificate attribute.

14.5. Simple Policy

The simple policy isfor controlling access to one server in adepartment (e.g. aprint
server).

All staff in the department can write files to laser printer x, Jimthe administrator can
write files, delete any files from the print queue, pause the printing, and resume the
printing at the laser printer x. No-one else is allowed access to the printer.

The policy has been encoded to govern the ou=V enables,o=permis,c=gb department. The
SOA iscn=S0A ,0=permis,c=gh. Any users with a DN ending with

ou=V enables,o=permis,c=gb are allowed to print on the

cn=printer,ou=V enables,o=permis,c=gb printer. Any users from the

ou=V enabl es,o=permis,c=gb department with administrator role can also pause, resume
print jobs, and delete jobs from the queue.

Jm: cn=Jim,ou=V enables,o=permis,c=gb is issued with an AC with the permisRole
attribute with value “administrator”. The AC issigned by the SOA.

The Policy encoding for PERMIS and Akenti are given in Appendix B.

14.6. Medium Policy

The medium policy was provided by the Akenti project at LBL. It isthe policy for
controlling access to the Advanced Light source at LBL.

The director of the lab wants to make sure that citizens of Iraq, Iran and North Korea
can't touch the Advanced Light source, no matter what. The director of the facility wants
to be sure that everyone who touches it has taken and passed the lab's X-ray safety
training course. The PI for the project wants to allow access for his group members
between the hours of 8am-8pm PST and for his colleague's group between 8pm and 8am
PST. Therole of leader is allowed to control, operate and observe experiments, therole
of experimenter is allowed to operate and observe experiments and students are allowed
to observe experiments.

The policy encoding is as follows:

The signer of the policy is cn=SOA ,o=permis,c=gb. It authorises other SOAsto issue
ACs.

16



Jim: cn=Jim,ou=V enables,0=permis,c=gb isissued with an AC with “experimenter” role
by the Director SOA (boss), “Jones’ group by PI SOA (Joe Jones), “lbnl-xray-101" by X
SOA (smith).

Bob: cn=Bob,0=Ibl,c=us isissued with an AC with “student” role by the Director SOA
(boss), “Doe”’ group by Colleague SOA (Jane Doe).

Judy: cn=Judy,o=Ibl,c=usisissued with an AC with “student” role by the Director SOA
(boss), “Doe”’ group by Colleague SOA (Jane Doe), “Jones’ group by Pl SOA (Joe
Jones), “Ibnl-xray-101" by X SOA (smith).

Sharon: cn=Sharon,o=Ibl,c=usisissued with an AC with “leader” role by the Director
SOA (boss), “Jones’ group by PI SOA (Joe Jones), “Ibnl-xray-101" by X SOA (smith).

The Policy encoding for PERMISis given in Appendix B.

14.7. Overview of Test Results

There were significant problems when trying to use Akenti. The problem was aggravated
with the distance between our testers and the devel opers, which caused big time delays
between questions and answers because of the time difference (note that the testers were
located in UK, GMT+1, whilst the Akenti developers were located in USA, California,
GMT-7).

The testing programs are available at [Raw].

The statistics were collected for various configurations for the PERMIS and Akenti
engine. 120 access requests were issued for the Simple Policy and Medium Policy®.

The same sequence of requests has been used for testing the PERMIS engine in four
modes, thus producing four samples:

1. L+C, communicating to LDAP and performing cryptographic checks using
issrg.security.DefaultSecurity

2. L-C, communicating to LDAP and performing no cryptographic checks on the
ACs; this can be compared to sample 1 to see how much of the time is devoted to
cryptography

3. C-L, performing cryptographic checks on the ACs, but the ACs are stored in
memory (issrg.repository.Virtual Repository) and are loaded at initialisation time;
this can be compared to sample 1 to see how LDAP operations affect performance
of the system

4. —C-L, performing no cryptographic checks on the ACs, and ACs are stored in
memory, like in 3; this can be compared to sample 2 to see how LDAP affects

“ Due to the problems with installing Akenti we have only succeeded to collect Simple Policy test results
for Akenti. Further, Akenti does not evaluate any SY STEM attributes, like time, and it does not have plug-
in mechanism yet, and so is unable to give a simple granted/denied response for the Medium Policy.

17



productivity of the system, and can be compared to sample 3 to see how
cryptography affects the PERMIS system.

The times were taken in four modes for getCreds only®. The time spent on decision is not
affected by the mode of operation, and the average for it is calculated over al samples.
The Excel workbooks with graphs and raw data are provided at our web site [Raw]. We
only provide the average times and standard deviations, with no other manipulation of the
raw data.

The same sequence of requests were issued to the Akenti engine (but only the Simple
Policy mode was tested)®. The engine was tested in the following modes:

1. L+C, when theidentity certificates (X.509 PKCs) are stored in LDAP, but the rest
of the certificates are stored on aweb-server, and the returned Capability
Certificates are signed

2. R+C, when al certificates (including identity certificates) are stored on a web-
server, and the returned Capability Certificates are signed

3. C-L, when al certificates are stored on alocal hard drive, and the returned
Capability Certificates are signed

4. L-C,thesameas 1, but the returned Capability Certificates are not signed (setting
in the configuration file)

5. R-C, thesame as 2, but the returned Capability Certificates are not signed

6. -C-L, the same as 3, but the returned Capability Certificates are not signed

It is not possible to completely switch cryptography off in Akenti without editing the C
code and recompiling. The sequence of these testsis repeated with caching switched on
and off.

Note that switching the cryptography off in Akenti is not the same as switching
cryptography off in PERMIS. In PERMIS it means that no signature verification on any
attribute certificates is done. In Akenti it only affects the creation of the capability
certificates sent asthe reply of the Akenti engine. If cryptography is on, the capability
certificate returned by the Akenti engineis signed prior to returning to the client. If
cryptography is off, the capability certificate returned by the Akenti engineis unsigned,
and the signatures on the capability certificates are not checked. This setting also affects
the signing and signature verification of cached certificates.

It was noticed that performance of the Akenti engine can be affected by the way the
URLs are specified for the certificate stores. The engine prefers to issue arequest to the

® In fact, raw data output from the performance tester contains time and memory measurements for both
getCreds and decision. However, statistical analysis of the time was performed in the four modes only for
getCreds, since the values for decision were not affected by the mode.

® Note that there isa light difference in configuration. The PERMIS engine retrieves and parses all the
ACsinthe LDAP server, for both the Simple Policy and Medium Policy modes (i.e. retrieves more data
than is actually needed) and invalidates the certificates from the Policy not under test. However, the Akenti
engine retrieves only the certificates for the Simple Policy test (i.e. does not retrieve or parse any redundant
data), because no certificates have been created for the Medium Policy test.

18



Web server requesting the directory with certificates asis, and if that fails with error code
301 (Moved Permanently), it makes another attempt with ‘/* appended to the URL’.
Therefore two separate sets of test have been run. One set had al URLswith the trailing
slash present for all Web certificate stores (referenced as Full URL in the tables below).
The other set had all URL s without the trailing slash present for such stores (referenced
as Chopped URL in the tables below).

The measurements of PERMIS and Akenti that can be meaningfully compared are:

1. Single Decision Making. PERMIS L+C to Akenti L-C and R-C with caching off
In this case PERMISretrieves al of its certificates from aremote LDAP site,
performs all cryptographic checks, and returns the internal representation of the
credentials. Akenti in mode L-C and R-C is doing similar tasks only fetching
certificates from an LDAP or Web server. Switching cryptography off in Akenti
means that the engine will not sign the returned Capability Certificate, whichis
approximately the same as a PERMI S return.

2. Multiple Decision Making. PERMIS decision to Akenti -C-L with caching on
(minus the time for the first call)

In this case PERMIS has validated the credentials (via getCreds) and returned
validated roles to the application for caching. The application can then call decision
multiple times for the same user. Akenti has validated the credentials the first time
they are used, then caches them internally, and uses the cache for subsequent decision
making for the same user.

The behaviour of the enginesin the rest of the tests isincomparable. The measurements
for these tests are provided to illustrate how the engines behave under various
circumstances.

14.8. The Test Results

The raw unprocessed data can be downloaded from [Raw]. The tables below simply
provide the average and standard deviation values.

14.8.1 PERMIS Results

In the Simple Policy, the average number of certificates processed per request is 1.6 ACs
(48 requests for Jim with 4 ACs, 3 of which are redundant; 66 requests for Adam with no
ACs, 6 requests for Sarah with no LDAP operations)

" The Akenti developer’srationale for thisis that the URL could point to either afile (without aslash) or a
directory (with aslash). By adding a slash to URL s without them allows Akenti to be user friendly in cases
where the stakeholder entered the wrong syntax into the policy. Akenti will still return a Capability
Certificate to the user, at the expense of worse performance. The aternative would have been to return an
error to the user, when the user was not at fault, but because the policy was badly configured.

19



Table1l. PERMIS Simple Policy Test

L+C L-C C-L -C-L
Initialisation time(seconds) 1.521 0.833 1.047 0.788
Time for getCreds, average (ms) 142.217 73.070 59.834 25.954
Time for getCreds (ms), std 289.842 | 189.559 | 157.875 71.319
deviation
Memory used, average (system 2621.77| 1775.17 | 2511.16 | 1627.73
units)
Memory used (system units), 2.51 6.80 4.69 5.08
stdev
Ratio of System to User CPU 0.025 0.014 0.020 0.013
time

Notes: system unit for measuring memory is a Page of memory. A memory page size was
4K B (which can vary on different systems).

Table 2. PERMIS Medium Policy Test

L+C L-C C-L -C-L
Initialisation time(seconds) 1.807 1.315 1.473 1.491
Time for getCreds, average (ms) 219.124 87.062 | 118.342 59.529
Time for getCreds (ms), std 378.320 | 190.200 | 207.662 96.375
deviation
Memory used, average (system 2623.63 | 1777.82| 2522.88 | 1649.47
units)
Memory used (system units), 2.70 5.53 1.82 5.47
stdev
Ratio of System to User CPU 0.021 0.013 0.017 0.012
time

In the Medium Policy, the average number of certificates processed per request is 3.4
ACs (9 requests for Bob with 2 ACs, 21 requests for Jim with 4 ACs, 1 of whichis
redundant; 40 requests for Judy with 4 ACs, 48 requests for Sharon with 3 ACs, 2

requests for Sun Y atsen with no ACs and no LDAP operations).

The number of ACs hasrisen 2.1 times (110%). This correlates with the rise of time for
tests with ACs stored in memory (59ms=100% for C-L, 33ms=126% for -C-L). The tests
with remotely stored ACs shows a smaller increase (but less than 2 times) because the
system iswaiting for areply from LDAP, which remains approximately the same in both
the Simple Policy and Medium Policy tests. (77ms=54% for L+C, 14ms=19% for L-C;
the latter has increased less than the former, because L+C makes extra requests for PKC

retrieval)

The very large standard deviations in the times for getCreds is thought to be due to Java

garbage collection, which runs automatically and periodically when the VM determines
that it is necessary to do so. For example, times for Simple Policy L+C ranged from 6ms
to 1.9secs, and for -C-L ranged from 0.8ms to 663ms.

20



The memory consumption figures are approximately the same (compare them by column)
for both the Simple and Medium Policy tests because they have been measured for the
whole Java process, which has its own memory management routines. The standard
deviation of memory usage, however, is quite different in almost all categories. The
increase of memory usage deviation in the L+C tests means that in fact these operations
tend to allocate and free big chunks of memory, and that in the Medium Policy test these
chunks are dlightly bigger. The decrease of stdev for the L-C tests meansthat alot of the
memory in the L+C tests is used by the cryptographic routines, so an increase in the
number of ACs does not cause an increase in the number of cryptographic operations and
lessens the memory reallocations. The deviations of memory usage in the tests for locally
stored ACs shows a significant amount of memory management operations in the Simple
Policy test (alot of memory is allocated temporarily), and that in the Medium Policy test
memory is allocated for longer periods of time (JVM reuses the same chunks).

14.8.2 Akenti Results

Table 3. Akenti Simple Policy Test, Caching off, Full URLs

L+C R+C L-C R-C C-L -C-L
Initialisation 0.012| 0.013| 0.012| 0.012| 0.073 0.012
time(seconds)
Time for checkAccess, 775.6| 368.2| 700.5| 368.8| 117.6 116.1
average (ms)
Time for checkAccess 1024.8 40.1| 1407.5 47.5 23.9 11.1
(ms), std deviation
Memory used, average | 894.98 | 879.98 | 894.98 | 879.98 | 846.98 | 846.98
(system units)
Memory used (system 0.18 0.18 0.18 0.18 0.18 0.18
units), stdev
Ratio of System to User 0.046 | 0.047| 0.044| 0.046| 0.024 0.024
CPU time
Table 4. Akenti Simple Policy Test, Caching off, Chopped URL s

L+C R+C L-C R-C C-L -C-L
Initialisation 0.012| 0.012| 0.012| 0.013| 0.025 0.026
time(seconds)
Time for checkAccess, 795.6 | 441.7| 768.2| 527.2| 1135 116.6
average (ms)
Time for checkAccess 1040.0 58.1| 677.8| 9225 11.0 13.1
(ms), std deviation
Memory used, average | 895.98 | 880.98 | 895.98 | 881.54 | 847.98 | 847.98
(system units)
Memory used (system 0.18 0.18 0.18 0.55 0.18 0.18
units), stdev
Ratio of System to User 0.055| 0.067| 0.055| 0.066| 0.022 0.023
CPU time

21




Notes: there is an apparent rise in time for the tests with LDAP- and HTTP- based
certificate stores, when URL s are specified in atruncated form (i.e. don’t contain the
trailing ‘/’, as discussed above). There is also a noticeable increase of ratio of System to
User CPU time, which is caused by extra network requests (the system time increased,
but the user time remained virtually the same). The times for tests with locally stored
certificates have not changed at al (as expected). Strangely, the times for tests with
cryptography off have risen more than the times for tests with cryptography on (signing
the capability certificatesisalocal procedure!): L+C has risen by 20ms (2%), R+C has
risen by 80ms (21%); but L-C hasrisen by 70ms (10%), and R-C by 160ms (43%). We
would have expected the times to be the opposite of this, because in both cases Akenti
would perform the same number of network operations to create a capability certificate,
and would perform less cryptographic operations in the case with cryptography off. Note
also that R-C (crypto off) is almost the same as R+C (crypto on) in the first case, and
even exceeds(!) the latter time by 80ms (18%) in the second case. Such behaviour of the
Akenti engine isvery unusual.

Table 5. Akenti Simple Policy Test, Caching on, Full URLs

L+C R+C L-C R-C C-L -C-L
Initialisation 0.012| 0.040| 0.012| 0.012| 0.012 0.012
time(seconds)
Time for checkAccess, 23.6 17.2 11.4 12.1 11.3 11.9
average (ms)
Time for checkAccess 85.5 51.0 22.5 25.5 23.0 26.0
(ms), std deviation
Memory used, 900.98 | 885.98 | 831.25 | 831.25| 831.25 | 831.25
average (system units)
Memory used (system 0.27 0.18 | 101.72 | 101.72 | 101.72 | 101.72
units), stdev
Ratio of System to 0.020| 0.024| 0.020| 0.025| 0.020 0.020
User CPU time
Table 6. Akenti Simple Policy Test, Caching on, Chopped URLSs

L+C R+C L-C R-C C-L -C-L
Initialisation 0.012| 0.012| 0.012| 0.012| 0.028 0.024
time(seconds)
Time for checkAccess, 23.6 19.8 11.9 12.0 11.5 9.3
average (ms)
Time for checkAccess 85.5 69.9 254 26.0 23.4 13.8
(ms), std deviation
Memory used, 900.98 | 886.98 | 831.25 | 831.25 | 853.98 | 785.32
average (system units)
Memory used (system 0.27 0.27 | 101.72 | 101.72 0.27 83.63
units), stdev
Ratio of System to 0.020| 0.034| 0.014| 0.016| 0.015 0.018

User CPU time

22




Thereisamost no difference in times for tests with caching on. Thisis because the URLSs

are not being used.

Note that the tests show the same strange property of the code that R-C tests are dightly
slower than expected. For example, they are slower than L-C tests, whilst R+C is
significantly faster than L+C, which is the expected behaviour: in cases when certificates
are stored on both LDAP and HTTP servers the code might need to issue extra requests to

the LDAP server.

Memory usage figures remain almost the same for all tests, and show little deviation from

the mean.

Table7. Akenti Smple Policy Test, Caching off, Optimised

C-L (table 4) C-L (optimised)
Initialisation time(seconds) 0.025 0.080
Time for checkAccess, average (ms) 113.532 61.542
Time for checkAccess (ms), std deviation 11.010 29.252
Memory used, average (system units) 847.98 833.99
Memory used (system units), stdev 0.18 0.09
Ratio of System to User CPU time 0.022 0.039

At the beginning of May we shared our preliminary performance results with the Akenti
developers. They were surprised with the figures and have revised their binary
distribution accordingly. They have provided a version of the engine recompiled with
better optimisation. This table isintended to show how much this optimisation affects the
performance. We did not have enough time to perform all the other tests and only did
testsfor locally stored certificates (both PKCs and Attribute Certificates). The share of
User time to overall time that it takes to make one checkAccess call has obviously
decreased (signs of optimisation) as reflected by the Ratio of System to User CPU time.
The overall time it takes to make one checkAccess call has decreased approximately by a
factor of two. However, we do not expect that network-based times will improve quite as
significantly, due to the possible network and server delays.

14.9. Comparison of the Performance Results

Now, to compare the PERMIS and Akenti performance, for single decisions we should
choose the L+C test for PERMIS (see Table 1) and the L-C and R-C tests with caching
off for Akenti (see Tables 3 and 4).

PERMIStimeis:; 142ms
Akenti L-C: 700ms or 768ms.
Akenti R-C: 368ms or 527ms.

PERMIS performed 2.6 times faster than the best Akenti time in comparable categories,
which isasurprising result, considering that the PERMIS API runs on a Java Virtual

23



Machine that interprets the code, and the Akenti engine iswritten in C++ and thereforeis
compiled directly into CPU instructions.

However, PERMIS consumes 2.9 times more memory.

For multiple decision making we choose the average time for the PERMIS decision
method compared to Akenti -C-L with caching on (minus the time for the callsto retrieve
the credentials into the cache) (Tables 5 and 6).

PERMIS decision: 2ms
Note. Thisisthe average time taken over al tests. The minimum time was <0.3ms and the maximum time
was 168ms®

Akenti (cache only): 6.2ms (excluding the calls to refresh the cache)

PERMIS decision with 8 getCreds: 7.8ms
Akenti -C-L: 11.9ms or 9.3ms (including the time for the calls to retrieve the credentials
into the cache)

Note that PERMIS supports multi-step decision making, whilst Akenti does not. With
multi-step decision making, PERMIS assumes that the AEF will cache the results
returned by getCreds, and that the AEF will return these to PERMISfor it to deliver
several subsequent decisions. This behaviour is comparable to Akenti with caching on
(but in PERMI S the AEF does the caching, whilst in Akenti, it does the caching).

In order to make the figures truly comparable it is hecessary to either add the initial time
for retrieving the credentials in PERMIS (call to getCreds) or to subtract the times of the
callsin Akenti to fetch the credentials into the cache. During the 120 tests, Akenti
appeared to make 8 network calls to refresh the cache, and when these are subtracted
from Tables 5 and 6, the average time for Akenti cached decision making is 6.2ms.
Alternatively, the average time of acall to getCredsin PERMIS (C-L) (Tables1 and 2) is
60ms or 118ms. If 8 of these calls are added to 112 decisions, the PERMIS average
becomes 7.8ms. Thus PERMIS still outperforms Akenti when multiple decisions have to
be made.

14.10. Akenti Medium Policy Considerations

When we started implementing the Medium Policy (as described in section 14.6), we
found that it was very difficult to build an appropriate Policy and UCCs to implement the
desired behaviour. We found that in many cases it required a UCC to be built that did not
contain any actions associated with it, but only a condition that must be satisfied, for
example, a UCC issued by the director that says that if the country is not Iran or Irag the
user is acceptable (but is not actually granted any access). However, the Akenti policy
language appears to be deficient in this capacity and does not provide such a capability.
The Akenti developers suggested awork around in which the UCC allows a " default"
action (that does not actually do anything), and is marked critical. Thiswill then deny all

8 Thelarge standard deviation in the timesis thought to be due to garbage collection by the Java VM.

24



access to any user from Iran or Irag. Another UCC for Jones' group, with role of student
and time between 8am and 8pm is allowed an action of "observe". Now someone who
satisfies both UCCswill be allowed actions of “default” and * observe”. The application
then has to be configured to ignore "default” actions and make use of the "observe"
action. Needless to say, we did not think that this was an appropriate or intuitive solution.

The developers claimed in private correspondence that their command-line tools do
support the creation of UCCs without actions, and that their policy engine supportsthis,
but we did not have time to check this and have based our conclusions on the
documentation and capabilities of the GUI tools that were provided. The developers have
subsequently stated that the GUI will be updated to allow for the creation of UCCs
without actions.

When we investigated alternative ways of specifying the required conditions, we found a
major design deficiency that does not in fact allow distributed management of the
resource as claimed in the Overview of Akenti [AkentiOverview]. The deficiency is
based in how the UCCs are combined to derive adecision function, and in fact requires
that the Stakeholders must communicate their needs to each other in order to create UCCs
with joint conditions. We therefore lose the essence of Akenti’s claimed distributed
management of resources — there is no point in having many issuers of the conditions, if
they have to co-ordinate their wishes with a central or superior Stakeholder in order to
produce their UCCs, and cannot act independently. When we put this point to the Akenti
developers they replied that they have a different interpretation of distributed
management of resources. They actually mean co-operating stakeholders who can each
issue UCCs, but the underlying assumption is that they must co-ordinate on who is going
to set policy about which attributes and who is allowed veto power over what. If multiple
stakeholders start issuing policy without considering what the other stakeholders are
doing, they can easily deny accessto everybody. Therefore the stakeholders have to have
aminimum amount of collaboration. They are only independent in the sense that they can
all create some aspects of policy.

A fuller analysis of the deficiency isgiven in Appendix C.

Another serious lack in the system right now is afunction that will display al the existing
policies and UCCs for aresource, so that a stakeholder can determine the totality of the
authorisation policy for aresource. The Akenti developers recognise this deficiency and
plan to implement this function as a matter of urgency.

The limitations of the Akenti policy language that do not allow a stakeholder to create a
no-action UCC but only with a condition that must be satisfied, and the discussed
deficiency of the Akenti concept did not let us build the correct environment for the
Medium Policy. Instead we attempted to build a single Use Condition Certificate that
encapsulated all the conditions, issued by the Director, but even though theoretically this
should have worked, there was a software problem with the UCC generator and we failed
to generate such acomplex UCC. This bug has been reported to the Akenti developers. In

25



conclusion, after more than one month of trying, we failed to run any Akenti tests with

the medium policy.

15. Summary Table of Features

Feature Akenti PERMIS Comment
Policy Features
Policy location Policy certslocal, Singlein LDAP

Use conditions

distributed at URLSs
Policy control Multiple Single Target SOA

Stakeholders
Support for No Yes
Hierarchical RBAC
User Authentication | User must be PKI User can use any
scheme enabled authentication

scheme
Powerful condition | Planned Yes Not yet
expressions implemented in
Akenti

Policy inheritance Y es. Root policy, No, hasto be

and subordinate
policies that inherit

enforced externally
(e.g. offline by

from root management)

Policy language Akenti normalised | XML Akenti currently
format (ASCII) ignoresthe XML in

its palicy certs

Authorisation

Tokens

Format Akenti normalised | Standard X.509 Note. Akenti
format (ASCII) Attribute formats have

Certificates changed between

releases making
them incompatible

Identification of

By LDAPDN and

By globally unique

holder DN of CA issuing LDAP DN.
their PKC

Distributed Yes Yes

allocation of

roleg/attributes

Allocated by Multiple federated Multiple federated
AAs SOAs

Separation of Yes Yes

authentication and

26




authorisation trusted
roots

Supports dynamic No Designed with
delegation of tokens delegation in view.
Not implemented in
current version.
Decision Engine
Features
Applicationcanadd | Yes Yes Akenti returns
itsown condition conditionsto the
evaluation application for
evaluation, whilst
PERMIS provides a
plug in capability
Environmental Yes Yes Akenti returns these
variables can be conditionsto the
used in decision application for it to
making evauate, whilst
PERMIS allows
them to be passed
viathe API for
PERMIS to evaluate
User’'ssession with | Policy contains max | Application can

ACscan be timein secondsthat | decide during call
prematurely an AC can be back at decision
terminated and ACs | cached time (application
re-evaluated needs to provide the
Java object)
Supports extensible | ?. Application hasto | Yes, new conditions
conditions doitsown can be added via
evaluations plug-ins
Decision making Single step, witha | Multi step with
capability certificate | Grant/Deny answer
(signed or unsigned) | returned by
returned by the PERMIS
Akenti server
I nstantiation Standalone program | Java APl Akenti provide an
viaTCP/IP (and Apache Web server
optionally SSL) module as well
or viaC API
Writtenin C++ Java
M anagement Tools
Authorisation token | Command line GUI toal, the

creation

interface and GUI.
Note. GUI can run
with supporting

Privilege Allocator.
Note that
“Construct” buttons

27




servers that know
users DNsand

are currently not
linked to policy, so

policy, making it SOA must know
easy to use. users DNs.

Policy creation Generic XML tools | Generic XML tools | Akenti tool can be
and GUI. Command | only. Usethe used to create Use-
line interface for Privilege Allocator | Condition
signing. for signing certificates as well

Installation Yes Y es, PA Cookbook

instructions

Performance

API version, one
decision, no caching

Between 368-768ms

144 ms

PI1 500MHz,
256MB RAM
running Linux

16. References

[Akenti] see http://www-itg.Ibl.gov/security/Akenti/
[AkentiCerts] see http://www-itg.Ibl.gov/security/Akenti/docs/AkentiCertificatesl.1.html
[AkentiOverview] see http://www-itg.lbl.gov/Akenti/docs/overview.html

[AkentiPolicy] http://www-itg.lbl.gov/Akenti/docs/PolicyCert.html

[Blaze] Blaze, M., Feigenbaum, J., loannidis, J. “ The KeyNote Trust-Management
System Version 2’, RFC 2704, Sep 1999
[Chadwick] D.W.Chadwick, A. Otenko. “The PERMIS X.509 Role Based Privilege
Management Infrastructure”’, Proc 7th ACM Symposium On Access Control Models And
Technologies (SACMAT 2002), Monterey, USA, June 2002. pp135-140.

[ISO] ITU-T Rec X.812 (1995) | ISO/IEC 10181-3:1996 “ Security Frameworks for open
systems. Access control framework
[IFIP] D.W.Chadwick, A. Otenko. “RBAC Policiesin XML for X.509 Based Privilege
Management” in Security in the Information Society: Visions and Perspectives. |FIP
TC11 17" Int. Conf. On Information Security (SEC2002), May 7-9, 2002, Cairo, Egypt.
Ed. by M. A. Ghonaimy, M. T. El-Hadidi, H.K.Aslan, Kluwer Academic Publishers, pp

39-53.

[Johnston] Johnston, W., Mudumbai, S., Thompson, M. “ Authorization and Attribute
Certificates for Widely Distributed Access Control,” IEEE 7th Int Workshops on
Enabling Technologies: Infrastructure for Collaborative Enterprises (WET ICE),

Stanford, CA. June, 1998. Page(s): 340 -345 (see also http://www-

itg.lbl.gov/security/Akenti/)
[Permis]| see http://www.permis.org
[Raw] see http://sec.isi.salford.ac.uk/akenti-permis
[Thompson] Mary R. Thompson, S. Mudumbai, A. Essiari, W. Chin. “Authorization
Policy in a PKI Environment”, Proceedings of the First Annual PKI Workshop,
Dartmouth College, April 2002, pages 137-149. see www.cs.dartmouth.edu/~pki02
[UCC] http://www-itg.Ibl.gov/Akenti/docs/UseCondition.html
[X509] ISO/ITU-T Rec. X.509(2000) The Directory: Authentication Framework

28




17. Appendix A. The LDAP Schema
The LDAP schemais as follows, as defined as per OpenL DAP requirements:

attributetype (2.5.4.58 NAME 'attributeCertificateAttribute'
DESC A binary attribute certificate'
EQUALITY octetStringMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.8)

attributetype (2.5.4.59 NAME ‘attributeCertificateRevocationList'
DESC A binary attribute certificate revocation list'
EQUALITY octetStringMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.8)

attributetype (2.5.4.61 NAME 'aACertificate
DESC 'A binary attribute authority attribute certificate'
EQUALITY octetStringMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.8)

attributetype (2.5.4.63 NAME "attributeA uthorityRevocationList'
DESC 'A binary attribute certificate revocation list’
EQUALITY octetStringMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.8)

objectclass  (2.5.6.24 NAME 'pmiUser’
SUP top
DESC 'apmi entity that can contain X509 ACs
MAY (attributeCertificate) )

objectclass  (2.5.6.25 NAME 'pmiAA'
SUP top
DESC 'apmi entity that can contain AA ACs
MAY (attributeCertificateRevocationList $
aACertificate $
attributeAuthorityRevocationList ) )

objectClass (2.5.6.21
NAME 'pkiUser'
SUP top
AUXILIARY
MAY userCertificate )

29



18. Appendix B. The Policies
18.1. PERMIS Simple Policy

<?xm version="1.0" encodi ng="UTF-8"?>
<I DOCTYPE X. 509 PM _RBAC Policy>

<X. 509 _PM _RBAC Policy

O D="1.2.826.0.1.3344810.6.0.0.0.0.1">

<l-- only let the people of the departnent in -->
<Subj ect Pol i cy>
<Subj ect Dormai nSpec | D="depart nent ">
<I ncl ude LDAPDN="ou=Venabl es, o=perm's, c=gb"/>
</ Subj ect Donmai nSpec>
</ Subj ect Pol i cy>

<I-- there is only one role: admnistrator; all others
have default access -->
<Rol eHi er ar chyPol i cy>
<Rol eSpec O D="1.2.826.0.1.3344810. 1. 1. 14"
Type="perm sRol e">
<SupRol e Val ue="adm ni strator"/>
</ Rol eSpec>
</ Rol eHi erarchyPol i cy>

<!-- there is only one SQA -->
<SQAPol i cy>

<SQASpec | D="SOA" LDAPDN="cn=SOA, o=perms, c=gb"/>
</ SOAPol i cy>

<I-- let the SOA assign the adm nistrator role to anyone
in the departnment -->
<Rol eAssi gnnent Pol i cy>
<Rol eAssi gnnent >
<Subj ect Dormai n | D="depart nent"/ >
<Rol eLi st >
<Rol e Type="perm sRol e" Val ue="adm ni strator"/>
</ Rol eLi st >
<Del egat e Dept h="0"/>
<SQA | D="SQA"/ >
<Validity/>
</ Rol eAssi gnnment >
</ Rol eAssi gnnent Pol i cy>

<l-- define the printer domain -->
<Tar get Pol i cy>

30



<Tar get Domai nSpec | D="printer">
<I ncl ude LDAPDN="cn=printer, ou=Venables, o=perms,
c=gb"/>
</ Tar get Dormai nSpec>
</ Tar get Pol i cy>

<l-- define the actions -->
<Act i onPol i cy>
<Action Name="print"/>
<Acti on Nanme="del ete"/>
<Act i on Nanme="pause"/>
<Acti on Nanme="resume"/>
</ Acti onPol i cy>

<l-- define the target access policy -->
<Tar get AccessPol i cy>

<l-- users can only print by default -->
<Tar get Access>
<Rol eLi st/ >
<Target Li st >
<Target Actions="print">
<Target Domain |ID="printer"/>
</ Tar get >
</ Tar get Li st >
</ Tar get Access>

<l-- adm nistrator can do anything else -->
<Tar get Access>
<Rol eLi st >
<Rol e Type="perm sRol e" Val ue="adm nistrator"/>
</ Rol eLi st >
<Tar get Li st>
<Target Actions="del ete pause resune">
<Target Domain |ID="printer"/>
</ Tar get >
</ Tar get Li st >
</ Tar get Access>
</ Tar get AccessPol i cy>
</ X. 509_PM _RBAC Pol i cy>

18.2.  Akenti Simple Policy and Use Condition Certificates
(for LDAP stored PKCsand HTTP-based certificate store)

<?xm version="1.0" encodi ng="UTF-8"?>
<Akenti Certificate>

31



<Si gnabl ePart >
<Header CanonAl g="Akl1CanAl g" Si gnat ureDi gest Al g=" RSA-
MD5" Type="Policy" Version="2">
<Ul D>psyche#1693f e37#Wed Apr 30 16:27:18 BST
2003</ Ul D>
<I ssuer >
<User DN>/ C=GB/ O=per m s/ CN=SOA</ User DN\>
<CADN>/ C=GB/ O=per m s/ CN=Root CA</ CADN>
</l ssuer>
<Val i di tyPeri od Begi n="03043015265427"
End="0404291526547"/ >
</ Header >
<Pol i cyCert >
<Resour ceNanme>Pri nt er </ Resour ceNane>
<CAl nf 0>
<CADN>/ C=GB/ O=per m s/ CN=Root CA</ CADN>

<X509Certificate>M I CYTCCAcqgAW BAgl BADANBgk ghki G3wOBAQQFAD
AWMV WCQYDVQQGEWJIHQ EP
MAO GA1UECh MG GVy bW z MRAWDG YDVQRDEWD Sh2901 ENBVB4AXDT Az MDQXNTE
ZNTQL
NFoXDTAz MDUx NTEz NT QL NFowlVDEL MAk GA1UEBhMCROI x Dz ANBgNVBAOTBnB
| cmlp
¢z EQVA4 GA1 UEAX MHUMBVd CBDQT CBnz ANBgk ghki GOWOBAQEFAAOB] QAWY YK
CgYEA
7r DkXABRaMZDL9Xh3Nnt Zm.3Q ZgbJI FFaBl nAO8nEuoMIODhppuA33QZW
ts+ru
Pl 3Jj 8d5nmuB3AEl A5yl sEi KR7W ZI oBkHgGa/ NmNat hB5ZbJAf xh00/ k5LK
iglCu
b891 7cEUj r OE+CX4vx0FbL3Ggf SqAQeeuAZf ZbOWHxc CAWEAAQCBI j CBhz A
dBgNV
HQUAEFgQUV7s2xpl KOI Dhl KOnTuQMeysyl 4wWWAYDVROj] BFEWT4AUV7s 2xpl
KOl Dh
I kKONTuQWeysyl 6hNKQy MDAX Cz AJ BgNVBAYTAK d CMBWDQYDVQRKEWZWZXJ
t aXVK
EDAOBgNVBAMIB1J v b3 Qg Q0 GCAQAWDAYDVRO TBAUWAWEB/ z ANBgk ghki GOwO
BAQQF
AAOBgQAQUDb71 0BzE5723b2CER 6(s4nmk2wW3F984Ff 9Onhl cl yUhkdt KZzvO
zY4cY
3X/ zI nBht QAr nr HIt cl QTTD5xXgby ! vTmywe OB/ 30bzwQD6Ux XWDUOC5I / t
e+DOb
H8N97wsQz7bZM r Fi k6x OHVH64C6CYU8LayJYt kyoc5t Rht i i g==</ X509C
ertificate>
<IdDirs>
<URL>| dap: //sec.isi.sal ford. ac. uk/ </ URL>
</1dDirs>
</ CAl nf 0>

32



<UseCondl ssuer G oup>
<Pri nci pal >
<User DN>/ C=GB/ O=per m s/ CN=SOA</ User DN\N>
<CADN>/ C=@B/ O=per m s/ CN=Root CA</ CADN>
</ Princi pal >

<URL>http://sec.isi.salford. ac. uk/ downl oad/ akenticerts/</UR
L>

</ UseCondl ssuer G oup>

<AttrDirs>

<URL>http://sec.isi.salford. ac. uk/ downl oad/ akenti certs/ </ UR
L>
</AttrDrs>
<CacheTi me>60</ CacheTi ne>
</ PolicyCert>
</ Si gnabl ePart >

<Si gnat ur e>XN2I r & Ty5LM+ZE6Q YB3ARFLCOhRacagVKe AnSyy Nl Wh 1nXW
G DQPgPnBVNRgZf w

BxLoK2MI DAbD1OKSXpJxvcQ@Vf f eBqgA7ZwCnf ud/ Zi ynN kni Ixs7Qncht
CzwGa

Jr TgelJu/ ZwB7DgVI oCH Lf ej 0JgyZEwnbi 6vMNS2r c=</ Si gnat ur e>

</ Akenti Certificate>

----- BEG N AKENTI POLI CY CERTI FI CATE- - - - -

U@saWNs1 FYyl HBzeWNoZSWKNj kz ZmiJz Ny NXZWRe | EFwel wgMeBel DE2Q) |
30 E4

XCBCU1Rc! DI wiDMgLOMBROI vTz 1wZXJt aXMrQ049U09BI CODPUJCLO89c GV
ybW z

LONCOPVJIvb3Rc| ENBI DA NDMMNDMAMMT Uy Nj UOW AWNDAOM kxNTI 2NTRal EF
r MUNh

bkFszZyBSUOEt TUQLI FByaWs0ZXI gMSAx| DYxMy AwggJhM | By gADAgECAQE
AMAOG

CSqGSI b3DQEBBAUANDAX Cz AJBgNVBAYTAk d CMBWDQYDVQRKEWZWZXJt aXM
xEDAO

BgNVBAMI'B1J v b 3 Qg Q0 EwHh c NVDMAMNDEL MT ML NDUO Wh ¢ NVDMMNT E1 MTTMLNDU
OW Aw

M WCQYDVQQGEWI HQ EPMAOGALUEChMGe Gvy bW z MRAWDG YDVQQDEWd Sb29
0l ENB

M Gf MAOGCSqGSI b3 DQEBAQUAAA GNADCBI QKBgQ@usORcDxFoxkMrleHec2el
myYvco6

NmpskgUVOEI ¢DTycS6gx3QOGmMHADF dBnAi 2z6u4+XcnmPx3nma4Hc ASUDNI i w
S| pHt

aJki gGQeAZr 82Y1q2EH | skB/ GHTT+TksgKDUK5vz0j t wRSOvQr4Jf i / HQV
svcaB

9KoBB564BI 91 vRb7FwW DAQAB04GKM GHIVBOGA1 Ud Dg Q\BBRXuz bGkgr SUCE
i TSdO

33



5Bbt 7KzKXj BYBgNVHSMVEUTBPgBRXUZz bGkgr SUOEI TSdCBBbt 7Kz KXqEOpDI

wKEEk1UEBhNCROIXEEANBgNVBAoTBnBICnﬂpczEQNR4GA1UEAXNHUN9VdCB
ESX:\/gg NVHRVEBTADAQH MAOGCSqGS! b3DQEBBAUAAAGBAAGSVS| QHMTnv bd
K;LE?aTbDCXBZgV/OGeGNyXJSGRQOpnCB7Nihxjdf/NIZKGiDQuescnﬁyVB
E'.E'YSPiFgoa/ B44H f RvPBAPpTFdYO7 QLmiX+174M7kf yf 3vCxDPt t kyWsVKTT E
gﬁgﬂakarlli2TKhznﬂGE2KKIDEgbGRthovL3NIYy5pc2kuc2FsZn9yZC5
Q%Sﬁu\xu DEgLOMPROI vTz1wZXJt aXM/Q049U09BI CODPUJCLO89c GVy bW

ébSDEgRCIENBIDEgaHROcDovLBNIYy5pc2kuc2FsZn9yZC5th51ay9kb3d
;gSﬁQZVUdGJjZXJOcyBQNBBodHRMEI8v02ViLwIzaSSzYVan3JkLnFjLnV
(rjliésR;/JZFkLZFr ZWs0aWN cnRzLy A2MCAXM ggXN2l r O Ty5LM-ZE6QbYB3AR
Zlc_adg\F\/)KeAnSnyl Wh1nXWGj DQOgPNBVNRgZf wBx LoK2MI DAbDLOKSXpJxveQ
gg;L$ZmChfu4/Ziynthnist7cnnhtCZmEthTgelJu/ZwB?DgVIoCHiLf

ségjﬁbiGVNNSZrc=

----- END AKENTI POLI CY CERTI FI CATE---- -

<?xm version="1.0" encodi ng="UTF-8"?>
<Akenti Certificate>
<Si gnabl ePart >
<Header CanonAl g="Ak1CanAl g" Si gnat ureDi gest Al g=" RSA-
MD5" Type="UseCondition" Version="2">
<Ul D>psyche#1693f e37#Fri May 02 11:29: 34 BST
2003</ Ul D>
<l ssuer>
<User DN>/ C=GB/ O=per m s/ CN=SOA</ User DN>
<CADN>/ C=GB/ O=per m s/ CN=Root CA</ CADN>
</l ssuer >
<Val i di t yPeri od Begi n="030502102901Z"
End="040501102901Z"/ >
</ Header >
<UseCondi tionCert critical="fal se" scope="I|ocal ">
<Resour ceNane>Pri nt er </ Resour ceNane>
<Condi ti on>
<Constraint>rol e = adm ni strator</Constraint>

34



<Attributelnfo type="AKENTI">

<At tr Name>rol e</ Att r Name>

<AttrVal ue>adm ni strat or</AttrVal ue>

<Pri nci pal >
<User DN>/ C=GB/ O=per m s/ CN=SOA</ User DN\>
<CADN>/ C=@B/ O=per m s/ CN=Root CA</ CADN>

</ Principal >

<AttrDi rs>

<URL>http://sec.isi.salford. ac. uk/ downl oad/ akenti cert s</ URL
>
</AttrD rs>
</ Attri butel nfo>
</ Condi ti on>
<Ri ght s>pause, resune, del et e</ Ri ght s>
</ UseCondi ti onCert >
</ Si gnabl ePart >

<Si gnat ur e>Xi gznmt KHr h2221 ZQNml GVvqywPYBQ@L76CUK/ d1t | LGULI r Sn
NJ My 9bNe 3Kf 3VSBI V

Hpr +9s7UeJaHhOni Tr JDGol Xnms EJ8pwwf 4xpsVt nK51 JJAI FnX7VWVr Gov4T
VOnPZ

r xQVRehj 3BEj zgabr vZNnPndWAZMrt/ Co5KNRogSDA =</ Si ghat ur e>

</ Akenti Certificate>

----- BEG N AKENTI USECONDI TI ON CERTI FI CATE- - - - -

VXN Q29uzd 0aWul FYyl HBzeWNoZSMKNj kzZmJzNyNGeml ¢l ELheVwgVDJ
cl DEx

Qg 150 MOXCBCU1Rc| DI wiwDMgLOMBROI vTz 1wZXJt aXMr Q049U09BI CODPUd
CL089

cGVybW zLONOPVIVb3RcI ENBI DAg VDMMNT Ay MTIAy OTAxW AWNDAL VDEX VDI

5MDFa

| EFr MUNhbkFsZy BSUOEt TUQLI FByaWs0ZXI gMSAWM HIvbGvcl Dicl GFkbW

uaxXNO

cnFOb31 gMSAy | HIvbGUg YWRt aWbpc 3Ry YXRvci Axl CODPUJCL089¢c GvybW

zLONO

PVNPQSAv Qz 1HQ 9PPXBI cnilpcy9DTj 1Sh290XCBDQSAX| GhOdHAGLY 9z ZVWMI
uaxXNp

LnNhbGZv e mQuYWVLdWs v ZE33bnkv YWV YW | bnRpY2Vy dHVgMy BWYXVz ZSB
yZXN1

bWJgZGVsZXRl | DEy OCBeKDOaOoeuHZnYhl A2b8ZW LA9gFDOvvoJQ 93Wig
SZQUK

t KcOkzL1s17cp/ cxl hUenv72zt R4l oeE6eJCskMai VeawnynDB/ j Grx\W2Y
r mukk

Cl Wif t W ai / hNU6c9nv FBVF6 GPc ESPOBpuu9k2Y+2177kyZz8JvkolG BI

MWa==

----- END AKENTI USECONDI TI ON CERTI FI CATE- - - - -

35



18.3. PERMIS Medium Policy

<?xm version="1.0" encodi ng="UTF-8"?>
<I DOCTYPE X.509_PM _RBAC Policy SYSTEM
"file://local host/C:./research/projects/perms/policyl0.dtd"
>
<X. 509_PM _RBAC Pol i cy
O D="1.2.826.0.1.3344810.6.0.0.0.1.1">
<Subj ect Pol i cy>
<Subj ect Domai nSpec | D="dns" >
<I ncl ude LDAPDN=""/>
<Excl ude LDAPDN="c=iq"/>
<Excl ude LDAPDN="c=kp"/>
<Excl ude LDAPDN="c=ir"/>
</ Subj ect Donmai nSpec>
</ Subj ect Pol i cy>
<Rol eHi er archyPol i cy>
<Rol eSpec O D="1.2.826.0.1.3344810. 1. 1. 14"
Type="perm sRol e" >
<SupRol e Val ue="1I eader" >
<SubRol e Val ue="experinenter"/>
</ SupRol e>
<SupRol e Val ue="experinenter">
<SubRol e Val ue="student"/>
</ SupRol e>
<SupRol e Val ue="student"/>
</ Rol eSpec>
<Rol eSpec O D="1.2.826.0.1.3344810. 1. 1. 101" Type="tr-
Course">
<SupRol e Val ue="1Ibnl - xray- 101"/ >
</ Rol eSpec>
<Rol eSpec O D="1.2.826.0.1.3344810. 1. 1. 100"
Type="group”>
<SupRol e Val ue="Jones"/>
<SupRol e Val ue="Doe"/ >
</ Rol eSpec>
</ Rol eHi erarchyPol i cy>
<SQAPol i cy>
<SQASpec | D="X" LDAPDN="cn=smth, o=l bl, c=us"/>
<SOASpec | D="PI" LDAPDN="cn=Dr Joe Jones, o=l bl , c=us"/>
<SQASpec | D="Col | eague" LDAPDN="cn=Dr Jane
Doe, o=l bl , c=us"/ >
<SOASpec I D="Director" LDAPDN="cn=Boss, o=l bl, c=us"/>
</ SOAPol i cy>
<Rol eAssi gnnent Pol i cy>
<Rol eAssi gnnent >
<Subj ect Dormai n | D="dns"/ >

36



<Rol eLi st >
<Rol e Type="tr-Course" Val ue="I|bnl -xray-101"/>
</ Rol eLi st >
<Del egat e Dept h="0"/>
<SQA I D="X"/>
<Validity/>
</ Rol eAssi gnnent >
<Rol eAssi gnnent >
<Subj ect Dormai n | D="dns"/ >
<Rol eLi st >
<Rol e Type="perm sRol e"/>
</ Rol eLi st >
<Del egat e Dept h="0"/>
<SQA ID="Director"/>
<Validity/>
</ Rol eAssi gnnent >
<Rol eAssi gnnent >
<Subj ect Dormai n | D="dns"/ >
<Rol eLi st >
<Rol e Type="group" Val ue="Jones"/>
</ Rol eLi st >
<Del egat e Dept h="0"/>
<SQA ID="PI"/>
<Validity/>
</ Rol eAssi gnnent >
<Rol eAssi gnnent >
<Subj ect Dormai n | D="dns"/ >
<Rol eLi st >
<Rol e Type="group" Val ue="Doe"/ >
</ Rol eLi st >
<Del egat e Dept h="0"/>
<SQA | D="Col | eague"/ >
<Validity/>
</ Rol eAssi gnnent >
</ Rol eAssi gnnent Pol i cy>
<Tar get Pol i cy>
<Tar get Dormai nSpec | D="11i ght Sour ce" >
<l ncl ude LDAPDN="cn=light source, o=l bl, c=us"/>
</ Tar get Domai nSpec>
</ Tar get Pol i cy>
<Act i onPol i cy>
<Action Nane="control"/>
<Action Name="operate"/>
<Acti on Nane="observe"/>
</ Acti onPol i cy>
<Tar get AccessPol i cy>
<Tar get Access>

37



<Rol eLi st >
<Rol e Type="perm sRol e" Val ue="I|eader"/>
<Rol e Type="group" Val ue="Jones"/>
</ Rol eLi st >
<Target Li st >
<Target Actions="control">
<Tar get Domai n | D="11i ght Sour ce"/ >
</ Tar get >
</ Tar get Li st >
<l F>
<AND>
<CE>
<Environnment Paraneter="tine" Type="Ti ne"/>
<Constant Type="Tine" Val ue="8ant'/>
</ G&>
<LE>
<Environnment Paraneter="tine" Type="Ti ne"/>
<Constant Type="Ti ne" Val ue="8pni'/>
</ LE>
</ AND>
</[l1F>
</ Tar get Access>
<Tar get Access>
<Rol eLi st >
<Rol e Type="perm sRol e" Val ue="experi nenter"/>
<Rol e Type="group" Val ue="Jones"/>
</ Rol eLi st >
<Target Li st >
<Target Actions="operate">
<Target Domai n | D="11i ght Source"/ >
</ Tar get >
</ Tar get Li st >
<l F>
<AND>
<CE>
<Environnment Paraneter="tinme" Type="Ti ne"/>
<Constant Type="Ti nme" Val ue="8ani'/>
</ GE>
<LE>
<Environnment Paraneter="tinme" Type="Tine"/>
<Constant Type="Tinme" Val ue="8pnt'/>
</ LE>
</ AND>
</[l1F>
</ Tar get Access>
<Tar get Access>
<Rol eLi st >

38



<Rol e Type="perm sRol e" Val ue="student"/>
<Rol e Type="group" Val ue="Jones"/>
</ Rol eLi st >
<Target Li st >
<Target Actions="observe">
<Target Dormai n | D="11i ght Source"/ >
</ Tar get >
</ Tar get Li st >
<l F>
<AND>
<CE>
<Environnment Paraneter="tine" Type="Ti ne"/>
<Constant Type="Ti ne" Val ue="8ant'/>
</ G&>
<LE>
<Environnment Paraneter="tinme" Type="Tine"/>
<Constant Type="Ti nme" Val ue="8pni'/>
</ LE>
</ AND>
</[l1F>
</ Tar get Access>
<Tar get Access>
<Rol eLi st >
<Rol e Type="group" Val ue="Doe"/ >
<Rol e Type="perm sRol e" Val ue="I|eader"/>
</ Rol eLi st >
<Tar get Li st>
<Target Actions="control">
<Target Dormai n | D="11i ght Source"/ >
</ Tar get >
</ Tar get Li st >
<l F>
<AND>
<G>
<Environnment Paraneter="tine" Type="Ti ne"/>
<Constant Type="Ti ne" Val ue="8pni'/>
</ GE>
<LE>
<Environnment Paraneter="tinme" Type="Tine"/>
<Constant Type="Tine" Val ue="8ant'/>
</ LE>
</ AND>
</[l1F>
</ Tar get Access>
<Tar get Access>
<Rol eLi st >
<Rol e Type="group" Val ue="Doe"/>

39



<Rol e Type="perm sRol e" Val ue="experi nenter"/>
</ Rol eLi st >
<Target Li st >
<Target Actions="operate">
<Target Dormai n | D="11i ght Source"/ >
</ Tar get >
</ Tar get Li st >
<l F>
<AND>
<CE>
<Environnent Paraneter="tine" Type="Ti ne"/>
<Constant Type="Ti nme" Val ue="8pni'/>
</ GE>
<LE>
<Environnment Paraneter="tinme" Type="Tine"/>
<Constant Type="Tinme" Val ue="8ant'/>
</ LE>
</ AND>
</l F>
</ Tar get Access>
<Tar get Access>
<Rol eLi st >
<Rol e Type="group" Val ue="Doe"/ >
<Rol e Type="perm sRol e" Val ue="student"/ >
</ Rol eLi st >
<Tar get Li st>
<Target Actions="observe">
<Target Domai n | D="11i ght Source"/ >
</ Tar get >
</ Tar get Li st >
<l F>
<AND>
<G>
<Environnment Paraneter="tinme" Type="Tine"/>
<Constant Type="Ti nme" Val ue="8pni'/>
</ GE>
<LE>
<Environnent Paraneter="tine" Type="Ti ne"/>
<Constant Type="Tine" Val ue="8ant'/>
</ LE>
</ AND>
</[l1F>
</ Tar get Access>
</ Tar get AccessPol i cy>
</ X. 509_PM _RBAC Pol i cy>

40



19. Appendix C. Analysis of Akenti deficiency in
Distributed Management of Resources

If we write critical UCCs (those with the Critical flag set) as Ci and Non-critical UCCs
(those with Critical flag reset) as N; (where the index represents the UCC issued by thei-
th Stakeholder), then the whole set of UCCs defining the policy can be represented as
follows:

Cl&C2&C3&...&(1+N1+N2+...) (1)
(& stands for boolean AND operation, + stands for boolean OR operation)

This boolean expression is neither a Digunctive, nor Conjunctive Normal Form.
Therefore it cannot cater for all boolean functions that can be built using Akenti UCCs.

Even though the set of boolean functions that can be expressed using Akenti UCCs s not
empty, we will show that it is not possible to build such a function for the Medium Policy
(if each of the UCCs has to be issued by a different Stakeholder). The Policy can be
expressed as

C&X&RE& (Go& To+ Gy & Ty) )

where C isacountry restriction, X isthe X-ray training course restriction, R isthe role,
G; are groups and T; are allowed times of access for the corresponding groups. Note that
we assume that G; and T; restrictions can be created by the same Stakeholder, but they
should be different Stakeholders for these two groups (Dr Joe Jones and Dr Jane Doe).

This aready is not possible to represent as Akenti UCCs issued by different Stakeholders
(since it does not match the general expression 1). The condition on groups and their time
of access should therefore be incorporated in one UCC. Since all of the Stakeholders are
equal, there is no definite decision about who must issue such Use Conditions
(incorporating both G; and their T;), and under circumstances of ad hoc changes to the
policy conditions (which is promoted by Akenti), this may not be possible. Note also that
if we assume that the Stakeholders are able to communicate their needs to each other to
create UCCs with joint conditions, then we lose the essence of Akenti with its distributed
management of resources — there is no point in having many issuers of the conditions,
since they have to co-ordinate their wishes with a central or superior Stakeholder.

Note also that R is a hierarchy of roles, which can be expressed in Akenti UCCs as
Ro+R1+R», each of these UCCs corresponding to the definitions of the accessrights. Ry
would then contain “student, experimenter or leader is allowed to observe”, R; would
contain “experimenter or leader is allowed to operate”, R, would contain “leader is
allowed to control”. Since the R; have an implication relation (R1=Ry? Ri, R:=R1? Ry,
meaning that R; cannot be true unless Ry is and similarly for R, and R;), R can be
rewritten asfollows: Ry & (1 + R; + Ry). Now Medium Policy can be transformed into
the following:

41



C&X&(Go&To+Gl&T1)&Ro&(1+R1+R2) (3)

Therefore, this policy can be represented using Akenti UCCs, but if and only if the
condition on groups and their times is issued as one Use Condition Certificate. It will not
be possible to have C, X and this combined group-time condition as separate UCCs, since
UCCs should always stipulate a list of allowed Actions (and these conditions do not
define any allowed actions). Therefore al of the conditions combined with AND must be
incorporated in one UCC. The definition of R; must be done by the same Stakehol der
(semantically they describe the same hierarchy). Thus there will be only one Stakehol der
that defines all of the conditions.

Akenti Stakeholders have the absolute right to introduce a new law extending access
(allowing more) and have the absolute right to veto everything (i.e. reduce access granted
by all Stakeholders), which isthe only way to confine access (allowing less) granted by
another Stakeholder.

Since not every case can be implemented in Akenti, the engine should be redesigned or
the cases for which Akenti does not cater for distributed resource management must be
defined.

42



