
Adding Certificate Retrieval to OpenLDAP

Deliverable D4: Final Report

Version 1.0. D.W.Chadwick 8 August 2004

Table of Contents

Introduction..1

Initial Objectives ..1

Initial Project Plan...1

Initial Set of Deliverables ..1

Project’s Progress ..2

Final Objectives..4

Final Deliverables...5

Reasons for Delays ...5

Conclusion ..5

References ...6

Appendix 1 Detailed Progress Report..7

Appendix 2 Original Planned Tasks and Resources...16

Appendix 3 Revised Project Plan ...17

Appendix 4. Returning Matched Values with LDAPv3 ...18

Appendix 5. LDAP Schema for X.509 Certificates ...27

Appendix 6. LDAP Schema for X.509 Attribute Certificates................................58

Appendix 7. LDAP Schema for X.509 CRLs...80

Appendix 8. Final Detailed Design of an LDAP X.509 Parsing Server97

Appendix 9. Write Ahead Log (WAL) Design ...106

Appendix 10. Parsing X.509 Attributes ...108

 1

Introduction
There are a number of deficiencies in LDAP when it is used to support PKIs. Firstly it
is not possible to retrieve a single attribute value from a multi-valued attribute.
Secondly, it is not possible to search for an X.509 [1] attribute (i.e. a public key
certificate (PKC), attribute certificate (AC) or certificate revocation list (CRL)) based
on its value. These and other deficiencies have been described more fully in a paper in
Communications of the ACM [2]. There were a number of Internet Drafts [3,4,5] that
once implemented, would solve both of these problems. The intention of this
TERENA project was to implement two of these IDs, namely matched values [4] and
certificate matching rules [5] and to build them into the OpenLDAP source code.

OpenLDAP Software [6] is a community developed LDAP implementation that
provides an enterprise level LDAP server as well as client tools and SDKs.
OpenLDAP Software also serves as a reference implementation for the community.
OpenLDAP Software’s open source licensing allows vendors to incorporate
enhancements into their products which furthers the availability of these technologies.

Initial Objectives
The specific objectives at the start of the project were:
1. To implement the matched values LDAPv3 control in the OpenLDAP source code
2. To implement the matched values LDAPv3 control in an LDAP client, so as to

demonstrate its functionality
3. To implement (a subset of) the certificate matching rules specified in [5] in the

OpenLDAP source code
4. To implement (a subset of) the certificate matching rules specified in [5] in an

LDAP client so as to demonstrate its functionality
5. To progress the Internet Drafts [3, 4, 5] to RFC proposed standard status.

Initial Project Plan
The project was planned to run for 18 months, starting in September 2001. It was to
consist of 3 phases. A detailed set of the tasks and resources needed to achieve this are
shown in Appendix 2.
Phase 1. After 6 months to demonstrate that a certificate can be added to OpenLDAP
and its fields stored in the indexes so that it can subsequently be searched for.
Phase 2. After 12 months to demonstrate the retrieval of single certificates from an
entry using equality matching.
Phase 3. After 18 months to demonstrate an enhanced LDAP client that can request
certificates that match on certain fields contained within them e.g. the email address
of the user, the name of the CA, the key usage fields etc.

It was noted that it would never be possible to implement the complete set of fields in
a certificate given the myriad of possible extensions that can be included, but that the
exact set of fields would be chosen by talking to the Terena TF-LSD and PKI-
COORD groups and determining their user requirements.

Initial Set of Deliverables
The project initially had 4 deliverables as shown in the Table below. This report is the
fourth of these deliverable.

 2

Phase Deliverable number Date due Title / Description
1 D1 6 months from start Detailed design document for modifying

OpenLDAP source code
3 D2 End of Project Updated Internet RFCs or IDs for [3,4,5]
3 D3 End of Project Enhanced OpenLDAP source code
3 D4 End of Project Project Report to TERENA (this document)

Project’s Progress
Just before the project started David Chadwick had a meeting with Kurt Zeilenga and
Steven Legg at the IETF meeting in London, August 2001. It was decided to
fundamentally change the design of the project, to align with a new Internet Draft
published by Steven Legg entitled "LDAP & X.500 Component Matching Rules",
subsequently to become RFCs [7] and [8]. This would significantly improve the
functionality of the certificate matching in OpenLDAP, and make it infinitely
extensible, in order to cater for new certificate and CRL extensions that might be
defined in the future. Of course, it would make the design more complex, and would
require LDAP clients to be modified to support this instead of the original scheme, but
we believed that we could handle this within the scope of the current project.
Note that subsequent to this decision, this approach has been sanctioned by the IETF as the standard
way to search for certificates with LDAP, so the decision was fundamentally sound.

Component matching is pictorially illustrated in Figure 1 below.

4 August, 2004 © 2003 University of Salford 10

Figure 1. Component Matching

LDAP
directory

CA/AA

Search for Component 1
..Component i in X.509
attribute
Return X.509 attribute

= Component 1,
Component 2
…Component n

The project initially made good progress and for the first 8 months stayed broadly on
track with the original plan shown in Appendix 2. The Matched Values functionality
was released on time at the end of month 8 and the corresponding Internet Draft
successfully passed Last Call (since then it has been with the Area Director for over
18 months, but recently has just passed the IANA considerations hurdle and should be
soon issued as a standards track RFC). However, progress was hampered by the
almost complete lack of documentation concerning the internal workings of
OpenLDAP. In most cases the code was the documentation.

 3

During month 9, a MACE-DIR telephone call raised the subject of certificate
matching, and discussed a new approach proposed by Peter Gietz et al. [13]. This was
based on creating a new entry for a certificate, and creating attributes from all the
fields of a certificate. A major benefit is that LDAP servers do not need to be
modified, since they can run our modified OpenLDAP XPS server as a front end
processor between their LDAP server and their CA/AA. Another major benefit is that
LDAP clients do not need to be modified to support this approach. The outcome was
that we decided to poll the NRENs to see which design of certificate matching they
preferred. They voted almost unanimously for the Gietz approach rather than the
component matching approach, and so we decided to change our design to this
scheme. This attribute extraction approach is shown in Figure 2 below.

4 August, 2004 © 2003 University of Salford 13

Figure 2 Attribute Extraction

LDAP
directory

CA/AA

Search for Att 1.. Att i
Return X.509 attribute

XPS
server

Att1, Att2…Att n
+

[]

This significant change of design obviously caused some delay to the project, but a
revised project plan was produced (Appendix 3), which predicted that we could still
finish on time.
Note that subsequent to this decision, the IETF decided that this is not to be the standard approach to
certificate matching in LDAP, but rather is to be a short term expedient approach. Consequently the
Internet Drafts [16, 17] upon which this approach is based, are only to become Information RFCs rather
than standards track RFCs.

A new Detailed Design was produced [15] in parallel with the implementation (this
was because we needed to understand the internals of OpenLDAP, so a certain
amount of experimentation was necessary) and submitted to the TF-ACE group in
month 15. At this stage the project was judged to be about one month behind
schedule. Supporting Internet Drafts [16, 17] were produced in month 18.

However, as the detailed design was being implemented a number of problems arose.
These included:

- it was realised that a CRL could produce a whole subtree of LDAP entries,
rather than a single entry,

 4

- the internal search primitive returned the search result entries directly to the
client, and not to the internal calling code. This meant we needed to modify
the send_search_entry function to trap the results

- during the debugging we uncovered a potential denial of service attack,
whereby a malicious user could submit a spurious XPS delete attribute
operation on the root (or close to the root) of the DIT. This would cause a full
subtree Search to be performed, which obviously would consume huge
resources.

These problems led to significant redesigns being needed and consequent delays in
the project. Nevertheless we persevered and eventually overcame them all. The full
bimonthly reports of the project’s progress can be found in Appendix 1.

A demonstration of the XPS server was successfully made at the Terena Networking
Conference in Rhodes in June 2004. A screen shot from this demonstration can be
seen in Figure 3.

Figure 3 LDAP Client view of XPS

Final Objectives
The final objectives of the project were:
1. To implement the matched values LDAPv3 control in the OpenLDAP source code
2. To implement the matched values LDAPv3 control in an LDAP client, so as to

demonstrate its functionality
3. To implement attribute extraction using the PKC, CRL and AC schemas specified

in [13, 16, 17] in the OpenLDAP source code
4. To progress the Internet Drafts [4, 13, 16, 17] to as near to RFC status as possible.

 5

Final Deliverables
The final set of deliverables is as follows.

Phase Deliverable number Date due Title / Description
1 D1 18 months from start Detailed design documents [15, 18, 19] (See

Appendices 8, 9,10)
3 D2 End of Project Updated Internet RFCs or IDs for [4, 13, 16,

17] (See Appendices 4, 5, 6, 7)
3 D3 End of Project Enhanced OpenLDAP source code
3 D4 End of Project Project Report to TERENA (this document)

Reasons for Delays
The project was delivered approximately 14 months late. This was due to a number of
factors, but primarily because we underestimated the complexity of the task and the
lack of documentation for OpenLDAP. We also completely changed designs twice
during the project, once at the start, and once midway through. We hopelessly
underestimated the amount of time that testing would take. This was originally
estimated to be 2 man months, but in reality it took nearer to 12 man months. This
was due to several factors: difficulty in finding out how OpenLDAP actually worked
(it wasn’t until it was tested that we found it worked otherwise to our beliefs), design
limitations in OpenLDAP (e.g. could only return a maximum of 500 entries), security
flaws in the final design (we uncovered a denial of service attack), and non-optimum
design (this was improved upon as knowledge of OpenLDAP improved). All in all we
had 9 versions of the XPS Detailed Design document. Furthermore we did not
provision for migrating between OpenLDAP releases. During the project we had to
make 2 major migrations, from OpenLDAP 2.0 to 2.1 and 2.1 to 2.2, and many minor
migrations. The implementation of MatchedValues control on both client and server
sides had to be migrated from version 2.0 to 2.1. Since a lot of the new code was
based on the existing code, which had been altered, it took a considerable amount of
time to change the new code accordingly (around 1 man month). During the process
of implementing XPS, OpenLDAP 2.1 had 20 minor version releases. They included
bug fixes and small changes in design. In any case the XPS code had to be moved
onto the new versions since, due to the size of the OpenLDAP project, the effects that
those changes and fixes could have had on XPS could not be predicted. The only way
to account for them was to test them with XPS by migrating the code and testing it.
Finally, version 2.2 introduced a number of significant internal redesigns (including
some code contributed by third parties). It forced changes in the XPS detailed design
and corresponding changes in the code.. This consumed about 4 man months in total.

Overall the project took nearer 4 man years of effort to complete rather than the 2 man
years originally budgeted for. The only reasons we managed to complete the project at
all was that Mikhail Sahalayev worked for nearly a year on the project without
receiving any finances from the project, and that the University of Salford paid for
nearly 1 man year of extra time.

Conclusion
Despite all the complexities, design changes and code migrations, nevertheless in the
end the project was completed successfully. Four Internet RFCs will be published in
due course as a result of this project - one standard’s track and three informational.
The OpenLDAP software has for over two year included the matched values code and

 6

no significant problems have been reported with its use. Finally, the OpenLDAP XPS
server code has been delivered to the OpenLDAP consortium and at the time of
writing it is progressing through their quality assurance procedures ready for
incorporation in a subsequent release.

References
[1] ISO 9594-8/ITU-T Rec. X.509 (2001) The Directory: Public-key and attribute
certificate frameworks
[2] D.W.Chadwick. “Deficiencies in LDAP when used to support a Public Key
Infrastructure”, Communications of the ACM, March 2003/Vol 46, No. 3 pp. 99-104
[3] Chadwick, D.W., “Internet X.509 Public Key Infrastructure Operational Protocols
– LDAPv3” Internet Draft <draft-pkix-ldap-v3-05.txt>, July 2002
[4] Chadwick, D.W., Mullan, S. “Returning Matched Values with LDAPv3”, <draft-
ldapext-matchedval-07.txt>, July 2003 (see Appendix 4)
[5] Chadwick, D.W., Legg, S. “Internet X.509 Public Key Infrastructure, Additional
LDAP Schema for PKIs and PMIs”, <draft-pkix-ldap-schema-01.txt>, September
2000.
[6] See www.openldap.org
[7] Legg, S. “Generic String Encoding Rules (GSER) for ASN.1 Types”, RFC 3641,
October 2003.
[8] Legg, S. “Lightweight Directory Access Protocol (LDAP) and X.500 Component
Matching Rules”. RFC 3687. February 2004.
[9] J. Sermersheim. “LDAP – the protocol” <draft-ietf-ldapbis-protocol-07.txt>,
March 2002.
[10] Chadwick, D.W., Legg, S. “Internet X.509 Public Key Infrastructure, Additional
LDAP Schema for PMIs”, <draft-ietf-pkix-ldap-pmi-schema-00.txt>, 27 June 2002
[11] Chadwick, D.W., Legg, S. “Internet X.509 Public Key Infrastructure, Additional
LDAP Schema for PKIs”, <draft-ietf-pkix-ldap-pki-schema-00.txt>, 27 June 2002
[12] D.W.Chadwick “LDAPv3 DN strings for use with PKIs” <draft-ietf-pkix-
dnstrings-00.txt>, April 2002.
[13] Gietz, P., Klasen, N. "Internet X.509 Public Key Infrastructure Lightweight
Directory Access Protocol Schema for X.509 Certificates",
<draft-ietf-pkix-ldap-pkc-schema-00.txt>, August 2004 (See Appendix 5)
[14] M.Wahl, S.Kille, T. Howes.“Lightweight Directory Access Protocol (v3): UTF-8
String Representation of Distinguished Names”, RFC 2253, Dec 1997
[15] M. Sahalayev, D. W. Chadwick. “Detailed Design of an LDAP X.509 Parsing
Server”, Version 1.0, 15 November 2002
[16] D.W.Chadwick, M. V. Sahalayev. “Internet X.509 Public Key Infrastructure -
LDAP Schema for X.509 Attribute Certificates”, <draft-ietf-pkix-ldap-ac-schema-
01.txt>, July 2004 (See Appendix 6)
[17] Chadwick, D.W., Sahalayev, M. V. "Internet X.509 Public Key Infrastructure -
LDAP Schema for X.509 CRLs", <draft-ietf-pkix-ldap-crl-schema-02.txt>, June 2004
(See Appendix 7)
[18] M. Sahalayev, D. W. Chadwick. “Write Ahead Log (WAL) Design”, Feb 2003
(See Appendix 9)
[19] E. Ball, M. Sahalayev. “Parsing X.509 Attributes”, Feb 2003 (See Appendix 10)
[20] M. Sahalayev, D. W. Chadwick. “XPS Test Plan”. March 2003

 7

Appendix 1 Detailed Progress Report

First Bimonthly Period 1 Sept - 31 Oct 2001
The original contract suggested a start date of 1 August 2001. During that month
David Chadwick attended the IETF meeting in London to discuss the project with
Kurt Zeilenga, the leader of the OpenLDAP project, and Steven Legg, the joint author
with David Chadwick of the PKI and PMI schema Internet Draft [5]. During this
meeting it was agreed to fundamentally change the way that certificate matching is to
be done, to take advantage of the new Internet Draft (now an RFC) by Steven on
Component Matching [7]. This will have significant and fundamental ramifications
for the project as follows. Once component matching has been implemented it will
mean that any new ASN.1 type definition will be able to be matched against with
significantly less effort than the current project. This will mean, for example, that new
certificate extensions will easily be able to be matched against. This is because the
certificate matching rules will be built up of generic ASN.1 components, instead of
rules built specifically for certificates. The other implication is that it will no longer be
necessary to ask the TF-LSD and PKI-Coord meetings which set of certificate fields
to implement first, as it should now be within the scope of the project to match on any
certificate field or combination of fields. However, the implementation will now be
somewhat more difficult as specific matching rules will have to be made more
generic, and configuration parameters will need to be provided to dictate what is to be
matched upon.

During the meeting we also learnt that someone else had already implemented
certificate equality matching (task 3) and that this would be in the next release of
OpenLDAP (v2.1). Until we got the release, we wouldn’t be able to say how this
would impact upon our project. Kurt also advised us that extensible matching had also
been implemented earlier than anticipated and that this should also be available in
release 2.1.

Notwithstanding the above, it proved impossible to start the project fully in August
due to vacations and the delay in appointing a new researcher to work on the project.
It was agreed to amend the contract to an official start date of 1 September 2001.

During September and October half of task 2 was completed and half of task 1. The
project team was very disappointed to find that there was very little documentation,
and in many cases no documentation, for the OpenLDAP code that we were working
on. This made the project far more difficult than was at first anticipated. However,
Kurt Zeilenga assured us of his support for the project, and provided us with useful
input and answers to our email questions whenever we asked him.

Second Bimonthly Report for the Period 1 Nov - 31Dec 2001
During this period, we worked on the design of component matching for certificates
(tasks 1 and 6). We also worked on the design for the matched values control [4]
(tasks 1 and 4). Draft designs were produced in time for the December IETF meeting.

We updated two Internet Drafts [4], [5], and attended the 52nd IETF meeting in Salt
Lake City to present them to the PKIX meeting. We also met with Kurt Zeilenga to
discuss the project design documents produced by our team. Kurt provided good
feedback on the designs, and these were subsequently incorporated by the designers.

 8

The team members joined the LDAP developers mailing list and emailed all their
subsequent designs to the list for comment and feedback.

Third Bimonthly Report for the Period 1 Jan – 28 Feb 2002
During this period, we continued to work on the design and implementation of
component matching for certificates (tasks 1, 2 and 6). As it was realised that the
implementation of component matching required the detailed specification of which
matching rule must apply to each component of the ASN.1 entry in the directory, a
modification of the ASN.1 specification for directory entries was devised. This
consisted of embedding within a conventional ASN.1 specification special comments
of the matching rule viz: --{ MatchingRule }-- where MatchingRule is the name of a
specified matching rule.

A grammar was written to describe this new notation and a home written ASN.1
compiler was modified to include this new grammar. A back-end to the syntax
analyser of this compiler was also written to allow a compiled ASN.1 specification to
be output in a convenient form for use by other programs that had been and would be
developed. The first of these programs was a graphical user interface that was used to
form Component Filters as specified by the RFCs of S Legg [7, 8]. This program
takes the output from the ASN.1 compiler and makes a graphical tree representing an
entry. Using this tree with other GUI components allows a complex component
matching filter to be generated in a point/click manner. The generated filter can be
output either in LDAP string notation or as ASN.1 BER. This GUI was used to form
LDAP searchRequests using MatchingRuleAssertions and these requests were used to
help test the behaviour of the latest development version of the OpenLDAP server
(2.1 alpha). Initial modifications were made to the OpenLDAP server code to allow it
to recognise and deal with such searchRequests but this work was only in its initial
stages. As can be appreciated this work was extremely complex and will expected to
take much longer than originally anticipated, but will produce a far better product in
the end since the certificate matching will be infinitely extensible. Not only will it
apply to all certificate fields and current extensions, but any new extensions should
easily be catered for by feeding in the new ASN.1 definitions.

We also worked on the implementation of the matched values control [4] (task 4). We
also started to modify the ldapSearch client so that it could send the matched values
control (task 5). We made good progress and by the end of February we had a basic
system working (complete with bugs!). We also spotted an error in the Matched
Values ID, so once we finished implementing the control we reissued the ID.

We updated one Internet Drafts [3], and submitted it in time for the 53nd IETF
meeting in Minneapolis. Unfortunately we weren’t able to attend the meeting to
present this, but we planned to attend the next meeting in July. We attended the X.500
standards meeting in Geneva (26 Feb-3 March), which has a work item on LDAP
alignment, as well as updates to X.509.

Fourth Bimonthly Report for the Period 1 March – 30 Apr 2002
During this period tasks 4 and 5 (matched values [4]) were completed on schedule and
the source code was sent to OpenLDAP for review. Kurt Zeilenga then organised a
review of this code. The matched values ID [4] was also progressed by the ISG, and
they asked for an updated version to be provided for Last Call.

 9

The LDAPv3 RFCs were being revised so that LDAPv3 could move to draft standard
status. The work was assigned by the IETF to the LDAPbis group. Considerable
discussion was held during this period by the LDAPbis group about the use of ;binary
encodings for the transfer of certificates, and the use of transfer encodings in general
by LDAPv3. The reason for this is that there are still some interoperability problems
with the PKI attributes. Kurt Zeilenga set up to two design teams during this period, to
review the text in the latest revision of LDAPv3 [9]. The design teams were given
different remits. Design Team A was to offer replacement text consistent with the
position that ;binary must be used to indicate the transfer of binary encoded values.
The team members were: Mark Smith (Lead), Steven Legg and David Chadwick.
Design Team B was to offer replacement text consistent with the position that the use
of ;binary is not necessary to indicate the transfer of binary encoded values. The team
members were: David Chadwick (Lead), Chris Oliva and Tim Hahn. The design
teams finished their work at the beginning of May and reported that, given the known
interoperability problems with ;binary, and its limitations, the ;binary feature (and all
mention of transfer options) should be removed from the LDAPv3 specification. The
LDAPbis group were then digesting and discussing the teams’ conclusion, and the
final decision will be reported in the next bimonthly report. The final decision effects
the contents of [5], and so publication of the next version of [5] was held up pending
resolution of the ;binary issue.

During this period, we continued to work on the design of component matching for
certificates (tasks 1, 2 and 6). The design was also discussed with Kurt Zielenga and
Steven Legg, the author of [7] and [8]. As stated previously, this feature is extremely
complex, and our latest findings are that a new subschema component will need to be
defined in both the X.500 and LDAP standards. We circulated the ITU-T X.500 group
with notification about this, and proposed to progress the definition of the new
subschema element at the next ITU-T meeting in September in the USA.

The design continually evolved during this period as we gained more understanding
of the OpenLDAP code and the detailed ramifications of component matching. For
example, we realised that the embedding of a matching rule within a conventional
ASN.1 specification, as reported in the last bimonthly report, was insufficient as up to
3 different matching rules may be required. We then decided to embed either an
attribute type OID or LDAP syntax OID and tried to work out which would be the
best one to use. The home written ASN.1 compiler will need more modifications to
include this new grammar once it is finalised.

Fifth Bimonthly Report for the Period 1 May – 30 June 2002
Tasks 4 and 5 (matched values) were completed on schedule during the last reporting
period by Mr Sahalaev and the source code was sent to OpenLDAP for review. Kurt
Zeilenga reviewed the code, which was satisfactory, and it was included in Release
2.1 of OpenLDAP at the beginning of June 2002. David Chadwick updated the
Matched Values ID [4] ready for the IETF Last Call.

As reported in the Bimonthly Report 4, the LDAPbis group decided to remove ;binary
encodings from the LDAPv3 protocol [9]. We updated the LDAP PKI and PMI
schema Internet Draft ready for the Yokohama IETF meeting to take account of this,
and, in accordance with the decision of a previous IETF meeting the ID was split into

 10

two separate IDs [10][11]. Also release 2.1 of OpenLDAP contained certificate
equality matching (task 3), and so the ID [11] was updated to ensure that it agrees
with how the existing implementation works. We also wrote a new Internet Draft [12]
that would allow new attribute type names used in PKI distinguished names, to be
sent as encoded strings in LDAP DNs. This was circulated to the PKIX list.

Peter Gietz, Kurt Zeilenga and David Chadwick were on the MACE-DIR steering
committee and during one of their regular monthly conference telephone calls in May
certificate retrieval by LDAP was discussed. The discussion covered both Peter's
new PKI schema approach [13] and the original PKI schema [5] and component
matching [7, 8] approach that Salford were currently implementing in OpenLDAP.
The outcome of these discussions were that Salford decided to ask the NRENs and
TERENA if Salford should change direction and implement Peter Gietz’s new schema
in a new X.509 Certificate Parsing Server implementation (XPS). David Chadwick
produced a high level design specification for this, which was duly circulated to
TERENA and the NRENs. The support for the new proposal was virtually unanimous,
and so at the end of June Salford agreed to stop development of component matching
in OpenLDAP and move to a certificate parsing server instead. The work already
performed on parsing and analysing ASN.1 certificates could now be used in the latter
instead of the former. Appendix 3 contains a revised project plan for producing the
XPS.

SIxth Bimonthly Report for the Period 1 July – 31 August 2002
The Matched Values ID [4] successfully completed the IETF Last Call. A couple of
minor changes were requested by the area director at the end of August and these
were be completed during the next reporting period.

Dr Chadwick attended the IETF meeting in Yokohama in July. An informal joint
meeting was held between PKIX and LDAP experts, including David Chadwick, Kurt
Zeilenga, Steve Kent and Tim Polk. The prime motivation for this meeting was to
discuss the PKIX requirements for the use of LDAP. The three topics discussed were
the use of ;binary in attribute descriptions, the registration of additional attribute type
names for use in PKI LDAP DNs [12], and how X.520 matching rules should operate
on non-ASCII characters e.g. when comparing subject names in X.509 certificates.
These three topics were also discussed in the LDAPbis meeting. The last topic was
uncontentious and everyone agreed that more work needed to be done on this. There
was considerable disagreement about the first two topics. Not all LDAP experts
agreed with removing ;binary for transferring certificates, as recommended by the
LDAP design teams, and considerable discussion about this continued on the
LDAPBis mail list during this period. The joint meeting decided that a poll would be
taken of the PKIX list, to see how existing PKI implementation use LDAPv2 and
LDAPv3 to transfer certificates and CRLs. When current usage is better understood,
the decision about whether to remove ;binary or not will be continued.

Concerning the registration of additional attribute type names for use in PKI LDAP
DNs, this discussion was started by the ID written by David Chadwick [12]. The base
LDAP document for this [14] discourages other strings to be used/registered and
suggests that OIDs be used instead. However, this causes problems with PKI
implementers who have to use a mixture of OIDs and LDAP strings when composing
LDAP DNs. But the use of new LDAP strings may cause interworking problems until

 11

all implementations register the new strings. The meeting decided to poll the PKIX
list for views, which was duly done, and there was mixed support for the idea.

During this period we started to work on the detailed design of the X.509 certificate
parsing server (XPS).

Seventh Bimonthly Report for the Period 1 September – 31
October 2002
It turned out that in order to write the detailed design for the X509 Parsing Server
(XPS), we had to do some coding in OpenLDAP in order to discover how things
actually worked. Thus the detailed design and coding ran in parallel somewhat since
the beginning of September. The detailed design was almost complete and it was
anticipated that it would be distributed to the steering committee by 15 November.

The following coding was completed:

- the configuration file
- the add and delete operations for an internal LDAP server,
- the extraction and creation of child entries for certificates.

We also pointed out some deficiencies in the schema document [13] and fed these
back to Peter Gietz.

The revised version of Matched Values [4] was sent to the ID editor on 7 September
for progression as an RFC.

Dr Chadwick attended the ITU-T X.500/509 standard’s meeting at NIST in
Gaithersberg in September. One item on the agenda was X.500 alignment with LDAP.
During this meeting a questionnaire was composed and circulated to the IETF PKIX
list requesting their input on the use of the LDAP protocols (v2 and v3) for certificate
storage and retrieval. This was designed to help the IETF groups in their work on how
to make LDAPv3 give better support to PKIs.

Eight Bimonthly Report for the Period 1 November – 31 December
2002
The detailed design for XPS [15] was completed and was distributed to the steering
committee on 15 November.

We attended the Terena TF-ACE meeting in Bromma on 25-27 November, where we
presented the results of the project so far. We also had a discussion of the Detailed
Design document. This was followed by more detailed email comments about the
design, which were very helpful, and as a result, an updated design was published on
28 November.

We continued to code up the detailed design, but due to the complexity of the design,
we were running an estimated 1 month behind the schedule in Appendix 3.

We produced internal LDAP schema IDs for CRLs and ACs (which were
subsequently issued as Internet Drafts [16, 17] during the next period).

 12

Ninth Bimonthly Report for the Period 1 January – 28 February
2003
We revised our internal LDAP schema IDs for CRLs and ACs, by adding more
features from X.509, and merging common components with those from Klasen [13].
These were duly submitted to the Internet Editor [16][17], so that they could be
discussed at the San Francisco IETF meeting.

We also proposed many changes to the Klasen ID [13], to bring it into align with the
new CRL and AC IDs. These were mostly accepted by its authors, and a revised
version (02.txt) was published by them in March 2003. The authors also agreed to
meet during the 56th IETF meeting in San Francisco to resolve any final discrepancies.
It was then planned that Last Call versions could be issued in time for the next IETF
meeting.

As a result of the new schema IDs [16] [17], four new versions of the Detailed Design
[15] were issued during February (versions 1.2, 1.3. 1.4 and 1.5).

Version 1.2 introduced a major change to the design, as it was realised that a CRL
could produce a whole subtree of LDAP entries, rather than a single entry, as in the
original design. This is because each revoked certificate (CRL entry) comprises: its
serial number, revocation date and optional CRL entry extensions such as the
revocation reason. Thus in order to be able to search for particular revoked certificates
with particular entry extensions, each revoked certificate in the CRL has to be held in
a separate LDAP entry. We therefore added a configuration parameter to allow
administrators to switch this subtree feature on or off.

Simultaneously with issuing the revised detailed design, we also published the design
of the Write Ahead Log [18], which provides XPS with its rollback and recovery
capability.

Version 1.3 of the Detailed Design corrected a minor flaw in the 1.2 design,
concerning how the revoked certificate entries are to be named. Other minor editorial
corrections were made.

Version 1.4 added a reference to the design about how the X.509 attributes are parsed
and turned into LDAP attributes. This additional parsing document [19] describes
how the ASN.1 X.509 attributes are handled, and how the parsing implementation can
be modified to handle additional X.509 certificate and CRL extensions.

In version 1.5 we enhanced the design by adding a configuration file that maps the
LDAP attributes into elements of the X.509 ASN.1 attributes. This allows an
administrator of the XPS server to (a) determine precisely which LDAP attributes he
wishes to support, and (b) as new certificate and CRL extensions and their
corresponding LDAP attributes are defined, update the configuration file to
incorporate them.

We continued to code up the revised detailed design, but due to the complexity of the
design, and the addition of new features during this period, we estimated that we were
running approximately 2 months behind schedule. This means that the development
would not be completed until early March 2003, after which testing can start.

 13

Tenth Bimonthly Report for the Period 1 March – 30 April 2003
David Chadwick attended the San Francisco IETF meeting and presented the new
PKIX LDAP schema IDs [16][17]. Prior to this, he met informally with Peter Gietz,
the author of [13], and they resolved the final discrepancies between their IDs. As a
result of their discussions, a new configuration parameter was added to XPS to list the
X.509 attribute types that would be trapped, and version 1.6 of the detailed design was
released [15].

Prior to the PKIX meeting, an informal PKIX-LDAP meeting was arranged by Tim
Polk the chair of PKIX. It was attended by Russ Housley (the new security Area
Director), Peter Gietz, Tim Polk, Kurt Zeilenga, Bob Morgan, Steven Legg and David
Chadwick. The meeting agreed that component matching (the original design for this
project) is technically more elegant and preferable to splitting a certificate up into
separate attributes for searching, as in the current design. However, the meeting
agreed that vendors seem to be reluctant to implement this, and splitting the attributes
up is a short term pragmatic solution that does not need LDAP vendors to change their
servers. Consequently the meeting agreed that component matching should be
progressed as a standards track RFC, and that this might encourage vendors in the
longer term to implement this solution; whilst the extraction IDs from Gietz,
Chadwick et al should be progressed as Experimental or Informational RFCs if the
area directors agree to this.
(Note that prior to the meeting the ADs did agree to issuing the IDs as Informational RFCs, but not
until after the component matching IDs have been published as standard track RFCs.)

On Friday of the same week, David Chadwick attended an OpenLDAP developers
meeting, and gave a presentation about this project. At this meeting, Kurt announced
that it should be possible to incorporate the certificate matching code into Release 2.2
of OpenLDAP, due to be released in September 2003.

We continued to code up the revised detailed design, and this was broadly finished by
the end of March. One problem we encountered, was that prior to a Delete operation
we need to Search the backend to see how many certificate entries there are.
However, the current be->be_search primitive returns the search result entries directly
to the client, and not to the caller. This meant we needed to modify the
send_search_entry function to trap the results, but Kurt Zeilenga was not able to
advise us of the best way to do this until the beginning of May.

A pre-release version of the code was distributed to Bige Nikita, a Programmer
System Administrator from Signal-com, Moscow, Russia, (see http://www.signal-
com.ru/eng/about/index.html), who contacted Mikhail to say he needed the PKC
features that we were providing for a project he was working on. He tested some of
our code and was able to parse and store public key certificates in his OpenLDAP
server.

At this stage of the project we were just at the beginning of rigorous testing and
debugging. We produced a Test Plan [20]. This would require us to creating a whole
range of PKCs, ACs and CRLs containing various extensions and fields, as an aid to
the debugging, so that as many options as possible could be tested. The code is
complex, and the extensions are numerous, so there is a lot of testing to do. We

 14

anticipated that the testing would take approximately 3 months, so the project should
be completed by the end of July.

Report for the Period May 2003-June 2004
May-June
Kurt Zeilenga was not able to advise us of the best way to trap search results until the
beginning of May. We then set about working out the precise details of how to do
this. This was complex, and took us approximately one month to sort out.
Consequently we not able to start full debugging and testing until the middle of June.
However, during this period more was learnt about the internal functioning of the
OpenLDAP code, and this lead to a number of design changes that made the XPS
code more efficient. In particular, we removed the specific operations that called an
external server (for the case where XPS was to front another LDAP backend server)
and used native OpenLDAP functionality instead (the back-ldap backend servers
functionality). We also removed the LDAP API functions from XPS as they were no
longer used. The back-ldap was used instead. Version 1.7 of the Detailed Design was
issued in May. This also included a new option for ASN.1 ->X.509 attribute types
mapping.
July-August 2003
Earlier in the year we produced a paper about the project, and we found that it was
accepted for presentation at the IFIP Database and Applications Security conference
in Colorado in August. (See http://www.cs.colostate.edu/~ifip03/). Dr Chadwick
attended the conference and presented the paper.

Mikhail continued debugging the code throughout the summer. During the debugging
we uncovered a potential denial of service attack, whereby a malicious user could
submit a spurious XPS delete attribute operation on the root (or close to the root) of
the DIT. This would cause a full subtree Search to be performed, which obviously
would consume huge resources. We thus had to redesign the Delete operation to do a
series of 1 level searches instead of a full subtree search. This was obviously more
complicated but should stop most denial of service attacks from happening since any
spurious search would be killed after the first level was completed. A new Detailed
Design (v1.8) was released in August.
September-October 2003
We finished the new coding in September and resumed the debugging. At this point in
time we anticipated the testing/debugging would finish by the end of November.
However, the next release of OpenLDAP came out in September, so after we have
finished the debugging we will then need to migrate to the latest development release
of OpenLDAP. Thus we anticipated that we would finish the project by the end of
2003.
November-December 2003
In order to expedite debugging a second programmer was brought onto the project to
do code inspections. This worked well, and 20 new bugs were found in the code.
However the sole remaining original developer (Mikhail) was now working for no
pay, since the project budget was long since exhausted. Consequently he had to take
part time demonstrating work at the university in order to eke out a living. Debugging
was therefore taking longer than anticipated.
January-February 2004
Adds and Deletes were now fully debugged but there were still some bugs in the
Modify that needed to be fixed. In addition, the code experienced a number of

 15

memory leaks, so that in soak testing it would work for maybe a dozen times or so,
and then would hang or crash. Locating and eliminating all of the memory leaks took
nearly two months, and required a significant re-write of the ASN.1 parsing code.
Since the original ASN.1 programmer had now left the university, it took Mikhail
significantly longer to do this than it would have taken the original programmer. Once
the code was debugged it was sent to a programmer in Moscow for testing, and he
reported several more bugs which were duly fixed.
March-April 2004
The fully debugged code in OpenLDAP2.1 was migrated to the latest development
release of OpenLDAP 2.2, (branch 2.2.11) so that it could be incorporated into the
next public release. However, OpenLDAP had undergone a number of significant
changes, so that the migration was not straight forward. For example, the development
release had now changed the matching rule for Modify and Delete values to exact
matching from binary match. Consequently we needed to publish a revised Detailed
Design document (v.1.8) in April. Furthermore the OpenLDAP development code had
a number of major bugs in it, which meant that even when XPS was fully debugged,
the complete code would not run properly for any significant period of time. One of
the major problems is that OpenLDAP has a built in limit to the number of internal
search results that it can return (currently 500). This means that if XPS is being used
to store CRL subtrees, and the CRL has more than 500 entries in it, it causes
problems. It is expected that once the OpenLDAP bugs are fixed, XPS will work as
expected.
May-June 2004
The code was finally released to the OpenLDAP development team in mid May. It
then has to undergo QA inspections by Kurt Zeilenga et al before it can be scheduled
for inclusion in the next OpenLDAP release (tentatively scheduled for Sept 2004).

We successfully demonstrated XSP at the Terena Networking Conference in Greece
in June.
July-August 2004
We published final versions of the Internet Drafts [16] [17] and presented them along
with [13] at the IETF meeting in San Diego in August. It was agreed at this meeting
that all 3 could proceed to Last Call in September and then be finalised and sent to the
RFC editor at the Washington meeting in November.

We produced the final report.

 16

Appendix 2 Original Planned Tasks and Resources
Task 1. Familiarisation with OpenLDAP code, ASN.1 toolkits, JNDI toolkits,
Certificate parsing and field extraction etc. 3 man months
Task 2. Write a module to parse a certificate and extract the fields that a user is likely
to filter on. Add these fields to the indexes in the OpenLDAP source code, to aid the
rapid searching for particular certificates. 1 man month
(Note. The exact set of fields will be chosen by talking to the Terena TF-LSD and PKI-
COORD groups and determining their user requirements.)
Task 3. Simple Searching. Implement the certificate EQUALITY matching rule. 1
man month
Task 4. Implement matched values control in OpenLDAP as a new module. 3 man
months
Task 5. Modify an LDAP client so that it can a) pass the new matched values control
in the protocol, and b) allow the user to ask for this control in a user friendly manner.
We will attempt to do this in Netscape or MS LDAP client, but if it proves too
difficult, we will build our own simple Java client or extend the OpenLDAP
ldapsearch(1) client. 3 man months.
Task 6. Complex searching. Implement the new extensible certificateMatch matching
rule. This will extract the new filter items from the incoming Search, will scan the
new indexes looking for a match and will find the entry with the correct certificate.
Return the entry. 3 man months.
Note. Kurt Zeilenga advises that the OpenLDAP extensible matching infrastructure is still
immature, so placing this task after tasks 4 and 5 rather than before them, which would seem
more natural, will give him time to stabilise this code.
Task 7. Modify an LDAP client so that it can a) pass the new certificate filter item in
the protocol and b) allow the user to type in the request in a user friendly manner. We
will attempt to do this in Netscape or MS LDAP client, but if it proves too difficult,
we will either build our own simple Java client or extend the OpenLDAP ud(1) client.
3 man months.
Task 8. Update the Internet Drafts as the implementation proceeds, and progress these
through the IETF. 0.5 man months
Task 9. Contingency 20% 3 man months
Task 10. Production of Final Report for Terena. 0.5 man months
Taks 11. Project Management 10% 2 man months
Total 23 man months

 17

Appendix 3 Revised Project Plan
Task 1. Produce a detailed design for the X.509 Certificate Parsing Server (XPS).
(July-Sept 2002)
Task 2. Implement the XPS server (Oct-Dec 2002)
Task 3. Test the XPS server (Jan-Feb 2003)
Task 4. Write and progress new PKIX LDAP schemas for the XPS (Oct-April 2003)
Task 5. Write Final Terena report plus Contingency (March 2003)

 18

Appendix 4. Returning Matched Values with LDAPv3
Internet-Draft David Chadwick
LDAPExt WG University of Salford
Intended Category: Standards Track Sean Mullan
 Sun Microsystems
Expires: 16 January 2004 16 July 2003

 Returning Matched Values with LDAPv3
 <draft-ietf-ldapext-matchedval-07.txt>

STATUS OF THIS MEMO

This document is an Internet-Draft and is in full conformance with
all the provisions of Section 10 of RFC2026 [1].

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that other
groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Comments and suggestions on this document are encouraged. Comments on
this document should be sent to the LDAPEXT working group discussion
list:
 ietf-ldapext@netscape.com

or directly to the authors.

ABSTRACT

This document describes a control for the Lightweight Directory
Access Protocol version 3 that is used to return a subset of
attribute values from an entry, specifically, only those values that
match a "values return" filter. Without support for this control, a
client must retrieve all of an attribute's values and search for
specific values locally.

1. Introduction

When reading an attribute from an entry using the Lightweight
Directory Access Protocol version 3 (LDAPv3) [2], it is normally only
possible to read either the attribute type, or the attribute type and
all its values. It is not possible to selectively read just a few of
the attribute values. If an attribute holds many values, for example,
the userCertificate attribute, or the subschema publishing
operational attributes objectClasses and attributeTypes [3], then it

 19

may be desirable for the user to be able to selectively retrieve a
subset of the values, specifically, those attribute values that match
some user defined selection criteria. Without the control specified
in this document a client must read all of the attribute's values and
filter out the unwanted values, necessitating the client to implement
the matching rules. It also requires the client to potentially read
and process many irrelevant values, which can be inefficient if the
values are large or complex, or there are many values stored per
attribute.

This document specifies an LDAPv3 control to enable a user to return
only those values that matched (i.e. returned TRUE to) one or more
elements of a newly defined "values return" filter. This control can
be especially useful when used in conjunction with extensible
matching rules that match on one or more components of complex binary
attribute values.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [4].

2. The valuesReturnFilter Control

The valuesReturnFilter control is either critical or non-critical as
determined by the user. It only has meaning for the Search operation,
and SHOULD only be added to the Search operation by the client. If
the server supports the control and it is present on a Search
operation, the server MUST obey the control regardless of the value
of the criticality flag.

If the control is marked as critical, and either the server does not
support the control or the control is applied to an operation other
than Search, then the server MUST return an
unavailableCriticalExtension error. If the control is not marked as
critical, and either the server does not support the control or the
control is applied to an operation other than Search, then the server
MUST ignore the control.

The object identifier for this control is 1.2.826.0.1.3344810.2.3.

The controlValue is an OCTET STRING, whose value is the BER encoding
[15], as per Section 5.1 of RFC 2251 [2], of a value of the ASN.1
[14] type ValuesReturnFilter.

 ValuesReturnFilter ::= SEQUENCE OF SimpleFilterItem

 SimpleFilterItem ::= CHOICE {
 equalityMatch [3] AttributeValueAssertion,
 substrings [4] SubstringFilter,
 greaterOrEqual [5] AttributeValueAssertion,
 lessOrEqual [6] AttributeValueAssertion,
 present [7] AttributeDescription,
 approxMatch [8] AttributeValueAssertion,
 extensibleMatch [9] SimpleMatchingAssertion }

 SimpleMatchingAssertion ::= SEQUENCE {
 matchingRule [1] MatchingRuleId OPTIONAL,
 type [2] AttributeDescription OPTIONAL,
--- at least one of the above must be present
 matchValue [3] AssertionValue}

 20

All the above data types have their standard meanings as defined in
[2].

If the server supports this control, the server MUST make use of the
control as follows:

(1) The Search Filter is first executed in order to determine
which entries satisfy the Search criteria (these are the
filtered entries). The control has no impact on this step.

(2) If the typesOnly parameter of the Search Request is TRUE,
the control has no effect and the Search Request is processed as
if the control had not been specified.

(3) If the attributes parameter of the Search Request consists
of a list containing only the attribute with OID "1.1"
(specifying that no attributes are to be returned), the control
has no effect and the Search Request is processed as if the
control had not been specified.

(4) For each attribute listed in the attributes parameter of the
Search Request, the server MUST apply the control as follows to
each entry in the set of filtered entries:

i) Every attribute value that evaluates TRUE against one or
more elements of the ValuesReturnFilter is placed in the
corresponding SearchResultEntry.
ii) Every attribute value that evaluates FALSE or undefined
against all elements of the ValuesReturnFilter is not
placed in the corresponding SearchResultEntry. An
attribute that has no values selected is returned with an
empty set of vals.

Note. If the AttributeDescriptionList is empty or comprises "*"
then the control MUST be applied against every user attribute.
If the AttributeDescriptionList contains a "+" then the control
MUST be applied against every operational attribute.

3. Relationship to X.500

The control is a superset of the matchedValuesOnly (MVO) boolean of
the X.500 Directory Access Protocol (DAP) [5] Search argument, as
amended in the latest version [6]. Close examination of the
matchedValuesOnly boolean by the LDAP Extensions (LDAPEXT) Working
Group revealed ambiguities and complexities in the MVO boolean that
could not easily be resolved. For example, it was not clear if the
MVO boolean governed only those attribute values that contributed to
the overall truth of the filter, or all of the attribute values even
if the filter item containing the attribute evaluated to false. For
this reason the LDAPEXT group decided to replace the MVO boolean with
a simple filter that removes any uncertainty as to whether an
attribute value has been selected or not.

4. Relationship to other LDAP Controls

The purpose of this control is to select zero, one or more attribute
values from each requested attribute in a filtered entry, and to
discard the remainder. Once the attribute values have been discarded

 21

by this control they MUST NOT be re-instated into the Search results
by other controls.

This control acts independently of other LDAP controls such as server
side sorting [10] and duplicate entries [7]. However, there might be
interactions between this control and other controls so that a
different set of Search Result Entries are returned, or the entries
are returned in a different order, depending upon the sequencing of
this control and other controls in the LDAP request. For example,
with server side sorting, if sorting is done first, and value return
filtering second, the set of Search Results may appear to be in the
wrong order since the value filtering may remove the attribute values
upon which the ordering was done. (The sorting document specifies
that entries without any sort key attribute values should be treated
as coming after all other attribute values.) Similarly with duplicate
entries, if duplication is performed before value filtering, the set
of Search Result Entries may contain identical duplicate entries,
each with an empty set of attribute values, because the value
filtering removed the attribute values that were used to duplicate
the results.

For these reasons the ValuesReturnFilter control in a SearchRequest
SHOULD precede other controls that affect the number and ordering of
SearchResultEntrys.

5. Examples

All entries are provided in LDAP Data Interchange Format (LDIF)[8].

The string representation of the valuesReturnFilter in the examples
below uses the following ABNF [12] notation:

 valuesReturnFilter = "(" 1*simpleFilterItem ")"
 simpleFilterItem = "(" item ")"

where item is as defined below (adapted from RFC2254 [11]).

 item = simple / present / substring / extensible
 simple = attr filtertype value
 filtertype = equal / approx / greater / less
 equal = "="
 approx = "~="
 greater = ">="
 less = "<="
 extensible = attr [":" matchingrule] ":=" value
 / ":" matchingrule ":=" value
 present = attr "=*"
 substring = attr "=" [initial] any [final]
 initial = value
 any = "*" *(value "*")
 final = value
 attr = AttributeDescription from Section 4.1.5 of [1]
 matchingrule = MatchingRuleId from Section 4.1.9 of [1]
 value = AttributeValue from Section 4.1.6 of [1]

(1) The first example shows how the control can be set to return all
attribute values from one attribute type (e.g. telephoneNumber) and a
subset of values from another attribute type (e.g. mail).

The entries below represent organizationalPerson object classes

 22

located somewhere beneath the distinguished name dc=ac,dc=uk.

dn: cn=Sean Mullan,ou=people,dc=sun,dc=ac,dc=uk
cn: Sean Mullan
sn: Mullan
objectClass: organizationalPerson
objectClass: person
objectClass: inetOrgPerson
mail: sean.mullan@hotmail.com
mail: mullan@east.sun.com
telephoneNumber: + 781 442 0926
telephoneNumber: 555-9999

dn: cn=David Chadwick,ou=isi,o=salford,dc=ac,dc=uk
cn: David Chadwick
sn: Chadwick
objectClass: organizationalPerson
objectClass: person
objectClass: inetOrgPerson
mail: d.w.chadwick@salford.ac.uk

An LDAP search operation is specified with a baseObject set to the
DN of the search base (i.e. dc=ac,dc=uk), a subtree scope, a filter
set to (sn=mullan), and the list of attributes to be returned set to
"mail,telephoneNumber" or "*". In addition, a ValuesReturnFilter
control is set to ((mail=*hotmail.com)(telephoneNumber=*))

The search results returned by the server would consist of the
following entry:

dn: cn=Sean Mullan,ou=people,dc=sun,dc=ac,dc=uk
mail: sean.mullan@hotmail.com
telephoneNumber: + 781 442 0926
telephoneNumber: 555-9999

Note that the control has no effect on the values returned for the
"telephoneNumber" attribute (all of the values are returned), since
the control specified that all values should be returned.

(2) The second example shows how one might retrieve a single
attribute type subschema definition for the "gunk" attribute with OID
1.2.3.4.5 from the subschema subentry

Assume the subschema subentry is held below the root entry with DN
cn=subschema subentry,o=myorg and this holds an attributeTypes
operational attribute holding the descriptions of the 35 attributes
known to this server (each description is held as a single attribute
value of the attributeTypes attribute).

dn: cn=subschema subentry,o=myorg
cn: subschema subentry
objectClass: subschema
attributeTypes: (2.5.4.3 NAME 'cn' SUP name)
attributeTypes: (2.5.4.6 NAME 'c' SUP name SINGLE-VALUE)
attributeTypes: (2.5.4.0 NAME 'objectClass' EQUALITY obj
 ectIdentifierMatch SYNTAX 1.3.6.1.4.1.1466.115.121.1.38)
attributeTypes: (2.5.18.2 NAME 'modifyTimestamp' EQUALITY gen
 eralizedTimeMatch ORDERING generalizedTimeOrderingMatch SYN
 TAX 1.3.6.1.4.1.1466.115.121.1.24 SINGLE-VALUE NO-USER-
 MODIFICATION USAGE directoryOperation)

 23

attributeTypes: (2.5.21.6 NAME 'objectClasses' EQUALITY obj
 ectIdentifierFirstComponentMatch SYNTAX 1.3.
 6.1.4.1.1466.115.121.1.37 USAGE directoryOperation)
attributeTypes: (1.2.3.4.5 NAME 'gunk' EQUALITY caseIgnoreMat
 ch SUBSTR caseIgnoreSubstringsMatch SYNTAX 1.3.
 6.1.4.1.1466.115.121.1.44{64})
attributeTypes: (2.5.21.5 NAME 'attributeTypes' EQUALITY obj
 ectIdentifierFirstComponentMatch SYNTAX 1.3.
 6.1.4.1.1466.115.121.1.3 USAGE directoryOperation)

plus another 28 - you get the idea.

The user creates an LDAP search operation with a baseObject set to
cn=subschema subentry,o=myorg, a scope of base, a filter set to
(objectClass=subschema), the list of attributes to be returned set to
"attributeTypes", and the ValuesReturnFilter set to
((attributeTypes=1.2.3.4.5))

The search result returned by the server would consist of the
following entry:

dn: cn=subschema subentry,o=myorg
attributeTypes: (1.2.3.4.5 NAME 'gunk' EQUALITY caseIgnoreMat
 ch SUBSTR caseIgnoreSubstringsMatch SYNTAX 1.3.
 6.1.4.1.1466.115.121.1.44{64})

(3) The final example shows how the control can be used to match on a
userCertificate attribute value. Note that this example requires the
LDAP server to support the certificateExactMatch matching rule
defined in [9] as the EQUALITY matching rule for userCertificate.

The entry below represent a pkiUser object class stored in the
directory.

dn: cn=David Chadwick,ou=people,o=University of Salford,c=gb
cn: David Chadwick
objectClass: person
objectClass: organizationalPerson
objectClass: pkiUser
objectClass: inetOrgPerson
sn: Chadwick
mail: d.w.chadwick@salford.ac.uk
userCertificate;binary: {binary representation of a certificate with
a serial number of 2468 issued by o=truetrust ltd,c=gb}
userCertificate;binary: {binary representation of certificate with a
serial number of 1357 issued by o=truetrust ltd,c=gb}
userCertificate;binary: {binary representation of certificate with a
serial number of 1234 issued by dc=certsRus,dc=com}

An LDAP search operation is specified with a baseObject set to
o=University of Salford,c=gb, a subtree scope, a filter set to
(sn=chadwick) and the list of attributes to be returned set to
"userCertificate;binary". In addition, a ValuesReturnFilter control
is set to ((userCertificate=1357$o=truetrust ltd,c=gb)).

The search result returned by the server would consist of the
following entry:

dn: cn=David Chadwick,ou=people,o=University of Salford,c=gb

 24

userCertificate;binary: {binary representation of certificate with a
serial number of 1357 issued by o=truetrust ltd,c=gb}

6. Security Considerations

This document does not primarily discuss security issues.

Note however that attribute values MUST only be returned if the
access controls applied by the LDAP server allow them to be returned,
and in this respect the effect of the ValuesReturnFilter control is
of no consequence.

Note that the ValuesReturnFilter control may have a positive effect
on the deployment of public key infrastructures. Certain PKI
operations, like searching for specific certificates, become more
practical when combined with X.509 certificate matching rules at the
server, and more scalable, since the control avoids the downloading
of potentially large numbers of irrelevant certificates which would
have to be processed and filtered locally (which in some cases is
very difficult to perform).

7. IANA Considerations

Registrigration of the Matched Values control as an LDAP Protocol
Mechanism [16] is requested:

 Subject: Request for LDAP Protocol Mechanism Registration

 Object Identifier: 1.2.826.0.1.3344810.2.3
 Description: Matched Values Control
 Person & email address to contact for further information:
 David Chadwick <d.w.chadwick@salford.ac.uk>
 Usage: Control
 Specification: RFCxxxx
 Author/Change Controller: IESG
 Comments: none

This document uses the OID 1.2.826.0.1.3344810.2.3 to identify the
matchedValues control described here. This OID was assigned by
TrueTrust Ltd, under its BSI assigned English/Welsh Registered
Company number [13].

8. Acknowledgements

The authors would like to thank members of the LDAPExt list for their
constructive comments on earlier versions of this document, and in
particular to Harald Alvestrand who first suggested having an
attribute return filter and Bruce Greenblatt who first proposed a
syntax for this control.

9. Copyright

Copyright (C) The Internet Society (date). All Rights Reserved.

This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it
or assist in its implementation may be prepared, copied, published

 25

and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing
the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of
developing Internet standards in which case the procedures for
copyrights defined in the Internet Standards process must be
followed, or as required to translate it into languages other than
English.

The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.

This document and the information contained herein is provided on an
"AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

10. References

Normative

[1] S. Bradner. "The Internet Standards Process -- Revision 3", RFC
2026, October 1996.
[2] M. Wahl, T. Howes, S. Kille, "Lightweight Directory Access
Protocol (v3)", Dec. 1997, RFC 2251
[3] M. Wahl, A. Coulbeck, T. Howes, S. Kille, "Lightweight Directory
Access Protocol (v3): Attribute Syntax Definitions", RFC 2252, Dec
1997
[4] S.Bradner. "Key words for use in RFCs to Indicate Requirement
Levels", RFC 2119, March 1997.
[14] ITU-T Recommendation X.680 (1997) | ISO/IEC 8824-1:1998,
Information Technology - Abstract Syntax Notation One (ASN.1):
Specification of Basic Notation
[15] ITU-T Recommendation X.690 (1997) | ISO/IEC 8825-1,2,3:1998
Information technology - ASN.1 encoding rules: Specification of Basic
Encoding Rules (BER), Canonical Encoding Rules (CER) and
Distinguished Encoding Rules (DER)
[16] K. Zeilenga. "IANA Considerations for LDAP" RFC 3383, September
2002

Informative

[5] ITU-T Rec. X.511, "The Directory: Abstract Service Definition",
1993.
[6] Draft ISO/IEC 9594 / ITU-T Rec X.511 (2001) The Directory:
Abstract Service Definition.
[7] J. Sermersheim. "LDAP Control for a Duplicate Entry
Representation of Search Results", Internet Draft <draft-ietf-
ldapext-ldapv3-dupent-08.txt>, September 2002.
[8] G. Good. "The LDAP Data Interchange Format (LDIF) - Technical
Specification". RFC 2849, June 2000.
[9] D. Chadwick, S.Legg. "Internet X.509 Public Key Infrastructure -
Additional LDAP Schema for PKIs", Internet Draft <draft-pkix-ldap-
pki-schema-00.txt>, June 2002
[10] T. Howes, M. Wahl, A. Anantha, "LDAP Control Extension for

 26

Server Side Sorting of Search Results", RFC 2891, August 2000
[11] T. Howes. "The String Representation of LDAP Search Filters".
RFC 2254, December 1997.
[12] D. Crocker, Ed. "Augmented BNF for Syntax Specifications: ABNF."
RFC 2234. November 1997.
[13] BRITISH STANDARD BS 7453 Part 1. Procedures for UK Registration
for Open System Standards Part 1: Procedures for the UK Name
Registration Authority.

11. Authors Addresses

David Chadwick
IS Institute
University of Salford
Salford M5 4WT
England

Email: d.w.chadwick@salford.ac.uk
Tel: +44 161 295 5351

Sean Mullan
Sun Microsystems
East Point Business Park
Dublin 3
Ireland
Tel: +353 1 853 0655
Email: sean.mullan@sun.com

12. Changes since version 2

i) Revised the examples to be more appropriate
ii) Section on interactions with other LDAP controls added
iii) Removed Editor's note concerning present filter
iv) Tightened wording about its applicability to other operations
and use of criticality field

Changes since version 3

i) Mandated that at least one of type and matchingRule in
simpleMatchingAssertion be present
ii) Fixed LDIF mistakes in the examples
iii) Additional minor editorials only

Changes since version 4

i) corrected the ABNF for single items of valuesReturnFilter

Changes since version 5

i) added some adapted BNFL from [11] into the examples
(specifically the [":dn"] component was removed)
ii) general editorial tidying up prior to Last Call

Changes since version 6

i) First example had all attributes (*) added to it
ii) References to ASN.1 standards added
iii) Syntax error in third example corrected
iv) IANA considerations section added

Appendix 5. LDAP Schema for X.509 Certificates
Network Working Group P. Gietz
Internet-Draft DAASI International GmbH
Expires: November 30, 2004 N. Klasen
 Avinci
 June 2004

 Internet X.509 Public Key Infrastructure Lightweight Directory Access
 Protocol Schema for X.509 Certificates
 draft-ietf-pkix-ldap-pkc-schema-00

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
 http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
 http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on November 30, 2004.

Copyright Notice

 Copyright (C) The Internet Society (2004). All Rights Reserved.

Abstract

 This document describes an LDAP schema which can be used to implement
 a certificate store for X.509 certificates. Specifically, two
 structural object classes for X.509 user and CA certificates are
 defined. Key fields of a certificate are stored in LDAP attributes
 so that applications can easily retrieve the certificates needed by
 using basic LDAP search filters. Multiple certificates for a single
 entity can be stored and retrieved.

Conventions used in this document

Gietz & Klasen Expires November 30, 2004 [Page 1]

 28

Internet-Draft PKIX LDAP PKC Schema June 2004

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 The following syntax specifications use the augmented Backus-Naur
 Form (ABNF) as described in [RFC2234].

 Schema definitions are provided using LDAPv3 description formats
 [RFC2252]. Definitions provided here are formatted (line wrapped)
 for readability.

Table of Contents

 1. Introduction . 4
 2. Comparison with Values Return Filter Control 5
 3. Comparison with Component Matching approach 6
 4. The attribute types of the x509certificate object classes . . 7
 4.1 Attributes for mandatory fields of an X.509 certificate . 7
 4.1.1 X.509 version . 7
 4.1.2 Serial number . 7
 4.1.3 Signature algorithm 7
 4.1.4 Issuer . 8
 4.1.5 Validity . 8
 4.1.6 Subject . 9
 4.1.7 Subject public key info algorithm 9
 4.2 Attributes for selected extensions 9
 4.2.1 Authority key identifier extension 10
 4.2.2 Subject key identifier extension 11
 4.2.3 Key usage extension 11
 4.2.4 Policy information identifier extension 12
 4.2.5 Subject alternative name extension 12
 4.2.6 Issuer alternative name extension 14
 4.2.7 Basic constraints extension 16
 4.2.8 Extended key usage extension 16
 4.2.9 CRL distribution points extension 16
 4.3 Additional attributes 17
 4.3.1 Certificate location 17
 4.3.2 Certificate holder 17
 5. X.509 schema object classes 17
 5.1 X.509 base object class 18
 5.2 X.509 PKC object class 18
 5.3 X.509 user certificate object class 18
 5.4 X.509 CA certificate object class 19
 5.5 X.509 certificate holder object class 19
 6. DIT structure and naming 20
 7. Security Considerations 21
 8. IANA Considerations . 21
 9. Acknowledgments . 21

Gietz & Klasen Expires November 30, 2004 [Page 2]

 29

Internet-Draft PKIX LDAP PKC Schema June 2004

 10. References . 22
 10.1 Normative references . 22
 10.2 Non-normative references 23
 Authors' Addresses . 24
 A. Sample directory entries 25
 B. Sample searches . 27
 C. Changes from previous Drafts 28
 C.1 Changes in draft-klasen-ldap-x509certificate-schema-01 . . 28
 C.2 Changes in draft-klasen-ldap-x509certificate-schema-02 . . 28
 C.3 Changes in draft-klasen-ldap-x509certificate-schema-03 . . 28
 C.4 Changes in draft-ietf-pkix-ldap-pkc-schema-00 29
 Intellectual Property and Copyright Statements 30

Gietz & Klasen Expires November 30, 2004 [Page 3]

 30

Internet-Draft PKIX LDAP PKC Schema June 2004

1. Introduction

 A key component in the wide-spread adoption of a Public Key
 Infrastructure is the general availability of public keys and their
 certificates. Today, certificates are often published in an X.500
 compliant directory service. These directories are accessed by
 applications using the LDAP v3 [RFC3377] protocol. An LDAPv3 schema
 for PKI repository objects is specified in [pkix-ldap-schema], where
 a set of object classes, attribute types, syntaxes, and extended
 matching rules are defined. For storing certificates, the
 "userCertificate" and "cACertificate" attribute types are used. All
 certificates of an entity are stored as values in these multi-valued
 attributes. This solution has a serious drawback. In LDAP, the
 smallest granularity of data access is the attribute. The directory
 server will therefore always return the full list of certificates of
 an entry to clients dealing with certificates. If the number of
 certificates for an entity is large this will result in considerable
 overhead and burden to the client.

 This document proposes to solve this problem by the use of the
 structural object classes x509userCertificate and x509caCertificate
 for storing certificates. Each certificate will be stored in a
 separate entry in the directory. Having each certificate stored in a
 separate entry provides flexibility in structuring the Directory
 Information Tree. The certificate entries can be stored either below
 a person entry or below a CA entry as a certificate only repository,
 as shown in figure 1.

 1.) below Person entry:

 person
 / | \
 / | \
 cert1 cert2 cert3

 2.) below CA cert repository:

 CA
 |
 |
 certificate repository
 / | \
 / | \
 cert1 cert2 ... cert1008

 Figure 1: examples of possible DIT-structures

Gietz & Klasen Expires November 30, 2004 [Page 4]

 31

Internet-Draft PKIX LDAP PKC Schema June 2004

 Fields of certificates which are needed to identify a certificate and
 those which are often used in searching for an appropriate
 certificate, are extracted from the certificate and stored as
 attributes of the entry. Applications can thus search for specific
 certificates with simple LDAP filters. This approach could be named
 a metadata approach, since data (attributes) about data (certificate)
 are stored.

 The use of simple attributes also makes a large scale widely
 distributed certificate repository service possible by using an
 indexing service based on The Common Indexing Protocol (CIP)
 [RFC2651], which defines a protocol between index servers for
 exchanging index objects in order to facilitate query routing. The
 Tagged Index Object format as specified in [RFC2654] was specified to
 carry directory server information, by collecting the single
 attributetypes and values. By using the schema proposed in this
 document, index objects can include certificate information in
 attributes.

 If certificates are stored redundantly in person entries and in
 certificate entries below the person entries, maintainers of
 repositories MUST make sure that the same certificates are stored in
 the person entry and the respective certificate entries and keep this
 consistency. Alternatively they MUST leave out any certificates in
 the person entry.

 This document is one of a set following this approach comprising:
 1. the LDAP schema for X.509 public key certificates (this document)
 2. the LDAP schema for X.509 attribute certificates [ldap-ac-schema]
 3. the LDAP schema for X.509 CRLs [ldap-crl-schema]

 Future documents may be written that use the same method for
 Qualified certificates as described in [RFC3039] or any other
 evolving pkix certificate standard. An auxiliary object class for
 including additional metadata that are not included in the
 certificate is also outside the scope of this document.

 Two alternative approaches are discussed in the next two sections.

2. Comparison with Values Return Filter Control

 In [matchedval] a control has been defined that allows for only a
 subset of values of a specified attribute to be returned from a
 matching entry, by defining a filter for the returned values. In
 this section, this approach is compared with the one proposed in this
 document.

 The major benefit of the Values Return Filter Control is that it does

Gietz & Klasen Expires November 30, 2004 [Page 5]

 32

Internet-Draft PKIX LDAP PKC Schema June 2004

 not require any changes to the DIT.

 While it is a simple matter to modify the DIT in such a way that all
 certificate information is removed from the entries and placed in the
 container directly beneath the entries according to the definitions
 of this specification, it is less simple to simultaneously modify all
 of the applications that depend on certificates being stored in the
 entry. Thus, it may be desirable to duplicate the certificate
 information, by having it appear in the entry, as well as in the
 container beneath the entry for a short period of time, in order to
 allow for migration of the applications to the new LDAP schema. As
 in any situation in which information is duplicated, great care must
 be taken in order to ensure the integrity and consistency of the
 information.

 There are several advantages in using the x509certificate object
 class. No special matching rules are needed to retrieve a specific
 certificate. Any field in the certificate can be used in the search
 filter. Even information that doesn't appear in the certificate can
 be used in a search filter. It is easier to remove certificates from
 the DIT, since the entire certificate BER/DER encoding does not have
 to be supplied in the modify operation. Searches that don't need
 extensible matching rules and Values Return Filter Control will
 perform faster.

 Another advantage of the solution proposed here is that it will not
 be necessary to modify existing server implementations to support
 this schema. The extended matching rules proposed in
 [pkix-ldap-schema] would require substantial changes in the servers'
 indexing mechanisms. In contrast, servers implementing the
 x509certificate schema can easily leverage their indexing support for
 standard LDAPv3 syntaxes.

 A CIP-based indexing system for a wide scale distributed certificate
 repository will rather be possible by using the solution proposed
 here due to its dependency on attribute values.

3. Comparison with Component Matching approach

 [RFC3687] defines a new mechanism for matching in complex syntaxes,
 by defining generic matching rules that can match any user selected
 component parts in an attribute value of any arbitrarily complex
 attribute syntax. We believe that this might be the proper way to
 solve search problems in the longer term, but that it will take a
 long time until such ASN.1 based mechanisms will be implemented in
 LDAP servers and clients. Even if this has happened the mechanism
 proposed here, will still be useful in the frame of CIP. A simple
 and easy to implement mechanism is needed today and this is what this

Gietz & Klasen Expires November 30, 2004 [Page 6]

 33

Internet-Draft PKIX LDAP PKC Schema June 2004

 memo wants to provide.

4. The attribute types of the x509certificate object classes

 The description of all attributes with relevance to fields and
 extensions of an X.509 certificate include a respective reference to
 [X.509-2000] and to [RFC3280].

4.1 Attributes for mandatory fields of an X.509 certificate

4.1.1 X.509 version

 X.509 Version of the encoded certificate (See X.509(2000) 7, RFC3280
 4.1.2.1.) or of the CRL.

 (1.3.6.1.4.1.10126.1.5.3.1
 NAME 'x509version'
 DESC 'X.509 Version of the certificate, or of the CRL'
 EQUALITY integerMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
 SINGLE-VALUE)

 Values of this attribute may either be 0, 1, 2 or 3 corresponding to
 X.509 v1, v2, v3, or v4.

4.1.2 Serial number

 The serial number is an integer assigned by the CA to each
 certificate. It is unique for each certificate issued by a given CA
 (i.e., the issuer name and serial number uniquely identify a
 certificate). See X.509(2000) 7, RFC3280 4.1.2.2

 (1.3.6.1.4.1.10126.1.5.3.2
 NAME 'x509serialNumber'
 DESC 'Unique integer for each certificate issued by a
 particular CA'
 EQUALITY integerMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.27)

4.1.3 Signature algorithm

 OID identifying the algorithm used by the CA in signing the
 certificate (see X.509(2000) 7, RFC3280 4.1.2.3) or the CRL.

Gietz & Klasen Expires November 30, 2004 [Page 7]

 34

Internet-Draft PKIX LDAP PKC Schema June 2004

 (1.3.6.1.4.1.10126.1.5.3.3
 NAME 'x509signatureAlgorithm'
 DESC 'OID of the algorithm used by the CA in
 signing the CRL or the certificate'
 EQUALITY objectIdentifierMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.38
 SINGLE-VALUE)

4.1.4 Issuer

 String representation of the issuer's distinguished name (see
 X.509(2000) 7, RFC3280 4.1.2.4)

 (1.3.6.1.4.1.10126.1.5.3.4
 NAME 'x509issuer'
 DESC 'Distinguished name of the entity who has signed and
 issued the certificate'
 EQUALITY distinguishedNameMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
 SINGLE-VALUE)

 Values of this attribute type must be encoded according to the syntax
 given in [RFC2253].

4.1.5 Validity

 The "validity" attribute in an X.509 certificate (see X.509(2000) 7,
 RFC3280 4.1.2.5) consists of an ASN.1 sequence of two timestamps
 which define the begin and end of the certificate's validity period.
 This sequence has been split up into two separate attributes
 "x509validityNotBefore" and "x509validityNotAfter". The times are
 represented in string form as defined in [RFC2252].

 (1.3.6.1.4.1.10126.1.5.3.5
 NAME 'x509validityNotBefore'
 DESC 'Date on which the certificate validity period begins'
 EQUALITY generalizedTimeMatch
 ORDERING generalizedTimeOrderingMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.24
 SINGLE-VALUE)

 (1.3.6.1.4.1.10126.1.5.3.6
 NAME 'x509validityNotAfter'
 DESC 'Date on which the certificate validity period ends'
 EQUALITY generalizedTimeMatch
 ORDERING generalizedTimeOrderingMatch

Gietz & Klasen Expires November 30, 2004 [Page 8]

 35

Internet-Draft PKIX LDAP PKC Schema June 2004

 SYNTAX 1.3.6.1.4.1.1466.115.121.1.24
 SINGLE-VALUE)

 Note that the field in the certificate may be in UTC or
 GeneralizedTime format. If in UTC format, the creator of this
 attribute MUST convert the UTC time into GeneralisedTime format when
 creating the attribute value.

4.1.6 Subject

 String representation of the subject's distinguished name (see
 X.509(2000) 7, RFC3280 4.1.2.6).

 (1.3.6.1.4.1.10126.1.5.3.7
 NAME 'x509subject'
 DESC 'Distinguished name of the entity associated with this
 public-key'
 EQUALITY distinguishedNameMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
 SINGLE-VALUE)

 Values of this attribute type must be encoded according to the syntax
 given in [RFC2253].

4.1.7 Subject public key info algorithm

 OID identifying the algorithm associated with the certified public
 key (see X.509(2000) 7, RFC3280 4.1.2.7).

 (1.3.6.1.4.1.10126.1.5.3.8
 NAME 'x509subjectPublicKeyInfoAlgorithm'
 DESC 'OID identifying the algorithm associated with the certified
 public key'
 EQUALITY objectIdentifierMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.38
 SINGLE-VALUE)

4.2 Attributes for selected extensions

 As this specification intends to only facilitate applications in
 finding certificates, only those extensions have to be defined that
 might be searched for. Thus extensions described in [RFC3280] like
 the following are not dealt with here:
 o private key usage period extension
 o policy mappings extension
 o subject directory attributes extension

Gietz & Klasen Expires November 30, 2004 [Page 9]

 36

Internet-Draft PKIX LDAP PKC Schema June 2004

 o basic constraints extension
 o name constraints extensions
 o policy constraints extensions
 o inhibit any policy extension
 o freshest CRL extension
 o authority information access extension
 o subject information access extension

4.2.1 Authority key identifier extension

 This attribute identifies the public key to be used to verify the
 signature on this certificate or CRL (see X.509(2000) 8.2.2.1,
 RFC3280 4.2.1.1). The key may be identified by an explicit key
 identifier in the keyIdentifier component, by identification of a
 certificate for the key (giving certificate issuer in the
 authorityCertIssuer component and certificate serial number in the
 authorityCertSerialNumber component), or by both explicit key
 identifier and identification of a certificate for the key.

4.2.1.1 Authority key identifier

 (1.3.6.1.4.1.10126.1.5.3.11
 NAME 'x509authorityKeyIdentifier'
 DESC 'Key Identifier field of the Authority Key Identifier
 extension'
 EQUALITY octetStringMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.40
 SINGLE-VALUE)

4.2.1.2 Authority cert issuer

 (1.3.6.1.4.1.10126.1.5.3.12
 NAME 'x509authorityCertIssuer'
 DESC 'Authority Cert Issuer field of the Authority Key Identifier
 extension'
 EQUALITY distinguishedNameMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
 SINGLE-VALUE)

 In this specification, only the "Name" choice, encoded according to
 [RFC2253], of the "GeneralName" type may be used.

Gietz & Klasen Expires November 30, 2004 [Page 10]

 37

Internet-Draft PKIX LDAP PKC Schema June 2004

4.2.1.3 Authority cert serial number

 (1.3.6.1.4.1.10126.1.5.3.13
 NAME 'x509authorityCertSerialNumber'
 DESC 'Authority Cert Serial Number field of the
 Authority Key Identifier extension'
 EQUALITY integerMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
 SINGLE-VALUE)

4.2.2 Subject key identifier extension

 This attribute identifies the public key being certified (see
 X.509(2000) 8.2.2.2, RFC3280 4.2.1.2). It enables distinct keys used
 by the same subject to be differentiated.

 (1.3.6.1.4.1.10126.1.5.3.14
 NAME 'x509subjectKeyIdentifier'
 DESC 'Key identifier which must be unique with respect to all
 key identifiers for the subject'
 EQUALITY octetStringMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.40
 SINGLE-VALUE)

4.2.3 Key usage extension

 This attribute defines the purpose (e.g., encipherment, signature,
 certificate signing) of the key contained in the certificate (see
 X.509(2000) 8.2.2.3, RFC3280 4.2.1.3).

 (1.3.6.1.4.1.10126.1.5.3.15
 NAME 'x509keyUsage'
 DESC 'Purpose for which the certified public key is used'
 EQUALITY caseIgnoreIA5Match
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15)

 Values of this type are encoded according to the following BNF, so
 that each value corresponds to the respective bit in the ASN.1
 "KeyUsage" bitstring:

 x509keyUsage-value ="digitalSignature" / "nonRepudiation" /
 "keyEncipherment" / "dataEncipherment" / "keyAgreement" /
 "keyCertSign" / "cRLSign" / "encipherOnly" / "decipherOnly"

Gietz & Klasen Expires November 30, 2004 [Page 11]

 38

Internet-Draft PKIX LDAP PKC Schema June 2004

4.2.4 Policy information identifier extension

 This attribute contains OIDs which indicate the policy under which
 the certificate has been issued and the purposes for which the
 certificate may be used (see X.509(2000) 8.2.2.6, RFC3280 4.2.1.5).

 (1.3.6.1.4.1.10126.1.5.3.16
 NAME 'x509policyInformationIdentifier'
 DESC 'OID which indicates the policy under which the
 certificate has been issued and the purposes for which
 the certificate may be used'
 EQUALITY objectIdentifierMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.38
 SINGLE-VALUE)

4.2.5 Subject alternative name extension

 The subject alternative name extension allows additional identities
 to be bound to the subject of the certificate (see X.509(2000)
 8.3.2.1, RFC3280 4.2.1.7). Separate attribute types are defined for
 all choices of the ASN.1 type "GeneralName" except for "otherName",
 "x400Address" and "ediPartyName".

4.2.5.1 Subject RFC822 name

 (1.3.6.1.4.1.10126.1.5.3.17
 NAME 'x509subjectRfc822Name'
 DESC 'Internet electronic mail address of the entity
 associated with this public-key'
 EQUALITY caseIgnoreIA5Match
 SUBSTR caseIgnoreIA5SubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

 Values of this attribute must be encoded according to the syntax
 given in [RFC0822].

4.2.5.2 Subject DNS name

 (1.3.6.1.4.1.10126.1.5.3.18
 NAME 'x509subjectDnsName'
 DESC 'Internet domain name of the entity
 associated with this public-key'
 EQUALITY caseIgnoreIA5Match
 SUBSTR caseIgnoreIA5SubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

 Values of this attribute must be encoded as Internet domain names in

Gietz & Klasen Expires November 30, 2004 [Page 12]

 39

Internet-Draft PKIX LDAP PKC Schema June 2004

 accordance with [RFC1035].

4.2.5.3 Subject directory name

 (1.3.6.1.4.1.10126.1.5.3.19
 NAME 'x509subjectDirectoryName'
 DESC 'Distinguished name of the entity
 associated with this public-key'
 EQUALITY distinguishedNameMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12)

 Values of this attribute type must be encoded according to the syntax
 given in [RFC2253].

4.2.5.4 Subject Uniform Resource Identifier

 (1.3.6.1.4.1.10126.1.5.3.20
 NAME 'x509subjectURI'
 DESC 'Uniform Resource Identifier for the World-Wide Web
 of the entity associated with this public-key'
 EQUALITY caseExactIA5Match
 SUBSTR caseExactIA5SubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

 Values of this attribute must be encoded according to the syntax
 given in [RFC2396].

4.2.5.5 Subject IP address

 (1.3.6.1.4.1.10126.1.5.3.21
 NAME 'x509subjectIpAddress'
 DESC 'Internet Protocol address of the entity
 associated with this public-key'
 EQUALITY caseIgnoreIA5Match
 SUBSTR caseIgnoreIA5SubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

 Values of this attribute type must be stored in the syntax given in
 Appendix B of [RFC2373].

Gietz & Klasen Expires November 30, 2004 [Page 13]

 40

Internet-Draft PKIX LDAP PKC Schema June 2004

4.2.5.6 Subject registered ID

 (1.3.6.1.4.1.10126.1.5.3.22
 NAME 'x509subjectRegisteredID'
 DESC 'OID of any registered object identifying the entity
 associated with this public-key'
 EQUALITY objectIdentifierMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.38)

 registeredID is an identifier of any registered object assigned in
 accordance with ITU-T Rec. X.660.

4.2.6 Issuer alternative name extension

 The issuer alternative names extension allows additional identities
 to be bound to the subject of the certificate or CRL (see X.509(2000)
 8.3.2.2, RFC3280 4.2.1.8). Separate attribute types are defined for
 all choices of the ASN.1 type "GeneralName" except for "otherName",
 "x400Address" and "ediPartyName".

4.2.6.1 Issuer RFC 822 name

 (1.3.6.1.4.1.10126.1.5.3.23
 NAME 'x509issuerRfc822Name'
 DESC 'Internet electronic mail address of the entity who has
 signed and issued the certificate'
 EQUALITY caseIgnoreIA5Match
 SUBSTR caseIgnoreIA5SubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

 Values of this attribute must be encoded according to the syntax
 given in [RFC0822].

4.2.6.2 Issuer DNS name

 (1.3.6.1.4.1.10126.1.5.3.24
 NAME 'x509issuerDnsName'
 DESC 'Internet domain name of the entity who has
 signed and issued the certificate'
 EQUALITY caseIgnoreIA5Match
 SUBSTR caseIgnoreIA5SubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

 Values of this attribute must be encoded as Internet domain names in
 accordance with [RFC1035].

Gietz & Klasen Expires November 30, 2004 [Page 14]

 41

Internet-Draft PKIX LDAP PKC Schema June 2004

4.2.6.3 Issuer directory name

 (1.3.6.1.4.1.10126.1.5.3.25
 NAME 'x509issuerDirectoryName'
 DESC 'Distinguished name of the entity who has
 signed and issued the certificate'
 EQUALITY distinguishedNameMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12)

 Values of this attribute type must be encoded according to the syntax
 given in [RFC2253].

4.2.6.4 Issuer Uniform Resource Identifier

 (1.3.6.1.4.1.10126.1.5.3.26
 NAME 'x509issuerURI'
 DESC 'Uniform Resource Identifier for the World-Wide Web
 of the entity who has signed and issued the certificate'
 EQUALITY caseExactIA5Match
 SUBSTR caseExactIA5SubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

 Values of this attribute must be encoded according to the syntax
 given in [RFC2396].

4.2.6.5 Issuer IP address

 (1.3.6.1.4.1.10126.1.5.3.27
 NAME 'x509issuerIpAddress'
 DESC 'Internet Protocol address of the entity who has
 signed and issued the certificate'
 EQUALITY caseIgnoreIA5Match
 SUBSTR caseIgnoreIA5SubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

 Values of this attribute type must be stored in the syntax given in
 Appendix B of [RFC2373].

4.2.6.6 Issuer registered ID

 (1.3.6.1.4.1.10126.1.5.3.28
 NAME 'x509issuerRegisteredID'
 DESC 'OID of any registered object identifying the entity who has
 signed and issued the certificate'
 EQUALITY objectIdentifierMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.38)

 registeredID is an identifier of any registered object assigned in

Gietz & Klasen Expires November 30, 2004 [Page 15]

 42

Internet-Draft PKIX LDAP PKC Schema June 2004

 accordance with ITU-T Rec. X.660.

4.2.7 Basic constraints extension

 This attribute indicates whether the subject of the certificate is a
 CA (see X.509(2000) 8.4.2.1, RFC3280 4.2.1.10). If the value of this
 attribute is "TRUE", the certificate MUST be stored in the
 "cacertificate" attribute.

 (1.3.6.1.4.1.10126.1.5.3.29
 NAME 'x509basicConstraintsCa'
 DESC 'Identifies whether the subject of the certificate is a
 CA'
 EQUALITY booleanMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.7
 SINGLE-VALUE)

4.2.8 Extended key usage extension

 This attribute indicates one or more purposes for which the certified
 public key may be used, in addition to or in place of the basic
 purposes indicated in the "x509keyUsage" attribute (see X.509(2000)
 8.2.2.4, RFC3280 4.2.1.13). These purposes are identified by their
 OID.

 (1.3.6.1.4.1.10126.1.5.3.30
 NAME 'x509extKeyUsage'
 DESC 'Purposes for which the certified public key may be used,
 identified by an OID'
 EQUALITY objectIdentifierMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.38)

4.2.9 CRL distribution points extension

 This attribute identifies how the full CRL information for this
 certifacte can be obtained (see X.509(2000) 8.6.2.1, RFC3280
 4.2.1.14).

 (1.3.6.1.4.1.10126.1.5.3.32
 NAME 'x509fullCRLDistributionPointURI'
 DESC 'URI type of DistributionPointName for the full CRL'
 EQUALITY caseExactIA5Match
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

 In this specification, only the "uniformResourceIdentifier" choice of
 "distributionPoint.fullName" field is supported. If this attribute

Gietz & Klasen Expires November 30, 2004 [Page 16]

 43

Internet-Draft PKIX LDAP PKC Schema June 2004

 exists in an entry, both the "reasons" and "cRLIssuer" fields MUST be
 absent from the certificate, i.e. the CRL distributed by the
 distribution point contains revocations for all revocation reasons
 and the CRL issuer is identical to the certificate issuer.

 Values of this attribute must be encoded according to the URI syntax
 given in [RFC2396].

4.3 Additional attributes

4.3.1 Certificate location

 This attribute contains a pointer to the directory entry of a
 certificate. Thus it is possible to point to the certificate from
 an, e.g., white pages entry.

 (1.3.6.1.4.1.10126.1.5.4.74
 NAME 'x509certLocation'
 DESC 'Pointer to a x509certificate Entry'
 EQUALITY distinguishedNameMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12)

4.3.2 Certificate holder

 This attribute contains a pointer to the directory entry of the end
 entity to which this certificate was issued. Thus it is possible to
 link a certificate entry in a certificate repository to, e.g., a
 white pages entry of the subject.

 (1.3.6.1.4.1.10126.1.5.4.75
 NAME 'x509certHolder'
 DESC 'Pointer to the directory entry of the end entity to which this
 certificate was issued'
 EQUALITY distinguishedNameMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12)

5. X.509 schema object classes

 The object classes have been designed to form a logical set and be
 extensible in an orderly way as new PKC/CRL/AC extensions are
 defined. The methodology is as follows. Every X.509 entry (for a
 PKC, CRL or AC) is of the x509base abstract object class. There is
 then an additional abstract object class for each, derived from
 x509base, which holds the attributes extracted from the basic PKC/AC/
 CRL ASN.1 structure (excluding all extensions). The PKC object class
 is then instantiated by two structural object classes for user

Gietz & Klasen Expires November 30, 2004 [Page 17]

 44

Internet-Draft PKIX LDAP PKC Schema June 2004

 certificates and for CA certificates.

5.1 X.509 base object class

 The x509base object class is the abstract object class that is the
 superior of all of the x.509 entry object classes

 (1.3.6.1.4.1.10126.1.5.4.2.1
 NAME 'x509base'
 ABSTRACT
 MAY x509version)

5.2 X.509 PKC object class

 This abstract object class contains the fields of an X.509 user
 certificate or CA certificate that are used in searches as attributes
 and in name forms. It is derived from the abstract object class
 x.509base as specified in [ldap-crl-schema] and is base for the two
 following object classes.

 (1.3.6.1.4.1.10126.1.5.4.2.3
 NAME 'x509PKC'
 SUP x509base
 ABSTRACT
 MUST (x509serialNumber $ x509validityNotBefore $
 x509validityNotAfter $ x509subjectPublicKeyInfoAlgorithm $
 x509signatureAlgorithm $ x509issuer)
 MAY (x509authorityKeyIdentifier $
 x509authorityCertIssuer $ x509authorityCertSerialNumber $
 x509subjectKeyIdentifier $ x509keyUsage $
 x509policyInformationIdentifier $
 x509subjectRfc822Name $ x509subjectDnsName $
 x509subjectDirectoryName $ x509subjectURI $
 x509subjectIpAddress $ x509subjectRegisteredID $
 x509issuerRfc822Name $ x509issuerDnsName $
 x509issuerDirectoryName $ x509issuerURI $
 x509issuerIpAddress $ x509issuerRegisteredID $
 x509extKeyUsage $ x509FullcRLDistributionPointURI $
 x509certHolder $
 x509issuerSerial $ x509basicConstraintsCa))

 The attribute description of x509issuerSerial can be found in
 [ldap-ac-schema]

5.3 X.509 user certificate object class

 This object class is for storing user certificates.

Gietz & Klasen Expires November 30, 2004 [Page 18]

 45

Internet-Draft PKIX LDAP PKC Schema June 2004

 (1.3.6.1.4.1.10126.1.5.4.2.4
 NAME 'x509userCertificate'
 SUP x509PKC
 STRUCTURAL
 MUST userCertificate
 MAY x509subject)

 The attribute description of userCertificate can be found in
 [pkix-ldap-schema]. Although this attribute type is specified as
 multi-valued it MUST NOT contain more than one certificate if used
 with this object class.

 The attribute type x509subject is specified here as a MAY attribute.
 Nevertheless if this attribute is not used at least one of the
 following attributes MUST be filled in: x509subjectRfc822Name,
 x509subjectDnsName, x509subjectDirectoryName, x509subjectURI,
 x509subjectIpAddress, or x509subjectRegisteredID.

5.4 X.509 CA certificate object class

 This object class is for storing CA certificates.

 (1.3.6.1.4.1.10126.1.5.4.2.5
 NAME 'x509caCertificate'
 SUP x509PKC
 STRUCTURAL
 MUST (caCertificate $ x509subject))

 The attribute description of caCertificate can be found in
 [pkix-ldap-schema]. Although this attribute type is specified as
 multi-valued it MUST NOT contain more than one certificate if used
 with this object class.

5.5 X.509 certificate holder object class

 This auxiliary object class has an attribute that contains a pointer
 to an entry with x509certicate objectclass. Thus it is possible to
 link, e.g., an entry of a white pages directory to an entry in a
 certificate store.

 (1.3.6.1.4.1.10126.1.5.4.2.2
 NAME 'x509certificateHolder'
 AUXILIARY
 MAY (x509certLocation))

Gietz & Klasen Expires November 30, 2004 [Page 19]

 46

Internet-Draft PKIX LDAP PKC Schema June 2004

6. DIT structure and naming

 If the schema presented in this document is used to store certificate
 information in a directory that contains entries for organizations,
 persons, services, etc., each certificate belonging to an entity
 SHOULD be stored as a direct subordinate to the entity's entry. In
 this case, these entries MUST be named by a multi-valued RDN formed
 by the certificate issuer and serial number, as this is the only way
 to enforce unique RDN under the siblings. This is expressed in the
 following two name forms:

 (1.3.6.1.4.1.10126.1.5.5.6
 NAME 'x509userCertificateNameform'
 OC x509userCeriticate
 MUST (x509serialNumber $ x509issuer))

 (1.3.6.1.4.1.10126.1.5.5.7
 NAME 'x509caCertificateNameform'
 OC x509caCertificate
 MUST (x509serialNumber $ x509issuer))

 There are some LDAP implementations that don't support multi-valued
 RDNs. These can use following alternative two name forms:

 (1.3.6.1.4.1.10126.1.5.5.8
 NAME 'x509PKCAltNameForm'
 OC x509PKC
 MUST x509issuerSerial)

 For public directories of CAs that, besides the data stored in the
 certificates, do not hold any additional data about end entities the
 following DIT structure might be preferable. Entries for
 certificates are stored directly below the issuing CA's entry. In
 this case these entries SHOULD be named by the certificate serial
 number. This is expressed in the following two name forms:

 (1.3.6.1.4.1.10126.1.5.5.10
 NAME 'x509PKCSerialNumberNameForm'
 OC x509PKC
 MUST x509serialNumber)

 Care must be taken when encoding DNs that contain an x509issuer
 attribute. Such a value is a string representation according to
 [RFC2253]. These strings contain RFC2253 special characters and must
 therefore be escaped. For example, the issuer name in a certificate
 may be:

Gietz & Klasen Expires November 30, 2004 [Page 20]

 47

Internet-Draft PKIX LDAP PKC Schema June 2004

 x509issuer: OU=VeriSign Trust Network,OU=(c) 1998 VeriSign\2c Inc. -
 For authorized use only,OU=Class 1 Public Primary Certification Au
 thority - G2,O=VeriSign\2c Inc.,C=US

 When used in a DN, this will be appear as:

 dn: x509serialNumber=123456+x509issuer=OU\3dVeriSign Trust Network
 \2cOU\3d(c) 1998 VeriSign\5c\2c Inc. - For authorized use only\2cOU\3d
 Class 1 Public Primary Certification Authority - G2\2cO\3dVeriSig
 n\5c\2c Inc.\2cC\3dUS,cn=Joe Example,...

7. Security Considerations

 Attributes of directory entries are used to provide descriptive
 information about the real-world objects they represent which can be
 people, organizations, or devices. Most countries have privacy laws
 regarding the publication of information about people.

 Without additional mechanisms such as Operation Signatures [RFC2649]
 which allow a client to verify the origin and integrity of the data
 contained in the attributes defined in this document, a client MUST
 NOT treat this data as authentic. Clients MUST only use - after
 proper validation - the data which they obtained directly from the
 certificate. Directory administrators MAY deploy ACLs which limit
 access to the attributes defined in this document to search filters.

 Transfer of cleartext passwords is strongly discouraged where the
 underlying transport service cannot guarantee confidentiality and may
 result in disclosure of the password to unauthorized parties.

 In order to protect the directory and its contents, strong
 authentication MUST have been used to identify the Client when an
 update operation is requested.

8. IANA Considerations

 This document uses the OID 1.3.6.1.4.1.10126.1.5 to identify the LDAP
 schema elements described here. This OID was assigned by DAASI
 International, under its IANA-assigned private enterprise allocation
 [PRIVATE], for use in this specification.

9. Acknowledgments

 This document borrows from a number of IETF documents, including
 [certinfo-schema].

 The authors wish to thank David Chadwick, Russ Housley, Mikhail

Gietz & Klasen Expires November 30, 2004 [Page 21]

 48

Internet-Draft PKIX LDAP PKC Schema June 2004

 Sahalayev, Michael Stroeder, and Kurt Zeilenga for their
 contributions to this document.

 This work is part of the DFN Project "Ausbau und Weiterbetrieb eines
 Directory Kompetenzzentrums" funded by the German Ministry of
 Research (BMBF).

 The last versions of this work were made in the frame of the project
 "PKI/LDAP" funded by the Ministry of Science, Research and The Arts
 of Baden-Wuerttemberg, Germany.

 This document has been written in XML according to the DTD specified
 in RFC2629. xml2rfc has been used to generate an RFC2033 compliant
 plain text form. The XML source and a HTML version are available on
 request.

10. References

10.1 Normative references

 [PRIVATE] IANA, "Private Enterprise Numbers",
 <http://www.iana.org/assignements/enterprise-numbers>.

 [RFC0822] Crocker, D., "Standard for the format of ARPA Internet
 text messages", STD 11, RFC 822, August 1982.

 [RFC1035] Mockapetris, P., "Domain names - implementation and
 specification", STD 13, RFC 1035, November 1987.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", RFC 2234, November 1997.

 [RFC2252] Wahl, M., Coulbeck, A., Howes, T. and S. Kille,
 "Lightweight Directory Access Protocol (v3): Attribute
 Syntax Definitions", RFC 2252, December 1997.

 [RFC2253] Wahl, M., Kille, S. and T. Howes, "Lightweight Directory
 Access Protocol (v3): UTF-8 String Representation of
 Distinguished Names", RFC 2253, December 1997.

 [RFC2256] Wahl, M., "A Summary of the X.500(96) User Schema for use
 with LDAPv3", RFC 2256, December 1997.

 [RFC2373] Hinden, R. and S. Deering, "IP Version 6 Addressing
 Architecture", RFC 2373, July 1998.

Gietz & Klasen Expires November 30, 2004 [Page 22]

 49

Internet-Draft PKIX LDAP PKC Schema June 2004

 [RFC2396] Berners-Lee, T., Fielding, R. and L. Masinter, "Uniform
 Resource Identifiers (URI): Generic Syntax", RFC 2396,
 August 1998.

 [RFC2798] Smith, M., "Definition of the inetOrgPerson LDAP Object
 Class", RFC 2798, April 2000.

 [RFC3280] Housley, R., Polk, T., Ford, W. and D. Solo, "Internet
 X.509 Public Key Infrastructure Certificate and CRL
 Profile", RFC 3280, April 2002.

 [RFC3377] Hodges, J. and RL. Morgan, "Lightweight Directory Access
 Protocol (v3): Technical Specification", RFC 3377,
 September 2002.

 [ldap-ac-schema]
 Chadwick, D. and M. Sahalayev, "Internet X.509 Public Key
 Infrastructure - LDAP Schema for X.509 Attribute
 Certificates", Internet Draft (work in progress), May
 2004, <draft-ietf-pkix-ldap-ac-schema-02.txt>.

 [ldap-crl-schema]
 Chadwick, D. and M. Sahalayev, "Internet X.509 Public Key
 Infrastructure - LDAP Schema for X.509 CRLs", Internet
 Draft (work in progress), May 2004,
 <draft-ietf-pkix-ldap-crl-schema-02.txt>.

 [pkix-ldap-schema]
 Chadwick, D. and S. Legg, "Internet X.509 Public Key
 Infrastructure - LDAP Schema and Syntaxes for PKIs",
 Internet Draft (work in progress), June 2002,
 <draft-ietf-pkix-ldap-pki-schema-00.txt>.

10.2 Non-normative references

 [RFC2312] Dusse, S., Hoffman, P., Ramsdell, B. and J. Weinstein, "S/
 MIME Version 2 Certificate Handling", RFC 2312, March
 1998.

 [RFC2649] Greenblatt, B. and P. Richard, "An LDAP Control and Schema
 for Holding Operation Signatures", RFC 2649, August 1999.

 [RFC2651] Allen, J. and M. Mealling, "The Architecture of the Common
 Indexing Protocol (CIP)", RFC 2651, August 1999.

 [RFC2654] Hedberg, R., Greenblatt, B., Moats, R. and M. Wahl, "A
 Tagged Index Object for use in the Common Indexing
 Protocol", RFC 2654, August 1999.

Gietz & Klasen Expires November 30, 2004 [Page 23]

 50

Internet-Draft PKIX LDAP PKC Schema June 2004

 [RFC3039] Santesson, S., Polk, T., Barzin, P. and M. Nystrom,
 "Internet X.509 Public Key Infrastructure Qualified
 Certificate Profile", RFC 3039, January 2001.

 [RFC3687] Legg, S., "Lightweight Directory Access Protocol and X.500
 Component Matching Rules", RFC 3687, February 2004.

 [X.509-2000]
 ITU, "Information Technology - Open Systems
 Interconnection - The Directory: Public-key and attribute
 certificate frameworks", ITU-T Recommendation X.509,
 March 2000.

 [certinfo-schema]
 Greenblatt, B., "LDAP Object Class for Holding Certificate
 Information", Internet Draft (expired), Februar 2000,
 <http://www.watersprings.org/pub/id/draft-greenblatt-ldap-
certinfo-schema-02.txt>
 .

 [matchedval]
 Chadwick, D. and S. Mullan, "Returning Matched Values with
 LDAPv3", Internet Draft (work in progress), September
 2002, <draft-ietf-ldapext-matchedval-07.txt>.

Authors' Addresses

 Peter Gietz
 DAASI International GmbH
 Wilhelmstr. 106
 Tuebingen 72074
 DE

 Phone: +49 7071 29 70336
 EMail: peter.gietz@daasi.de
 URI: http://www.daasi.de/

 Norbert Klasen
 Avinci
 Halskestr. 38
 Ratingen 40880
 DE

 EMail: norbert.klasen@avinci.de

Gietz & Klasen Expires November 30, 2004 [Page 24]

 51

Internet-Draft PKIX LDAP PKC Schema June 2004

Appendix A. Sample directory entries

 A sample x509certificate directory entry for an intermediate CA
 certificate in LDIF format:

 dn: x509serialNumber=4903272,EMAILADDRESS=certify@pca.dfn.de,CN=DFN T
 oplevel Certification Authority,OU=DFN-PCA,OU=DFN-CERT GmbH,O=Deutsc
 hes Forschungsnetz,C=DE
 objectclass: x509caCertificate
 x509version: 2
 x509serialNumber: 4903272
 x509issuer: EMAILADDRESS=certify@pca.dfn.de,CN=DFN Toplevel Certifica
 tion Authority,OU=DFN-PCA,OU=DFN-CERT GmbH,O=Deutsches Forschungsnet
 z,C=DE
 x509validityNotBefore: 20020110170112Z
 x509validityNotAfter: 20060110170112Z
 x509subject: EMAILADDRESS=ca@daasi.de,OU=DAASI CA,O=DAASI Internation
 al GmbH,C=DE
 x509subjectPublicKeyInfoAlgorithm: 1.2.840.113549.1.1.1
 x509basicConstraintsCa: TRUE
 x509keyUsage: keyCertSign
 x509keyUsage: cRLSign
 x509subjectKeyIdentifier:: 5nrZFpVK4RKfIglqQ4N4JXBS4Bk=
 x509cLRdistributionPointURI: http://www.dfn-pca.de/certification/x509
 /g1/data/crls/root-ca-crl.crx
 x509cLRdistributionPointURI: http://www.dfn-pca.de/certification/x509
 /g1/data/crls/root-ca-crl.crl
 x509policyInformationIdentifier: 1.3.6.1.4.1.11418.300.1.1
 x509caCert:: MIIHTTCCBjWgAwIBAgIDStFoMA0GCSqGSIb3DQEBBQUAMI
 GsMQswCQYDVQQGEwJERTEhMB8GA1UEChMYRGV1dHNjaGVzIEZvcnNjaHVuZ3NuZXR6MR
 YwFAYD VQQLEw1ERk4tQ0VSVCBHbWJIMRAwDgYDVQQLEwdERk4tUENBMS0wKwYDVQQDE
 yRERk4gVG9 wbGV2ZWwgQ2VydGlmaWNhdGlvbiBBdXRob3JpdHkxITAfBgkqhkiG9w0B
 CQEWEmNlcnRpZnlAcGNhLmRmbi5kZTAeFw0wMjAxMTAxNzAxMTJaFw0wNjAxMTAxNzAx
 MTJaMF8xCzAJBgNVBAYTAkRFMSEwHwYDVQQKExhEQUFTSSBJbnRlcm5hdGlvbmFsIEdt
 YkgxETAPBgNVBAsTCERB QVNJIENBMRowGAYJKoZIhvcNAQkBFgtjYUBkYWFzaS5kZTC
 CASIwDQYJKoZIhvcNAQEBBQA DggEPADCCAQoCggEBAKmQBp+Gr28/qlEWjnJoiH3Awm
 hNEYMRWgXMXMMjM3S4mSmXZ8FZfTSPhi5O1zx5nyHecfl01fAO79Kpc6XkOTOl4iKBwu
 7+DM6my9Iizp2puhOQ6iuuchAIyJQPR0lfWAvvW+4n7Nf13Js5qFHvXBDqvgt6fud1l8
 XZ4nPWBSbs6OnB4EUDlRLx5fdCX2sEPQINKeu0INMtjHI6eGbspmahup0ArPA9RYZVjV
 q6ZHkh4205/JAhji9KtFifKCztXNTRMba7AHd2uS6GbF9+chGLPWGNZKtMhad1SvU7Zl
 w/ySHkFbBFZMu6x3kAVgwW8gKQa5qSFnMw/WTKATJRPekCAwEAAaOCA8IwggO+MA8GA1
 UdEwEB/wQFMAMBAf8wCwYDVR0PBAQDAgEGMB0GA1UdDgQWBBTmetkWlUrhEp8iCWpDg3
 glcFLgGTCB2wYDVR0jBIHTMIHQgBQGC/q1+Eh4oyCxCz7PoNDE0X990KGBsqSBrzCBrD
 ELMAkGA1UEBhMCREUxITAfBgNVBAoTGERldXRzY2hlcyBGb3JzY2h1bmdzbmV0ejEWMB
 QGA1UECxMNREZOLUNFUlQgR21iSDEQMA4GA1UECxMHREZOLVBDQTEtMCsGA1UEAxMkRE
 ZOIFRvcGxldmVsIENlcnRpZmljYXRpb24gQXV0aG9yaXR5MSEwHwYJKoZIhvcNAQkBFh
 JjZXJ0aWZ5QHBjYS5kZm4uZGWCAxXP/TCBpQYDVR0fBIGdMIGaMEugSaBHhkVodHRwOi
 8vd3d3LmRmbi1wY2EuZGUvY2VydGlmaWNhdGlvbi94NTA5L2cxL2RhdGEvY3Jscy9yb2

Gietz & Klasen Expires November 30, 2004 [Page 25]

 52

Internet-Draft PKIX LDAP PKC Schema June 2004

 90LWNhLWNybC5jcngwS6BJoEeGRWh0dHA6Ly93d3cuZGZuLXBjYS5kZS9jZXJ0aWZpY2
 F0aW9uL3g1MDkvZzEvZGF0YS9jcmxzL3Jvb3QtY2EtY3JsLmNybDARBglghkgBhvhCAQ
 EEBAMCAQYwSwYJYIZIAYb4QgEIBD4WPGh0dHA6Ly93d3cuZGZuLXBjYS5kZS9jZXJ0aW
 ZpY2F0aW9uL3BvbGljaWVzL3g1MDlwb2xpY3kuaHRtbDCB+QYJYIZIAYb4QgENBIHrFo
 HoVGhpcyBjZXJ0aWZpY2F0ZSB3YXMgaXNzdWVkIGJ5IHRoZSBERk4tUENBLCB0aGUgVG
 9wCkxldmVsIENlcnRpZmljYXRpb24gQXV0aG9yaXR5IG9mIHRoZSBHZXJtYW4gUmVzZW
 FyY2gKTmV0d29yayAoRGV1dHNjaGVzIEZvcnNjaHVuZ3NuZXR6LCBERk4pLgpUaGUga2
 V5IG93bmVyJ3MgaWRlbnRpdHkgd2FzIGF1dGhlbnRpY2F0ZWQgaW4KYWNjb3JkYW5jZS
 B3aXRoIHRoZSBERk4tUENBIHg1MDkgUG9saWN5LjA3BglghkgBhvhCAQMEKhYoaHR0cH
 M6Ly93d3cuZGZuLXBjYS5kZS9jZ2kvY2hlY2stcmV2LmNnaTBkBgNVHSAEXTBbMFkGCy
 sGAQQB2RqCLAEBMEowSAYIKwYBBQUHAgEWPGh0dHA6Ly93d3cuZGZuLXBjYS5kZS9jZX
 J0aWZpY2F0aW9uL3BvbGljaWVzL3g1MDlwb2xpY3kuaHRtbDANBgkqhkiG9w0BAQUFAA
 OCAQEAU9GmwCW6LwsyHfC241afldqj/GULv8mfSkUEpK2OtYU1JAYFzmQx69iweOKHbg
 XZKZA2Wox+9AydIe98MJCSCOFKYjkzgXU4fEZbEgnZBo+/1+W2BoB6gFAWy77KVHgimA
 7AqCcfbObeyCmyfLg1ro8/KpE01OjNr0S+EfZ3gX9sezjVkCy12HBNQknz/hT2af25UU
 hyFTcvUY4xvlKAQpla29qyO28sfO93Qhkum6SU2XPlsKU+3lyqF33Xy84Y2z8ScVlsMu
 VWbUGtmVshnpT5K91n42pu/f0rLtkZDssEDbcLnQDLWEz1aUDkLC++4CeFJxC/Dd/SOr
 E0yR0hNQ=

 A sample x509certificate directory entry for an end identity
 certificate in LDIF format:

Gietz & Klasen Expires November 30, 2004 [Page 26]

 53

Internet-Draft PKIX LDAP PKC Schema June 2004

 dn: x509serialNumber=1581631808272310054353257112721713,EMAILADDRESS=
 certificate@trustcenter.de,OU=TC TrustCenter Class 1 CA,O=TC TrustCe
 nter for Security in Data Networks GmbH,L=Hamburg,ST=Hamburg,C=DE
 objectclass: x509userCertificate
 x509version: 2
 x509serialNumber: 1581631808272310054353257112721713
 x509issuer: EMAILADDRESS=certificate@trustcenter.de,OU=TC TrustCente
 r Class 1 CA,O=TC TrustCenter for Security in Data Networks GmbH,L=
 Hamburg, ST=Hamburg,C=DE
 x509validityNotBefore: 20011030180757Z
 x509validityNotAfter: 20021030180757Z
 x509subject: EMAILADDRESS=norbert.klasen@daasi.de,CN=Norbert Klasen,C
 =DE
 x509subjectPublicKeyInfoAlgorithm: 1.2.840.113549.1.1.1
 x509userCert:: MIIDOTCCAqKgAwIBAgIOTfsAAAACxOstmlOu2TEwDQYJ
 KoZIhvcNAQEEBQAwgbwxCzAJBgNVBAYTAkRFMRAwDgYDVQQIEwdIYW1idXJnMRAwDgYD
 VQQHEwdIYW1idXJnMTowOAYDVQQKEzFUQyBUcnVzdENlbnRlciBmb3IgU2VjdXJpdHkg
 aW4gRGF0YSBOZXR3b3JrcyBHbWJIMSIwIAYDVQQLExlUQyBUcnVzdENlbnRlciBDbGFz
 cyAxIENBMSkwJwYJKoZIhvcNAQkBFhpjZXJ0aWZpY2F0ZUB0cnVzdGNlbnRlci5kZTAe
 Fw0wMTEwMzAxODA3NTdaFw0wMjEwMzAxODA3NTdaME4xCzAJBgNVBAYTAkRFMRcwFQYD
 VQQDEw5Ob3JiZXJ0IEtsYXNlbjEmMCQGCSqGSIb3DQEJARYXbm9yYmVydC5rbGFzZW5A
 ZGFhc2kuZGUwgZ8wDQYJKoZIhvcNAQEBBQADgY0AMIGJAoGBAL8+XK98p4YjD7Wq7Apm
 hAN/j2tfVsFCS0ufy12vGpEtG4ny1tbbBORCJI8vIlDr2/vVTESl6UjzceloVUCib5V8
 55mKUVmLL9Ay4qQLFd4wAoRSPAu9DkfbR+ygjzaYq+MUKMwaB61sG6911xk/e2/IIq8/
 IHKrRoYQGmHkaaJpAgMBAAGjgaowgacwMwYJYIZIAYb4QgEIBCYWJGh0dHA6Ly93d3cu
 dHJ1c3RjZW50ZXIuZGUvZ3VpZGVsaW5lczARBglghkgBhvhCAQEEBAMCBaAwXQYJYIZI
 AYb4QgEDBFAWTmh0dHBzOi8vd3d3LnRydXN0Y2VudGVyLmRlL2NnaS1iaW4vY2hlY2st
 cmV2LmNnaS80REZCMDAwMDAwMDJDNEVCMkQ5QTUzQUVEOTMxPzANBgkqhkiG9w0BAQQF
 AAOBgQCrAzuZzLztupeqcHa8OUOcnRuTacMpBEeICbZMKv6mN9rMYkAxFKerj/yXbdCE
 8/3X3L00eGj+a8A7PumATiJSfmvYqa4EMZwHC2FFqPxYyAj+xVuSlL5AC4HGHu4SOCp/
 UJu1xysoD16chOOLpj7+ZWZWLHIjA3zeXwUGl4kFvw==

Appendix B. Sample searches

 This section details how clients should access the certstore. The
 searches are presented in LDAP URL format.

 Retrieve all certificates for an end entity from a certstore using
 the first DIT structure:

 ldap:///CN=Norbert%20Klasen,O=DAASI%20International%20GmbH,C=de?
 x509userCert?one?(objectClass=x509userCertificate)

 Find a certificate in a trustcenter's certstore suitable for sending
 an encrypted S/MIME message to "norbert.klasen@daasi.de"

Gietz & Klasen Expires November 30, 2004 [Page 27]

 54

Internet-Draft PKIX LDAP PKC Schema June 2004

 ldap:///O=TC%20TrustCenter%20for%20Security%20in%20Data%20Networks
 %20GmbH,L=Hamburg,ST=Hamburg,C=de?x509userCert?sub?
 ((&(objectClass=x509userCertificate)
 (x509subjectRfc822Name=norbert.klasen@daasi.de))
 (|(x509keyUsage=keyEncipherment)(x509keyUsage=keyAgreement)
 (x509extendedKeyUsage=1.3.6.1.5.5.7.3.4)))

 Find a CA certificate by its "subjectKeyIdentifier" obtained from the
 "keyIdentifier" field of the "autorityKeyIdentifier" extension in an
 end entity certificate:

 ldap:///?caCertificate?sub?
 (&(objectClass=x509caCertificate)(x509subjectKeyIdentifier=%5CE6
 %5C7A%5CD9%5C16%5C95%5C4A%5CE1%5C12%5C9F%5C22%5C09%5C6A%5C43%
 5C83%5C78%5C25%5C70%5C52%5CE0%5C19))

Appendix C. Changes from previous Drafts

C.1 Changes in draft-klasen-ldap-x509certificate-schema-01
 o Included new Attributes x509authorityKeyIdentifier,
 x509authorityCertissuer, x509authorityCertSerialNumber,
 x509certificateLocation, x509certificateHolder, and new
 objectclass x509certificateHolder
 o Fixed bug in definition of objectclass x509certificate
 o Changed references from RFC 2459 to RFC 3280 and included some
 respective language in 3.2.
 o Changed references from RFC 2251 to RFC 3377 and deleted all
 references to LDAPv2.
 o Deleted ";binary" in examples
 o Included new section: Comparision with component matching approach
 o Some changes in wording and section titles, and elimination of
 typos
 o Changed order of authors, and one author's address

C.2 Changes in draft-klasen-ldap-x509certificate-schema-02
 o abstract object class x509PKC
 o aligned to [ldap-ac-schema] and [ldap-crl-schema]

C.3 Changes in draft-klasen-ldap-x509certificate-schema-03
 o Changed Matching Rules from caseIgnoreMatch to caseIgnoreIA5Match
 etc.
 o moved the references to RFC 3280 from the DESC part of the
 attribute definition to the text
 o added some additional text about CIP in Introduction
 o reworded text for x509subjectPublicKeyInfoAlgorithm
 o changed x509userCert and x509caCert to be inherited from
 userCertificate and caCertificate respectively

Gietz & Klasen Expires November 30, 2004 [Page 28]

 55

Internet-Draft PKIX LDAP PKC Schema June 2004

 o added clarification about x509subject and subject alternative
 names
 o added attribute type x509issuerSerial to x509PKC object class
 o added attribute type x509basicConstraintsCa to x509PKC object
 class
 o renamed attributetype x509cRLDistributionPointURI to
 x509FullcRLDistributionPointURI
 o devided references in normative and non normative
 o deleted attributetype mail from x509PKC objectclass
 o created separate Name Forms for x509userCertificate and
 x509caCertificate object classes.
 o changed attributetype x509SerialNumber to MULTI-VALUE
 o adjusted examples to new schema
 o Fixed more typos

C.4 Changes in draft-ietf-pkix-ldap-pkc-schema-00
 o renamed the title and file name
 o deleted attribute types x509userCert and x509caCert and replaced
 them with the standard userCertificate and caCertificate attribute
 types.
 o included the description of x509base object class assigning a new
 OID to it.
 o renamed x509issuerUniforResourceIdentifier and
 x509subjectUniforResourceIdentifier to x509issuerURI and
 x509subjectURI respectivly.
 o replaced separate Name Forms for x509userCertificate and
 x509caCertificate object classes by a single x509PKCNameForm.
 o included a super section x509 Schema Object Classes with
 introductory remarks (taken from [ldap-ac-schema])
 o added some additional wording and some ASCII art in the
 introduction
 o updated references
 o added an IANA considerations section
 o added another acknowledgement

Gietz & Klasen Expires November 30, 2004 [Page 29]

 56

Internet-Draft PKIX LDAP PKC Schema June 2004

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 intellectual property or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; neither does it represent that it
 has made any effort to identify any such rights. Information on the
 IETF's procedures with respect to rights in standards-track and
 standards-related documentation can be found in BCP-11. Copies of
 claims of rights made available for publication and any assurances of
 licenses to be made available, or the result of an attempt made to
 obtain a general license or permission for the use of such
 proprietary rights by implementors or users of this specification can
 be obtained from the IETF Secretariat.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights which may cover technology that may be required to practice
 this standard. Please address the information to the IETF Executive
 Director.

Full Copyright Statement

 Copyright (C) The Internet Society (2004). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assignees.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION

Gietz & Klasen Expires November 30, 2004 [Page 30]

 57

Internet-Draft PKIX LDAP PKC Schema June 2004

 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Gietz & Klasen Expires November 30, 2004 [Page 31]

 58

Appendix 6. LDAP Schema for X.509 Attribute Certificates
INTERNET-DRAFT D. W. Chadwick
PKIX WG M. V. Sahalayev
Intended Category: Informational University of Salford
Expires on 9 January 2005 10 July 2004

 Internet X.509 Public Key Infrastructure
 LDAP Schema for X.509 Attribute Certificates
 <draft-ietf-pkix-ldap-ac-schema-01.txt>

Copyright (C) The Internet Society (2004). All Rights Reserved.

"By submitting this Internet-Draft, we certify that any applicable patent or
other IPR claims of which we are aware have been disclosed, or will be
disclosed, and any of which we become aware will be disclosed, in accordance
with RFC 3668 [22]."

STATUS OF THIS MEMO

This document is an Internet-Draft and is in full conformance with
all the provisions of Section 10 of RFC2026 [1].

Comments and suggestions on this document are encouraged. Comments on this
document should be sent to the PKIX working group discussion list
<ietf-pkix@imc.org> or directly to the authors.

Internet-Drafts are working documents of the Internet Engineering Task Force
(IETF), its areas, and its working groups. Note that other groups may also
distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be
updated, replaced, or obsoleted by other documents at any time. It is
inappropriate to use Internet-Drafts as reference material or to cite them other
than a "work in progress."

The list of current Internet-Drafts can be accessed at
http://www.ietf.org/1id-abstracts.html

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html"

ABSTRACT

This document describes an LDAP schema for X.509 attribute certificates (ACs).
Each AC is broken down into a set of attribute types. These attributes can then
be stored in an AC entry. An object class is defined for this AC entry. Each
attribute type uses an existing LDAP syntax, so that no new matching rules need
to be defined.

 59

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [2].

TABLE OF CONTENTS

1. Introduction2
2. DIT Structure and Naming3
3. X.509 Schema Object Classes4
3.1 X509 AC object class4
3.2 X.509 attribute certificate object class....5
3.3 X.509 AA certificate object class...........5
3.4 Embedded attributes5
3.5 X.509 AC extensions auxiliary object class...5
4. Common X.509 Attribute Types..................6
5. Attribute Types for AC Specific Fields........7
5.1 AC holder PKC................................7
5.3 AC object digest.............................9
6. Attributes for Selected AC Extensions........10
6.1 Audit identity..............................10
6.2 AC targets..................................11
6.3 No revocation...............................14
6.4 CRL distribution points.....................14
7. Security Considerations......................18
8. IANA Considerations..........................18
9. References...................................18
10. Intellectual Property Notice................20
11. Acknowledgments.............................20
12. Copyright...................................20
13. Authors' Addresses..........................21
14. Changes.....................................21

1. Introduction

It currently isn't possible to search LDAP servers for X.509 [6] attributes
(public key certificates, CRLs etc.) as no matching rules have been defined for
them. A couple of Internet Drafts [9,10] have been specified, but implementation
of them is complex. Component matching [19] defines a mechanism for matching
against complex syntaxes, by defining generic matching rules that can match
against any user selected component parts in an attribute value of any
arbitrarily complex attribute syntax. This might prove to be the proper way to
solve LDAP search problems in the longer term, but it will take a long time
until such ASN.1 based mechanisms are implemented in all LDAP servers and
clients. Even when this has happened the mechanism proposed in this document
will still be useful to some applications such as CIP [20].

A simple and easy to implement mechanism is needed today to search for X.509
attributes. Rather than search for an X.509 attribute in an entry, it suggests

 60

the directory administrative user creates an entry (in the case of pubic key and
attribute certificates) or a subtree (in the case of CRLs) from the X.509
attribute. The attributes of these new entries will be created from fields of
the X.509 attribute (e.g. the issuer field), and if these new attributes are
defined using existing LDAP syntaxes and matching rules, then it will be
possible to use existing LDAP server technology to search for fields in X.509
attributes.

This document is one of a set comprising:
i) the LDAP schema for X.509 public key certificates [7]
ii) the LDAP schema for X.509 attribute certificates (this document)
iii) the LDAP schema for X.509 CRLs [8]

Schema definitions are provided using LDAPv3 description formats from RFC2252
[3]. Definitions provided here are formatted (line wrapped) for readability.
The specifications use the augmented Backus-Naur Form (ABNF) as described in
RFC2234 [4].

2. DIT Structure and Naming

If the schema presented in this document is used to store information about ACs
in an LDAP directory, each AC SHOULD be stored as a direct subordinate of the AC
holder's entry. These entries SHOULD be named using either the x509ACNameForm
i.e. by a multi-valued RDN formed by the AC issuer and serial number, or by the
x509ACAltNameForm i.e. by a single valued RDN formed by concatenating the AC
issuer and serial number, as these are the only ways to enforce unique RDNs
under the holder's entry. Exceptionally, if it can be guaranteed that only ACs
from a single issuer will be stored under the holder's entry, the
x509ACserialNumberNameForm MAY be used, i.e. the single valued RDN formed from
the AC serial number.

 (1.2.826.0.1.3344810.1.3.3
 NAME 'x509ACNameForm'
 OC x509AC
 MUST (x509serialNumber $ x509issuer))

 (1.2.826.0.1.3344810.1.3.4
 NAME 'x509ACAltNameForm'
 OC x509AC
 MUST (x509issuerSerial))

 (1.2.826.0.1.3344810.1.3.5
 NAME 'x509ACserialNumberNameForm'
 OC x509AC
 MUST (x509serialNumber))

The following attribute description describes the attribute used to hold the
alternative RDN name form.

 (1.2.826.0.1.3344810.1.1.60

 61

 NAME 'x509issuerSerial'
 DESC 'Used to hold the RDN of a certificate entry, formed by
 concatenating the AC serial number and issuer fields '
 EQUALITY distinguishedNameMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
 SINGLE-VALUE)

When encoding DNs that contain an x509issuer field, the string representation
must be made according to [13]. These strings contain RFC2253 special
characters and must therefore be escaped. For example, the issuer name in a
certificate may be:

 x509issuer: OU=VeriSign Trust Network,OU=(c) 1998 VeriSign Inc. -
 For authorized use only,OU=Class 1 Public Primary Certification Au
 thority - G2,O=VeriSign Inc.,C=US

When used in the x509issuerSerial attribute of a DN, this may appear as:

 dn: x509issuerSerial=123456\,OU\=VeriSign Trust Network \,OU
 \=(c) 1998 VeriSign Inc. - For authorized use only\,OU\=Class 1 Public
 Primary Certification Authority - G2\,O\=VeriSign Inc.\2cC\3dUS

3. X.509 Schema Object Classes

The object classes have been designed to form a logical set and be extensible in
an orderly way as new PKC/CRL/AC extensions are defined. The methodology is as
follows. Every X.509 entry (for a PKC, CRL or AC) is of the x509base abstract
object class. There is then an additional abstract object class for each,
derived from x509base, which holds the attributes extracted from the basic
PKC/AC/CRL ASN.1 structure (excluding all extensions). Further, there is an
auxiliary object class for the extensions defined in X.509 [6], and an
additional auxiliary object class (if needed) for extensions defined in existing
Internet RFCs. As new extensions are defined, then new auxiliary object classes
and attributes will need to be defined to cater for the attributes to be
extracted from these. Finally there are several structural object classes for
each, which allow the X.509 DER encoded attribute to be stored in the entry.

The X.509 base object class is defined in [8].

 3.1 X509 AC object class

The X.509AC abstract object class is used to hold the attributes extracted from
the basic fields of an attribute certificate. The X.509 AC object class is the
abstract object class from which the structural object classes for
attributeCertificate entries and AA certificate entries are derived.

(1.2.826.0.1.3344810.1.0.16
 NAME 'x509AC'
 SUP x509base
 ABSTRACT

 62

 MUST (x509version $
 x509serialNumber $
 x509signatureAlgorithm $
 x509issuer $
 x509validityNotBefore $
 x509validityNotAfter)

 MAY (x509ACHolderPKCSerialNumber $
 x509ACHolderPKCissuerDN $
 x509ACHolderRfc822Name $
 x509ACHolderDNSName $
 x509ACHolderDN $
 x509ACHolderURI $
 x509ACHolderIPAddress $
 x509ACHolderRegisteredID $
 x509authorityCertIssuer $
 x509authorityCertSerialNumber $
 x509authorityKeyIdentifier $
 x509ACObjectDigest $
 x509ACDigestAlgorithm $
 x509ACDigestedObjectType $
 x509issuerSerial))

The definition of x509base can be found in [7].

 3.2 X.509 attribute certificate object class

This structural object class is for entries of attribute certificates belonging
to holders.

 (1.2.826.0.1.3344810.1.0.17
 NAME 'x509attributeCertificate'
 SUP x509AC
 MUST attributeCertificateAttribute)

The attributeCertificateAttribute is defined in [10].

 3.3 X.509 AA certificate object class

This structural object class is for entries of attribute certificates belonging
to Attribute Authorities.

 (1.2.826.0.1.3344810.1.0.18
 NAME 'x509aACertificate'
 SUP x509AC
 MUST aACertificate)

The aACertificate attribute is defined in [10].

 3.4 Embedded attributes

 63

The x509AC object class does not contain the attributes embedded in the
attribute certificate, since these can be attributes of any type. Therefore the
LDAP entry created to hold the AC should also be of the auxiliary object classes
appropriate for the attributes embedded in the AC. One pragmatic solution to
this is to make the entry of object class extensibleObject [3].

 3.5 X.509 AC extensions auxiliary object class

The x509ACext auxiliary object class is used to hold the attributes extracted
from the AC extensions defined in the X.509 standard [6] and profiled in [5].

Note. If an AC holds additional extensions to these, then another auxiliary
object class and supporting attributes will need to be defined.

(1.2.826.0.1.3344810.1.0.22
 NAME 'x509ACext'
 AUXILIARY
 MAY (x509issuerRfc822Name $
 x509issuerDNSName $
 x509issuerURI $
 x509issuerIPAddress $
 x509issuerRegisteredID $
 x509authorityCertIssuer $
 x509authorityCertSerialNumber $
 x509authorityKeyIdentifier $
 x509ACAuditID $
 x509ACTargetRfc822Name $
 x509ACTargetDNSName $
 x509ACTargetDN $
 x509ACTargetURI $
 x509ACTargetIPAddress $
 x509ACTargetRegisteredID $
 x509ACTargetGroupRfc822Name $
 x509ACTargetGroupDNSName $
 x509ACTargetGroupDN $
 x509ACTargetGroupURI $
 x509ACTargetGroupIPAddress $
 x509ACTargetGroupRegisteredID $
 x509DPRfc822Name $
 x509DPDNSName $
 x509DPDN $
 x509DPURI $
 x509DPIPAddress $
 x509DPRegisteredID $
 x509DPrelativeToIssuer $
 x509DPissuerRfc822Name $
 x509DPissuerDNSName $
 x509DPissuerDN $
 x509DPissuerURI $
 x509DPissuerIPAddress $
 x509DPissuerRegisteredID $

 64

 x509DPReasonCodes $
 x509ACNoRevocation))

4. Common X.509 Attribute Types

The following attribute types defined in [7] are used to hold the corresponding
fields of ACs:

 - x509serialNumber - used to hold the serial number of the AC
 - x509version - used to hold the version of the AC
 - x509signatureAlgorithm - used to hold the OID of the algorithm used to
 sign the CRL
 - x509issuer - used to hold the DN of the AC issuer
 - x509validityNotBefore - used to hold the not before validity time of the
 AC (note that only the Generalized Time format is permitted)
 - x509validityNotAfter - used to hold the not after validity time of the
 AC (note that only the Generalized Time format is permitted)
 - x509authorityCertIssuer - used in conjunction with
 x509authorityCertSerialNumber to identify the public key certificate of
 the AC issuer
 - x509authorityCertSerialNumber - used in conjunction with
 x509authorityCertIssuer to identify the public key certificate of the AC
 issuer
 - x509issuerRfc822Name - used to hold the email address of the AC issuer
 - x509issuerDNSName - used to hold the DNS name of the AC issuer
 - x509issuerURI - used to hold a URI for the AC issuer
 - x509issuerIPAddress - used to hold the IP address of the AC issuer
 - x509issuerRegisteredID - used to hold a registered OID of the AC issuer
 - x509authorityKeyIdentifier - used to hold the identifier of the public
 key used to sign the AC, taken from the attribute cert issuer object
 digest field

5. Attribute Types for AC Specific Fields

The following attribute types may be used to store basic fields of an AC. The
following basic fields are supported:
 - x509ACHolderPKCSerialNumber and x509ACHolderPKCissuerDN - used to identify
 the holder via their public key certificate
 - x509ACHolderRfc822Name - identifies the holder via their email address
 - x509ACHolderDNSName - identifies the holder via their DNS name
 - x509ACHolderDN - identifies the holder via their DN
 - x509ACHolderURI - identifies the holder via their URI
 - x509ACHolderIPAddress - identifies the holder via their IP address
 - x509ACHolderRegisteredID - identifies the holder via a registered OID
 - x509ACObjectDigest, x509ACDigestAlgorithm and x509ACDigestedObjectType -
 identifies the holder via a hash of information directly associated with
 the holder

 5.1 AC holder PKC

The x509ACHolderPKCSerialNumber and x509ACHolderPKCissuerDN attributes are to

 65

hold the contents of the holder base certificate ID fields, in order to identify
the holder via their public key certificate

 5.1.1 AC holder PKC serial number

 (1.2.826.0.1.3344810.1.1.61
 NAME 'x509ACHolderPKCSerialNumber'
 DESC 'The serial number of the PKC of the AC holder,
 see RFC3281 4.2.2'
 EQUALITY integerMatch
 ORDERING integerOrderingMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
 SINGLE-VALUE)

 5.1.2 AC holder PKC issuer DN

 (1.2.826.0.1.3344810.1.1.62
 NAME 'x509ACHolderPKCissuerDN'
 DESC 'Distinguished name of the issuer of the PKC belonging to the
 AC holder, see RFC3281 4.2.2'
 EQUALITY distinguishedNameMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12)

 5.2 AC Holder general names

The following attributes are used to hold the alternative forms of the general
name of the holder. Separate attribute types are defined for all choices of the
ASN.1 type "GeneralName" except for "otherName", "x400Address" and
"ediPartyName".

 5.2.1 Holder RFC 822 name

 (1.2.826.0.1.3344810.1.1.63
 NAME 'x509ACHolderRfc822Name'
 DESC 'Internet electronic mail address of the AC holder,
 see RFC3281 4.2.2'
 EQUALITY caseIgnoreIA5Match
 SUBSTR caseIgnoreIA5SubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

Values of this attribute must be encoded according to the syntax given in RFC
822 [11].

 5.2.2 Holder DNS name

 (1.2.826.0.1.3344810.1.1.64
 NAME 'x509ACHolderDNSName'
 DESC 'Internet domain name of the AC Holder, see
 RFC3281 4.2.2'
 EQUALITY caseIgnoreIA5Match
 SUBSTR caseIgnoreIA5SubstringsMatch

 66

 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

Values of this attribute must be encoded as Internet domain names in accordance
with RFC1035 [12].

 5.2.3 Holder directory name

 (1.2.826.0.1.3344810.1.1.65
 NAME 'x509ACHolderDN'
 DESC 'Distinguished name of the AC Holder, see
 RFC3281 4.2.2'
 EQUALITY distinguishedNameMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12)

Values of this attribute type must be encoded according to the syntax given in
RFC2253 [13].

 5.2.4 Holder uniform resource identifier

 (1.2.826.0.1.3344810.1.1.66
 NAME 'x509ACHolderURI'
 DESC 'Uniform Resource Identifier of the AC Holder,
 see RFC3281 4.2.2'
 EQUALITY caseExactIA5Match
 SUBSTR caseExactIA5SubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

Values of this attribute must be encoded according to the syntax given in
RFC2396 [14].

 5.2.5 Holder IP address

 (1.2.826.0.1.3344810.1.1.67
 NAME 'x509ACHolderIPAddress'
 DESC 'Internet Protocol address of the AC Holder, see
 RFC3281 4.2.2'
 EQUALITY caseIgnoreIA5Match
 SUBSTR caseIgnoreIA5SubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

Values of this attribute type must be stored in the syntax given in Appendix B
of RFC2373 [16].

 5.2.6 Holder registered ID

 (1.2.826.0.1.3344810.1.1.68
 NAME 'x509ACHolderRegisteredID'
 DESC 'Any registered OID of the AC holder, see
 RFC3281 4.2.2'
 EQUALITY objectIdentifierMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.38)

 67

registeredID is an identifier of any registered object assigned in accordance
with ITU-T Rec. X.660. [17]

 5.3 AC object digest

x509ACObjectDigest, x509ACDigestAlgorithm and x509ACDigestedObjectType are used
to hold the contents of the holder object digest info fields. They are used to
identify the holder via a hash of information directly associated with the
holder.

 5.3.1 Object digest

 (1.2.826.0.1.3344810.1.1.69
 NAME 'x509ACObjectDigest'
 DESC 'Holds the hash value of the object identified by
 x509ACDigestedObjectType, see RFC 3281, section 7.3'
 EQUALITY bitStringMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.6
 SINGLE-VALUE)

 5.3.2 Object digest algorithm

 (1.2.826.0.1.3344810.1.1.70
 NAME 'x509ACDigestAlgorithm'
 DESC 'OID of the hashing algorithm used to create the
 Object digest, see RFC3281, section 7.3'
 EQUALITY objectIdentifierMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.38
 SINGLE-VALUE)

 5.3.3 Object type

 (1.2.826.0.1.3344810.1.1.71
 NAME 'x509ACDigestedObjectType'
 DESC 'Type of object being digested, see RFC3281, section 7.3'
 EQUALITY integerMatch
 ORDERING integerOrderingMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
 SINGLE-VALUE)

6. Attributes for Selected AC Extensions

In line with the AC profile RFC 3281 [5], the following AC extensions are
supported:
 - Audit Identity (defined here)
 - AC targets (defined here)
 - Authority Key Identifier (defined in [7])
 - Authority Information Access (defined in [7])
 - CRL distribution points (defined here)

 68

 - No revocation (defined here)

(Note. The CRL distribution point attributes defined in [7] were inadequate for
our needs)

6.1 Audit identity

This attribute may be used to store the sequence number of the CRL.

 (1.2.826.0.1.3344810.1.1.72
 NAME 'x509ACAuditID'
 DESC 'Identity of holder used in audit trails, see RFC3281 4.3.1'
 EQUALITY octetStringMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.40
 SINGLE-VALUE)

6.2 AC targets

ACs can be targeted at specific objects, or groups of objects. Objects and
groups of objects are identified by their general names. Separate sets of
attributes are specified for individual targets and groups of targets. Attribute
types are defined for all choices of the ASN.1 type "GeneralName" except for
"otherName", "x400Address" and "ediPartyName".

 6.2.1 Target RFC 822 name

 (1.2.826.0.1.3344810.1.1.73
 NAME 'x509ACTargetRfc822Name'
 DESC 'Internet electronic mail address of the ACs Target,
 see RFC3281 4.3.2'
 EQUALITY caseIgnoreIA5Match
 SUBSTR caseIgnoreIA5SubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

Values of this attribute must be encoded according to the syntax given in RFC
822 [11].

 6.2.2 Target DNS name

 (1.2.826.0.1.3344810.1.1.74
 NAME 'x509ACTargetDNSName'
 DESC 'Internet domain name of the ACs Target, see
 RFC3281 4.3.2'
 EQUALITY caseIgnoreIA5Match
 SUBSTR caseIgnoreIA5SubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

Values of this attribute must be encoded as Internet domain names in accordance
with RFC1035 [12].

 6.2.3 Target directory name

 69

 (1.2.826.0.1.3344810.1.1.75
 NAME 'x509ACTargetDN'
 DESC 'Distinguished name of the ACs Target, see
 RFC3281 4.3.2'
 EQUALITY distinguishedNameMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12)

Values of this attribute type must be encoded according to the syntax given in
RFC2253 [13].

 6.2.4 Target uniform resource identifier

 (1.2.826.0.1.3344810.1.1.76
 NAME 'x509ACTargetURI'
 DESC 'Uniform Resource Identifier of the ACs Target,
 see RFC3281 4.3.2'
 EQUALITY caseExactIA5Match
 SUBSTR caseExactIA5SubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

Values of this attribute must be encoded according to the syntax given in
RFC2396 [14].

 6.2.5 Target IP address

 (1.2.826.0.1.3344810.1.1.77
 NAME 'x509ACTargetIPAddress'
 DESC 'Internet Protocol address of the ACs Target, see
 RFC3281 4.3.2'
 EQUALITY caseIgnoreIA5Match
 SUBSTR caseIgnoreIA5SubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

Values of this attribute type must be stored in the syntax given in Appendix B
of RFC2373 [16].

 6.2.6 Target registered ID

 (1.2.826.0.1.3344810.1.1.78
 NAME 'x509ACTargetRegisteredID'
 DESC 'Any registered OID of the ACs Target, see
 RFC3281 4.3.2'
 EQUALITY objectIdentifierMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.38)

registeredID is an identifier of any registered object assigned in accordance
with ITU-T Rec. X.660. [17]

 6.2.7 Target group RFC 822 name

 70

 (1.2.826.0.1.3344810.1.1.79
 NAME 'x509ACTargetGroupRfc822Name'
 DESC 'Internet electronic mail address of the ACs Target group
 see RFC3281 4.3.2'
 EQUALITY caseIgnoreIA5Match
 SUBSTR caseIgnoreIA5SubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

Values of this attribute must be encoded according to the syntax given in RFC
822 [11].

 6.2.8 Target group DNS name

 (1.2.826.0.1.3344810.1.1.80
 NAME 'x509ACTargetGroupDNSName'
 DESC 'Internet domain name of the ACs Target group, see
 RFC3281 4.3.2'
 EQUALITY caseIgnoreIA5Match
 SUBSTR caseIgnoreIA5SubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

Values of this attribute must be encoded as Internet domain names in accordance
with RFC1035 [12].

 6.2.9 Target group directory name

 (1.2.826.0.1.3344810.1.1.81
 NAME 'x509ACTargetGroupDN'
 DESC 'Distinguished name of the AC's Target group, see
 RFC3281 4.3.2'
 EQUALITY distinguishedNameMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12)

Values of this attribute type must be encoded according to the syntax given in
RFC2253 [13].

 6.2.10 Target group uniform resource identifier

 (1.2.826.0.1.3344810.1.1.82
 NAME 'x509ACTargetGroupURI'
 DESC 'Uniform Resource Identifier of the AC's Target group
 see RFC3281 4.3.2'
 EQUALITY caseExactIA5Match
 SUBSTR caseExactIA5SubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

Values of this attribute must be encoded according to the syntax given in
RFC2396 [14].

 6.2.11 Target group IP address

 71

 (1.2.826.0.1.3344810.1.1.83
 NAME 'x509ACTargetGroupIPAddress'
 DESC 'Internet Protocol address of the ACs Target group, see
 RFC3281 4.3.2'
 EQUALITY caseIgnoreIA5Match
 SUBSTR caseIgnoreIA5SubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

Values of this attribute type must be stored in the syntax given in Appendix B
of RFC2373 [16].

 6.2.12 Target group registered ID

 (1.2.826.0.1.3344810.1.1.84
 NAME 'x509ACTargetGroupRegisteredID'
 DESC 'Any registered OID of the ACs Target group, see
 RFC3281 4.3.2'
 EQUALITY objectIdentifierMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.38)

registeredID is an identifier of any registered object assigned in accordance
with ITU-T Rec. X.660. [17]

6.3 No revocation

 (1.2.826.0.1.3344810.1.1.85
 NAME 'x509ACNoRevocation'
 DESC 'If true, the AC will never be revoked, see
 RFC3281 section 4.3.6'
 EQUALITY booleanMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.7)

6.4 CRL distribution points

The CRL distribution point extension indicates the locations where CRLs will be
published for this AC. It comprises the general name of the DP, plus optionally
the general name of the CRL issuer (if different from the AC issuer) plus the
reason codes that will be published at this DP. Separate attribute types are
defined for all choices of the ASN.1 type "GeneralName" except for "otherName",
"x400Address" and "ediPartyName". Note that because there can be multiple
distribution points, the multi-valued attributes defined here will not be able
to link each DP with its corresponding reasons and issuer.

If

 6.4.1 Distribution point RFC 822 name

 (1.2.826.0.1.3344810.1.1.86
 NAME 'x509DPRfc822Name'
 DESC 'Internet electronic mail address of the

 72

 distribution point, see RFC3280 section 4.2.1.14'
 EQUALITY caseIgnoreIA5Match
 SUBSTR caseIgnoreIA5SubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

Values of this attribute must be encoded according to the syntax given in RFC
822 [11].

 6.4.2 Distribution point DNS name

 (1.2.826.0.1.3344810.1.1.87
 NAME 'x509DPDNSName'
 DESC 'Internet domain name of the distribution point, see
 RFC3280 section 4.2.1.14'
 EQUALITY caseIgnoreIA5Match
 SUBSTR caseIgnoreIA5SubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

Values of this attribute must be encoded as Internet domain names in accordance
with RFC1035 [12].

 6.4.3 Distribution point directory name

 (1.2.826.0.1.3344810.1.1.88
 NAME 'x509DPDN'
 DESC 'Distinguished name of the distribution point, see
 RFC3280 section 4.2.1.14'
 EQUALITY distinguishedNameMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12)

Values of this attribute type must be encoded according to the syntax given in
RFC2253 [13].

 6.4.4 Distribution point uniform resource identifier

 (1.2.826.0.1.3344810.1.1.89
 NAME 'x509DPURI'
 DESC 'Uniform Resource Identifier of the distribution
 point, see RFC3280 section 4.2.1.14'
 EQUALITY caseExactIA5Match
 SUBSTR caseExactIA5SubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

Values of this attribute must be encoded according to the syntax given in
RFC2396 [14].

 6.4.5 Distribution point IP address

 (1.2.826.0.1.3344810.1.1.90
 NAME 'x509DPIPAddress'
 DESC 'Internet Protocol address of the distribution point, see

 73

 RFC3280 section 4.2.1.14'
 EQUALITY caseIgnoreIA5Match
 SUBSTR caseIgnoreIA5SubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

Values of this attribute type must be stored in the syntax given in Appendix B
of RFC2373 [16].

 6.4.6 Distribution point registered ID

 (1.2.826.0.1.3344810.1.1.91
 NAME 'x509DPRegisteredID'
 DESC 'Any registered OID of the distribution point, see
 RFC3280 section 4.2.1.14'
 EQUALITY objectIdentifierMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.38)

registeredID is an identifier of any registered object assigned in accordance
with ITU-T Rec. X.660. [17]

 6.4.7 Distribution point name relative to CRL issuer

 (1.2.826.0.1.3344810.1.1.92
 NAME 'x509DPrelativeToIssuer'
 DESC 'RDN of the distribution point, relative to the issuer, see
 RFC3280 section 4.2.1.14'
 EQUALITY distinguishedNameMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12)

Values of this attribute type must be encoded according to the syntax given in
RFC2253 [13].

 6.4.8 Distribution point CRL issuer RFC 822 name

 (1.2.826.0.1.3344810.1.1.93
 NAME 'x509DPissuerRfc822Name'
 DESC 'Internet electronic mail address of the
 distribution point CRL issuer, see RFC3280 section 4.2.1.14'
 EQUALITY caseIgnoreIA5Match
 SUBSTR caseIgnoreIA5SubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

Values of this attribute must be encoded according to the syntax given in RFC
822 [11].

 6.4.9 Distribution point CRL issuer DNS name

 (1.2.826.0.1.3344810.1.1.94
 NAME 'x509DPissuerDNSName'
 DESC 'Internet domain name of the distribution point CRL issuer,
 see RFC3280 section 4.2.1.14'

 74

 EQUALITY caseIgnoreIA5Match
 SUBSTR caseIgnoreIA5SubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

Values of this attribute must be encoded as Internet domain names in accordance
with RFC1035 [12].

 6.4.10 Distribution point CRL issuer directory name

 (1.2.826.0.1.3344810.1.1.95
 NAME 'x509DPissuerDN'
 DESC 'Distinguished name of the distribution point CRL issuer,
 see RFC3280 section 4.2.1.14'
 EQUALITY distinguishedNameMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12)

Values of this attribute type must be encoded according to the syntax given in
RFC2253 [13].

 6.4.11 Distribution point CRL issuer uniform resource identifier

 (1.2.826.0.1.3344810.1.1.96
 NAME 'x509DPissuerURI'
 DESC 'Uniform Resource Identifier of the distribution
 point CRL issuer, see RFC3280 section 4.2.1.14'
 EQUALITY caseExactIA5Match
 SUBSTR caseExactIA5SubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

Values of this attribute must be encoded according to the syntax given in
RFC2396 [14].

 6.4.12 Distribution point CRL issuer IP address

 (1.2.826.0.1.3344810.1.1.97
 NAME 'x509DPissuerIPAddress'
 DESC 'Internet Protocol address of the distribution point CRL
 issuer, see RFC3280 section 4.2.1.14'
 EQUALITY caseIgnoreIA5Match
 SUBSTR caseIgnoreIA5SubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

Values of this attribute type must be stored in the syntax given in Appendix B
of RFC2373 [16].

 6.4.13 Distribution point CRL issuer registered ID

 (1.2.826.0.1.3344810.1.1.98
 NAME 'x509DPissuerRegisteredID'
 DESC 'Any registered OID of the distribution point CRL issuer,
 see RFC3280 section 4.2.1.14'

 75

 EQUALITY objectIdentifierMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.38)

registeredID is an identifier of any registered object assigned in accordance
with ITU-T Rec. X.660. [17]

 6.4.14 Distribution point reason codes

This attribute is used to indicate the reason codes associated with the various
DPs.

 (1.2.826.0.1.3344810.1.1.99
 NAME 'x509DPReasonCodes'
 DESC 'The reason codes used by a DP, see
 RFC3280 section 4.2.1.14'
 EQUALITY bitStringMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.6)

7. Security Considerations

This [Internet Draft/Standard] describes the subschema for the storage
and matching of PKI attributes derived from CRLs. It does not address the
protocol for the storage and retrieval of this information.

LDAP servers SHOULD use authentication and access control mechanisms to protect
the information during its storage and retrieval.

8. IANA Considerations

This document uses the OID node 1.2.826.0.1.3344810 to identify the LDAP schema
elements described here. This OID is assigned to TrueTrust Ltd, under its BSI
assigned English/Welsh Registered Company number [18].

9. References

Normative

[1] Bradner, S. The Internet Standards Process -- Revision 3. RFC 2026 October
1996.

[2] S.Bradner. "Key words for use in RFCs to Indicate Requirement Levels", RFC
2119, March 1997.

[3] Wahl, M., Coulbeck, A., Howes, T. and S. Kille, "Lightweight Directory
Access Protocol (v3): Attribute Syntax Definitions", RFC 2252, December 1997.

[4] Crocker, D. and P. Overell, "Augmented BNF for Syntax Specifications: ABNF",
RFC 2234, November 1997.

 76

[5] Farrell, S., Housley, R. "An Internet Attribute Certificate Profile for
Authorization", RFC 3281, April 2002.

[6] ITU, "Information Technology - Open Systems Interconnection - The
Directory: Public-key and attribute certificate frameworks", ITU-T
Recommendation X.509, March 2000.

[7] Gietz, P., Klasen, N. "Internet X.509 Public Key Infrastructure Lightweight
Directory Access Protocol Schema for X.509 Certificates",
<draft-ietf-pkix-ldap-pkc-schema-00.txt>, June 2004

[8] Chadwick, D.W., Sahalayev, M. V. "Internet X.509 Public Key Infrastructure
LDAP Schema for X.509 CRLs", <draft-ietf-pkix-ldap-crl-schema-01.txt>, June 2003

[10] Chadwick, D.W., Legg, S. "Internet X.509 Public Key Infrastructure - LDAP
Schema for PMIs" <draft-ietf-pkix-ldap-pmi-schema-00.txt>, July 2002

[11] Crocker, D., "Standard for the format of ARPA Internet text messages", STD
11, RFC 822, August 1982.

[12] Mockapetris, P., "Domain names - implementation and specification", STD 13,
RFC 1035, November 1987.

[13] Wahl, M., Kille, S. and T. Howes, "Lightweight Directory Access Protocol
(v3): UTF-8 String Representation of Distinguished Names", RFC 2253, December
1997.

[14] Berners-Lee, T., Fielding, R. and L. Masinter, "Uniform Resource
Identifiers (URI): Generic Syntax", RFC 2396, August 1998.

[15] Hodges, J. and RL. Morgan, "Lightweight Directory Access Protocol (v3):
Technical Specification", RFC 3377, September 2002.

[16] Hinden, R. and S. Deering, "IP Version 6 Addressing Architecture", RFC
2373, July 1998.

[17] CCITT Recommendation X.660 (1992) | ISO/IEC 9834-1:1993, Information
technology - Open Systems Interconnection - Procedures for the operation of OSI
Registration Authorities: General procedures.

[18] BRITISH STANDARD BS 7453 Part 1. Procedures for UK Registration for Open
System Standards Part 1: Procedures for the UK Name Registration Authority.

[21] Bradner, S., "IETF Rights in Contributions", BCP 78, RFC3667, February
2004.

[22] Bradner, S., Ed., "Intellectual Property Rights in IETF Technology", BCP
79, RFC 3668, February 2004.

 77

Informative

[9] Chadwick, D.W., Legg, S. "Internet X.509 Public Key Infrastructure - LDAP
Schema for PKIs " <draft-ietf-pkix-ldap-pki-schema-00.txt>, July 2002

[19] S. Legg. "Lightweight Directory Access Protocol (LDAP) and X.500 Component
Matching Rules" RFC 3687, February 2004

[20] J. Allen, M. Mealling. "The Architecture of the Common Indexing Protocol
(CIP)". RFC 2651. August 1999.

10. Intellectual Property Notice

The IETF takes no position regarding the validity or scope of any Intellectual
Property Rights or other rights that might be claimed to pertain to the
implementation or use of the technology described in this document or the extent
to which any license under such rights might or might not be available; nor does
it represent that it has made any independent effort to identify any such
rights. Information on the procedures with respect to rights in RFC documents
can be found in BCP 78 [21] and BCP 79 [22].

Copies of IPR disclosures made to the IETF Secretariat and any assurances of
licenses to be made available, or the result of an attempt made to obtain a
general license or permission for the use of such proprietary rights by
implementers or users of this specification can be obtained from the IETF on-
line IPR repository at http://www.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any copyrights,
patents or patent applications, or other proprietary rights that may cover
technology that may be required to implement this standard. Please address the
information to the IETF at ietf-ipr@ietf.org.

11. Acknowledgments

The authors would like to thank Peter Gietz for his help and co-operation, and
in particular his willingness to align [7] with this document.

The authors would also like to thank TERENA, CESNET, SURFnet, UNINETT, RedIRIS
and SWITCH, who jointly partially funded this work, and without whose support
this work would not have been possible.

12. Copyright

Copyright (C) The Internet Society (2004). This document is subject
to the rights, licenses and restrictions contained in BCP 78, and
except as set forth therein, the authors retain all their rights.

This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it

 78

or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing
the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of
developing Internet standards in which case the procedures for
copyrights defined in the Internet Standards process must be
followed, or as required to translate it into languages other than
English.

The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.

"This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTORS, THE ORGANIZATION THEY REPRESENT
OR ARE SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE."
"Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that other
groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than a "work in progress."

The list of current Internet-Drafts can be accessed at
http://www.ietf.org/1id-abstracts.html

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html"

13. Authors' Addresses

David Chadwick, Mikhail Sahalayev
IS Institute
University of Salford
Salford
England
M5 4WT

Email: d.w.chadwick@salford.ac.uk
 M.Sahalayev@pgr.salford.ac.uk

14. Changes

 79

Changes from <draft-ietf-pkix-ldap-ac-schema-00.txt>

1. Have added a section about attributes embedded in ACs.
2. Have aligned schema with <draft-klasen-ldap-x509certificate-schema-02.txt>
3. Have altered object class structure to introduce auxiliary object classes for
certificate extensions
4. Have adjusted upper/lower case of components of attribute type names to be
consistent
5. Have changed matching rules of x509ACTargetGroupDNSName to be IA5 matching
rules
6. Minor editorial corrections
7. Changed from Standards Track to Informational after discussions with area and
WG leaders.
8. Have added an IANA considerations section and Acknowledgment section

 80

Appendix 7. LDAP Schema for X.509 CRLs
INTERNET-DRAFT D. W. Chadwick
PKIX WG M. V. Sahalayev
Intended Category: Informational University of Salford
Expires on 28 December 2004 28 June 2004

 Internet X.509 Public Key Infrastructure
 LDAP Schema for X.509 CRLs
 <draft-ietf-pkix-ldap-crl-schema-02.txt>

Copyright (C) The Internet Society (2003). All Rights Reserved.

STATUS OF THIS MEMO

This document is an Internet-Draft and is in full conformance with
all the provisions of Section 10 of RFC2026 [1].

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that other
groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Comments and suggestions on this document are encouraged. Comments on this
document should be sent to the PKIX working group discussion list
<ietf-pkix@imc.org> or directly to the authors.

ABSTRACT

This document describes an LDAP schema for X.509 CRLs. Each CRL is broken down
into a set of attribute types. These attributes can then be stored in a CRL
entry, or set of entries. Object classes are defined for these CRL entries. Each
attribute type uses an existing LDAP syntax, so that no new matching rules need
to be defined.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [2].

 81

 1. Introduction

It currently isn't possible to search LDAP servers for X.509 [6] attributes
(public key certificates, CRLs etc.) as no matching rules have been defined for
them. A couple of Internet Drafts [9,10] have been specified, but implementation
of them is complex. Component matching [19] defines a mechanism for matching
against complex syntaxes, by defining generic matching rules that can match
against any user selected component parts in an attribute value of any
arbitrarily complex attribute syntax. This might prove to be the proper way to
solve LDAP search problems in the longer term, but it will take a long time
until such ASN.1 based mechanisms are implemented in all LDAP servers and
clients. Even when this has happened the mechanism proposed in this document
will still be useful to some applications such as CIP [20].

A simple and easy to implement mechanism is needed today to search for X.509
attributes.

Rather than search for an X.509 attribute in an entry, it suggests the directory
administrative user creates an entry (in the case of pubic key and attribute
certificates) or a subtree (in the case of CRLs) from the X.509 attribute. The
attributes of these new entries will be created from fields of the X.509
attribute (e.g. the issuer field), and if these new attributes are defined using
existing LDAP syntaxes and matching rules, then it will be possible to use
existing LDAP server technology to search for fields in X.509 attributes.

This document is one of a set comprising:
i) the LDAP schema for X.509 public key certificates [7]
ii) the LDAP schema for X.509 attribute certificates [8]
iii) the LDAP schema for X.509 CRLs (this document)

Schema definitions are provided using LDAPv3 description formats from RFC2252
[3]. Definitions provided here are formatted (line wrapped) for readability.
The specifications use the augmented Backus-Naur Form (ABNF) as described in
RFC2234 [4].

 2. DIT Structure and Naming

If the schema presented in this document is used to store information about CRLs
in a directory, each CRL entry SHOULD be stored as a direct subordinate of the
CRL issuer's entry, unless a crlScope Extension or issuingDistributionPoint
Extension is present in the CRL. In the latter cases the CRL MUST be stored as
indicated in those extensions. The CRL entry is named using the
x509CRLThisUpdate attribute, using one of the following name forms:

 (1.2.826.0.1.3344810.1.3.0
 NAME 'x509CRLNameForm'
 OC x509CRL
 MUST x509CRLThisUpdate)

 (1.2.826.0.1.3344810.1.3.7

 82

 NAME 'x509ARLNameForm'
 OC x509CRL
 MUST x509CRLThisUpdate)

 (1.2.826.0.1.3344810.1.3.8
 NAME 'x509deltaRLNameForm'
 OC x509CRL
 MUST x509CRLThisUpdate)

x509CRLNameForm is used to name CRL entries.
x509ARLNameForm is used to name Authority Revocation List entries.
x509deltaRLNameForm is used to name delta CRL entries.

Subordinate to the entry for the CRL, the user MAY create an entry for each
revoked certificate. Each revoked certificate entry is named with the serial
number of the revoked certificate, unless the CRL is an indirect CRL, in which
case it is named with a combination of the serial number and issuer's DN i.e. a
multi-valued RDN. For those LDAP servers that do not support multi-valued RDNs,
an alternative name form is defined in which the serial number and issuer DN are
concatenated together into one attribute value. This is expressed in the
following name forms:

 (1.2.826.0.1.3344810.1.3.1
 NAME 'x509CRLentryNameForm'
 OC x509CRLentry
 MUST x509serial)

 (1.2.826.0.1.3344810.1.3.2
 NAME 'x509CRLindirectEntryNameForm'
 OC x509CRLentry
 MUST (x509serialNumber $ x509issuer))

 (1.2.826.0.1.3344810.1.3.6
 NAME 'x509CRLindirectEntryAltNameForm'
 OC x509AC
 MUST (x509issuerSerial))

When encoding DNs that contain an x509issuer field, the string representation
must be made according to [13]. These strings contain RFC2253 special
characters and must therefore be escaped. For example, the issuer name in a
certificate may be:

 x509issuer: OU=VeriSign Trust Network,OU=(c) 1998 VeriSign Inc. -
 For authorized use only,OU=Class 1 Public Primary Certification Au
 thority - G2,O=VeriSign Inc.,C=US

When used in the x509issuerSerial attribute of a DN, this may appear as:

 dn: x509issuerSerial=123456\,OU\=VeriSign Trust Network \,OU
 \=(c) 1998 VeriSign Inc. - For authorized use only\,OU\=Class 1 Public
 Primary Certification Authority - G2\,O\=VeriSign Inc.\2cC\3dUS

 83

 3. X.509 Schema Object Classes

The object classes have been designed to form a logical set and be extensible in
an orderly way as new PKC/CRL/AC extensions are defined. The methodology is as
follows. Every X.509 entry (for a PKC, CRL or AC) is of the x509base abstract
object class. There is then an additional abstract object class for each,
derived from x509base, which holds the attributes extracted from the basic
PKC/AC/CRL ASN.1 structure (excluding all extensions). Further, there is an
auxiliary object class for the extensions defined in X.509 [6], and an
additional auxiliary object class (if needed) for extensions defined in existing
Internet RFCs. As new extensions are defined, then new auxiliary object classes
and attributes will need to be defined to cater for the attributes to be
extracted from these. Finally there are several structural object classes for
each, which allow the X.509 DER encoded attribute to be stored in the entry.

 3.1 X509 base object class

The x509base object class is defined in [7].

 3.2 X.509 CRL object class

The x509CRL object class is the abstract object class used for storing the
searchable attributes extracted from the basic fields of a CRL (excluding
extensions). It is the superior of the revocation list structural object
classes.

 (1.2.826.0.1.3344810.1.0.14
 NAME 'x509CRL'
 SUP x509base
 ABSTRACT
 MUST (x509CRLThisUpdate $
 x509signatureAlgorithm $
 x509issuer)
 MAY (x509CRLNextUpdate))

 3.3 X509 CRL extensions object class

The x509CRLext auxiliary object class is used to hold the attributes extracted
from the extensions defined in the X.509 standard [6] and profiled in [5]. Note
that the freshest CRL extension is not included since this was originally
forbidden from appearing in CRLs by X.509.

Note. If a CRL holds additional extensions to these, then another auxiliary
object class and supporting attributes will need to be defined.

(1.2.826.0.1.3344810.1.0.23
 NAME 'x509CRLext'
 AUXILIARY

 84

 MAY (x509authorityKeyIdentifier $
 x509authorityCertIssuer $
 x509authorityCertSerialNumber $
 x509issuerRfc822Name $
 x509issuerDNSName $
 x509issuerDirectoryName $
 x509issuerUniformResourceIdentifier $
 x509issuerIPAddress $
 x509issuerRegisteredID $
 x509CRLNumber $
 x509CRLDPRfc822Name $
 x509CRLDPDNSName $
 x509CRLDPDN $
 x509CRLDPURI $
 x509CRLDPIPAddress $
 x509CRLDPRegisteredID $
 x509CRLDPOnlyUserCerts $
 x509CRLDPOnlyCACerts $
 x509CRLDPOnlySomeReasons $
 x509CRLDPOnlyAttCerts $
 x509CRLDPindirect $
 x509CRLDeltaIndicator))

 3.4 X.509 certificate revocation list object class

This object class is the structural object class used to hold certificate
revocation list entries.

 (1.2.826.0.1.3344810.1.0.19
 NAME 'x509certificateRevocationList'
 SUP x509CRL
 MUST certificateRevocationList)

 3.4 X.509 authority revocation list object class

This object class is the structural object class used to hold authority
revocation list entries.

 (1.2.826.0.1.3344810.1.0.20
 NAME 'x509authorityRevocationList'
 SUP x509CRL
 MUST authorityRevocationList)

 3.5 X.509 delta revocation list object class

This object class is the structural object class used to hold delta revocation
list entries.

 (1.2.826.0.1.3344810.1.0.21

 85

 NAME 'x509deltaRevocationList'
 SUP x509CRL
 MUST deltaRevocationList)

 3.6 X.509 revoked certificate object class

The x509CRLentry object class is the structural object class used for storing
revoked certificate entries.

 (1.2.826.0.1.3344810.1.0.15
 NAME 'x509CRLentry'
 SUP x509base
 MUST (x509serialNumber $
 x509CRLCertRevocationDate)
 MAY (x509CRLCertInvalidityDate $
 x509CRLCertReasonCode $
 x509CRLCertHoldInstructionCode $
 x509CRLCertIssuerRfc822Name $
 x509CRLCertIssuerDnsName $
 x509CRLCertIssuerDN $
 x509CRLCertIssuerURI $
 x509CRLCertIssuerIpAddress $
 x509CRLCertIssuerRegisteredID))

 4. Common X.509 Attribute Types

The following attribute types defined in [7] are used to hold the corresponding
fields of CRLs:

 - x509serialNumber - used to hold the serial number(s) of the revoked
 certifictate(s)
 - x509version - used to hold the version of the CRL
 - x509signatureAlgorithm - used to hold the OID of the algorithm used to
 sign the CRL
 - x509issuer - used to hold the DN of the CRL issuer
 - x509issuerRfc822Name - used to hold the email address of the CRL issuer
 - x509issuerDnsName - used to hold the DNS name of the CRL issuer
 - x509issuerDirectoryName - used to hold an alternative DN for the
 CRL issuer
 - x509issuerUniformResourceIdentifier - used to hold a URI for the
 CRL issuer
 - x509issuerIpAddress - used to hold the IP address of the CRL issuer
 - x509issuerRegisteredID - used to hold a registered OID of the CRL issuer
 - x509authorityKeyIdentifier - used to hold the identifier of the key used
 to sign the CRL
 - x509authorityCertIssuer - used in conjunction with
 x509authorityCertSerialNumber to identify the certificate of the issuer
 - x509authorityCertSerialNumber - used in conjunction with
 x509authorityCertIssuer to identify the certificate of the issuer

 5. Attribute Types for CRL Specific Fields

 86

The following attribute types may be used to store basic fields of a CRL. The
following basic fields are supported:
 - this update
 - next update

 5.1 This update

This attribute may be used to hold the thisUpdate field of the CRL.

 (1.2.826.0.1.3344810.1.1.37
 NAME 'x509CRLThisUpdate'
 DESC 'Date at which this revocation list was issued - see RFC3280 5.1.2.4'
 EQUALITY generalizedTimeMatch
 ORDERING generalizedTimeOrderingMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.24
 SINGLE-VALUE)

Note that the field in the CRL may be in UTC or GeneralizedTime format. If in
UTC format, the creator of this attribute MUST convert the UTC time into
GeneralisedTime format when creating the attribute value.

5.2 Next update

This attribute may be used to hold the nextUpdate field of the CRL.

 (1.2.826.0.1.3344810.1.1.38
 NAME 'x509CRLNextUpdate'
 DESC 'Date by which the next revocation list in this series
 will be issued, see - RFC3280 5.1.2.5'
 EQUALITY generalizedTimeMatch
 ORDERING generalizedTimeOrderingMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.24
 SINGLE-VALUE)

Note that the field in the CRL may be in UTC or GeneralizedTime format. If in
UTC format, the creator of this attribute MUST convert the UTC time into
GeneralisedTime format when creating the attribute value.

 6. Attributes for Selected CRL Extensions

In line with the CRL profile RFC 3280 [5], the following CRL extensions are
supported:
 - CRL Number (defined here)
 - Issuing Distribution Point (defined here)
 - Authority Key Identifier (defined in [7])
 - Issuer Alternative Name (defined in [7])
 - Delta CRL Indicator (defined here)

The following extension is not included:
 - freshest CRL (see 5.2.6 of RFC 3280 [5])

 87

6.1 CRL number extension

This attribute may be used to store the sequence number of the CRL.

 (1.2.826.0.1.3344810.1.1.102
 NAME 'x509CRLNumber'
 DESC 'sequence number of issued CRL - see RFC3280 5.2.3'
 EQUALITY integerMatch
 ORDERING integerOrderingMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
 SINGLE-VALUE)

6.2 Issuing distribution point

The issuing distribution point comprises the general name of the issuing CA,
plus some codes that indicate the contents of this CRL. Separate attribute types
are defined for all choices of the ASN.1 type "GeneralName" except for
"otherName", "x400Address" and "ediPartyName".

 6.2.1 Issuing distribution point RFC 822 name

 (1.2.826.0.1.3344810.1.1.48
 NAME 'x509CRLDPRfc822Name'
 DESC 'Internet electronic mail address of the issuing
 distribution point, see RFC3280 5.2.5'
 EQUALITY caseIgnoreIA5Match
 SUBSTR caseIgnoreIA5SubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

Values of this attribute must be encoded according to the syntax given in RFC
822 [11].

 6.2.2 Issuing distribution point DNS name

 (1.2.826.0.1.3344810.1.1.49
 NAME 'x509CRLDPDnsName'
 DESC 'Internet domain name of the issuing distribution point, see
 RFC3280 5.2.5'
 EQUALITY caseIgnoreIA5Match
 SUBSTR caseIgnoreIA5SubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

Values of this attribute must be encoded as Internet domain names in accordance
with RFC1035 [12].

 6.2.3 Issuing distribution point directory name

 (1.2.826.0.1.3344810.1.1.50
 NAME 'x509CRLDPDN'
 DESC 'Distinguished name of the issuing distribution point, see

 88

 RFC3280 5.2.5'
 EQUALITY distinguishedNameMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12)

Values of this attribute type must be encoded according to the syntax given in
RFC2253 [13].

 6.2.4 Issuing distribution point uniform resource identifier

 (1.2.826.0.1.3344810.1.1.51
 NAME 'x509CRLDPURI'
 DESC 'Uniform Resource Identifier of the issuing distribution
 point, see RFC3280 5.2.5'
 EQUALITY caseExactIA5Match
 SUBSTR caseExactIA5SubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

Values of this attribute must be encoded according to the syntax given in
RFC2396 [14].

 6.2.5 Issuing distribution point IP address

 (1.2.826.0.1.3344810.1.1.52
 NAME 'x509CRLDPIpAddress'
 DESC 'Internet Protocol address, of the issuing distribution point, see
 RFC3280 5.2.5'
 EQUALITY caseIgnoreIA5Match
 SUBSTR caseIgnoreIA5SubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

Values of this attribute type must be stored in the syntax given in Appendix B
of RFC2373 [16].

 6.2.6 Issuing distribution point registered ID

 (1.2.826.0.1.3344810.1.1.53
 NAME 'x509CRLDPRegisteredID'
 DESC 'Any registered OID of the certificate issuer, see
 RFC3280 5.2.5'
 EQUALITY objectIdentifierMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.38)

registeredID is an identifier of any registered object assigned in accordance
with ITU-T Rec. X.660. [17]

 6.2.7 Issuing distribution point only contains user certs

This attribute may be used to indicate if the CRL only contains revocations for
end-entity certificates.

 (1.2.826.0.1.3344810.1.1.54

 89

 NAME 'x509CRLDPOnlyUserCerts'
 DESC 'If true, the CRL only contains revocations for end-entity certs, see
 RFC3280 5.2.5'
 EQUALITY booleanMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.7)

 6.2.8 Issuing distribution point only contains CA certs

This attribute may be used to indicate if the CRL only contains revocations for
CA certificates.

 (1.2.826.0.1.3344810.1.1.55
 NAME 'x509CRLDPOnlyCACerts'
 DESC 'If true, the CRL only contains revocations for CA certs, see
 RFC3280 5.2.5'
 EQUALITY booleanMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.7)

 6.2.9 Issuing distribution point only contains some reasons

This attribute may be used to indicate if the CRL only contains some revocation
reason codes.

 (1.2.826.0.1.3344810.1.1.56
 NAME 'x509CRLDPOnlySomeReasons'
 DESC 'If true, the CRL only contains some revocation reason codes, see
 RFC3280 5.2.5'
 EQUALITY bitStringMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.6)

 6.2.10 Issuing distribution point only contains attribute certs

This attribute may be used to indicate if the CRL only contains revocations for
attribute certificates.

 (1.2.826.0.1.3344810.1.1.57
 NAME 'x509CRLDPOnlyAttCerts'
 DESC 'If true, the CRL only contains revocations for attribute certs, see
 RFC3280 5.2.5'
 EQUALITY booleanMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.7)

 6.2.11 Issuing distribution point is indirect

This attribute may be used to indicate if the CRL is an indirect CRL and holds
revocations of certificates issued by authorities other than the CRL issuer.

 (1.2.826.0.1.3344810.1.1.58
 NAME 'x509CRLDPindirect'
 DESC 'If true, the CRL is an indirect CRL, see
 RFC3280 5.2.5'

 90

 EQUALITY booleanMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.7)

6.3 Delta CRL Indicator

This attribute may be used to indicate if the CRL is a delta CRL.

 (1.2.826.0.1.3344810.1.1.59
 NAME 'x509CRLDeltaIndicator'
 DESC 'Indicates this is a delta CRL, and the value points to the
 sequence number of the issued base CRL to which this is a delta
 - see RFC3280 5.2.4'
 EQUALITY integerMatch
 ORDERING integerOrderingMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
 SINGLE-VALUE)

 7. Attributes for CRL Revoked Certificate Fields

The serial number attribute is as defined in [7].

7.1 Revocation date

This attribute may be used to hold the revocationDate field of a CRL entry.

 (1.2.826.0.1.3344810.1.1.39
 NAME 'x509CRLCertRevocationDate'
 DESC 'Date/time the CA actually revoked the certificate,
 see - RFC3280 5.1.2.6'
 EQUALITY generalizedTimeMatch
 ORDERING generalizedTimeOrderingMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.24
 SINGLE-VALUE)

Note that the field in the CRL may be in UTC or GeneralizedTime format. If in
UTC format, the creator of this attribute MUST convert the UTC time into
GeneralisedTime format when creating the attribute value.

 8. Attributes for Selected CRL Entry Extensions

In line with the CRL profile RFC 3280 [5], the following CRL entry extensions
are supported:
 - Invalidity date (defined here)
 - Certificate issuer (defined here)
 - Reason code (defined here)
 - Hold instruction code (defined here)

 8.1 Invalidity date extension

This attribute may be used to hold the invalidity date of a certificate.

 91

 (1.2.826.0.1.3344810.1.1.40
 NAME 'x509CRLCertInvalidityDate'
 DESC 'date at which it is known or suspected that the private
 key was compromised, see RFC3280 5.3.3'
 EQUALITY generalizedTimeMatch
 ORDERING generalizedTimeOrderingMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.24
 SINGLE-VALUE)

 8.2 Certificate issuer extension

The certificate issuer extension is used in indirect CRLs to identify the issuer
of the certificate that is revoked. Separate attribute types are defined for all
choices of the ASN.1 type "GeneralName" except for "otherName", "x400Address"
and "ediPartyName".

 8.2.1 Certificate issuer RFC 822 name

 (1.2.826.0.1.3344810.1.1.41
 NAME 'x509CRLCertIssuerRfc822Name'
 DESC 'Internet electronic mail address of the certificate issuer, see
 RFC3280 5.3.4'
 EQUALITY caseIgnoreIA5Match
 SUBSTR caseIgnoreIA5SubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

Values of this attribute must be encoded according to the syntax given in RFC
822 [11].

 8.2.2 Certificate issuer DNS name

 (1.2.826.0.1.3344810.1.1.42
 NAME 'x509CRLCertIssuerDnsName'
 DESC 'Internet domain name of the certificate issuer, see
 RFC3280 5.3.4'
 EQUALITY caseIgnoreIA5Match
 SUBSTR caseIgnoreIA5SubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

Values of this attribute must be encoded as Internet domain names in accordance
with RFC1035 [12].

 8.2.3 Certificate issuer directory name

 (1.2.826.0.1.3344810.1.1.43
 NAME 'x509CRLCertIssuerDN'
 DESC 'Distinguished name of the certificate issuer, see
 RFC3280 5.3.4'
 EQUALITY distinguishedNameMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12)

 92

Values of this attribute type must be encoded according to the syntax given in
RFC2253 [13].

 8.2.4 Certificate issuer uniform resource identifier

 (1.2.826.0.1.3344810.1.1.44
 NAME 'x509CRLCertIssuerURI'
 DESC 'Uniform Resource Identifier of the certificate issuer, see
 RFC3280 5.3.4'
 EQUALITY caseExactIA5Match
 SUBSTR caseExactIA5SubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

Values of this attribute must be encoded according to the syntax given in
RFC2396 [14].

 8.2.5 Certificate issuer IP address

 (1.2.826.0.1.3344810.1.1.45
 NAME 'x509CRLCertIssuerIpAddress'
 DESC 'Internet Protocol address, of the certificate issuer, see
 RFC3280 5.3.4'
 EQUALITY caseIgnoreIA5Match
 SUBSTR caseIgnoreIA5SubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

Values of this attribute type must be stored in the syntax given in Appendix B
of RFC2373 [16].

 8.2.6 Certificate issuer registered ID

 (1.2.826.0.1.3344810.1.1.46
 NAME 'x509CRLCertIssuerRegisteredID'
 DESC 'Any registered OID of the certificate issuer, see
 RFC3280 5.3.4'
 EQUALITY objectIdentifierMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.38)

registeredID is an identifier of any registered object assigned in accordance
with ITU-T Rec. X.660. [17]

 8.3 Revocation reason code

This field may be used to hold the coded reason for the revocation

 (1.2.826.0.1.3344810.1.1.47
 NAME 'x509CRLCertReasonCode'
 DESC 'An integer code indicating the reason for the revocation, see
 RFC3280 5.3.1'
 EQUALITY integerMatch
 ORDERING integerOrderingMatch

 93

 SYNTAX 1.3.6.1.4.1.1466.115.121.1.27)

 8.4 Hold instruction code

This attribute may be used to store the hold instruction code for the
certificate on the CRL.

 (1.2.826.0.1.3344810.1.1.103
 NAME 'x509CRLCertHoldInstructionCode'
 DESC 'Any registered OID indicating a hold instruction, see
 RFC3280 5.3.2'
 EQUALITY objectIdentifierMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.38)

 9. Security Considerations

This [Internet Draft/Standard] describes the subschema for the storage
and matching of PKI attributes derived from CRLs. It does not address the
protocol for the storage and retrieval of this information.

LDAP servers SHOULD use authentication and access control mechanisms to protect
the information during its storage and retrieval.

 10. IANA Considerations

This document uses the OID branch 1.2.826.0.1.3344810 to identify new LDAP
attribute types and object classes. A register of all OIDs allocated under this
branch is kept by the registered holder. This branch has been assigned to
TrueTrust Ltd, under its BSI assigned English/Welsh Registered Company number
[18].

 11. References

 Normative

[1] Bradner, S. The Internet Standards Process -- Revision 3. RFC
2026 October 1996.

[2] S.Bradner. "Key words for use in RFCs to Indicate Requirement
Levels", RFC 2119, March 1997.

[3] Wahl, M., Coulbeck, A., Howes, T. and S. Kille, "Lightweight Directory
Access Protocol (v3): Attribute Syntax Definitions", RFC 2252, December 1997.

[4] Crocker, D. and P. Overell, "Augmented BNF for Syntax Specifications: ABNF",
RFC 2234, November 1997.

[5] Housley, R., Polk, T., Ford, W. and D. Solo, "Internet X.509 Public Key
Infrastructure Certificate and CRL Profile", RFC 3280, April 2002.

[6] ITU, "Information Technology - Open Systems Interconnection - The

 94

Directory: Public-key and attribute certificate frameworks", ITU-T
Recommendation X.509, March 2000.

[7] Gietz, P., Klasen, N. "Internet X.509 Public Key Infrastructure Lightweight
Directory Access Protocol Schema for X.509 Certificates",
<draft-ietf-pkix-ldap-pkc-schema-00.txt>, June 2004

[11] Crocker, D., "Standard for the format of ARPA Internet text messages", STD
11, RFC 822, August 1982.

[12] Mockapetris, P., "Domain names - implementation and specification", STD 13,
RFC 1035, November 1987.

[13] Wahl, M., Kille, S. and T. Howes, "Lightweight Directory Access Protocol
(v3): UTF-8 String Representation of Distinguished Names", RFC 2253, December
1997.

[14] Berners-Lee, T., Fielding, R. and L. Masinter, "Uniform Resource
Identifiers (URI): Generic Syntax", RFC 2396, August 1998.

[15] Hodges, J. and RL. Morgan, "Lightweight Directory Access Protocol (v3):
Technical Specification", RFC 3377, September 2002.

[16] Hinden, R. and S. Deering, "IP Version 6 Addressing Architecture", RFC
2373, July 1998.

[17] CCITT Recommendation X.660 (1992) | ISO/IEC 9834-1:1993, Information
technology - Open Systems Interconnection - Procedures for the operation of OSI
Registration Authorities: General procedures.

[18] BRITISH STANDARD BS 7453 Part 1. Procedures for UK Registration for Open
System Standards Part 1: Procedures for the UK Name Registration Authority.

 Informative

[8] Chadwick, D.W., Sahalayev, M. V. "Internet X.509 Public Key Infrastructure
LDAP Schema for X.509 Attribute Certificates", <draft-ietf-pkix-ldap-ac-schema-
02.txt>, June 2004

[9] Chadwick, D.W., Legg, S. "Internet X.509 Public Key Infrastructure - LDAP
Schema for PKIs " <draft-ietf-pkix-ldap-pki-schema-00.txt>, July 2002

[10] Chadwick, D.W., Legg, S. "Internet X.509 Public Key Infrastructure - LDAP
Schema for PMIs" <draft-ietf-pkix-ldap-pmi-schema-00.txt>, July 2002
[19] S. Legg. "Lightweight Directory Access Protocol (LDAP) and X.500 Component
Matching Rules" RFC 3687, February 2004

[20] J. Allen, M. Mealling. "The Architecture of the Common Indexing Protocol
(CIP)". RFC 2651. August 1999.
 12. Intellectual Property Notice

 95

The IETF takes no position regarding the validity or scope of any
intellectual property or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; neither does it represent that it has
made any effort to identify any such rights.
Information on the
IETF's procedures with respect to rights in standards-track and
standards-related documentation can be found in BCP-11. [BCP-11]
Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementors or users of this specification
can be obtained from the IETF Secretariat.

The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights which may cover technology that may be required to practice
this standard.
Please address the information to the IETF Executive
Director.

 13. Acknowledgments

The authors would like to thank Peter Gietz for his help and co-operation, and
in particular his willingness to align [7] with this document.

The authors would also like to thank TERENA, CESNET, SURFnet, UNINETT, RedIRIS
and SWITCH, who jointly partially funded this work, and without whose support
this work would not have been possible.

 14. Copyright

Copyright (C) The Internet Society (2001). All Rights Reserved.

This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it
or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing
the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of
developing Internet standards in which case the procedures for
copyrights defined in the Internet Standards process must be
followed, or as required to translate it into languages other than
English.

The limited permissions granted above are perpetual and will not be

 96

revoked by the Internet Society or its successors or assigns.

This document and the information contained herein is provided on an
"AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

 15. Authors' Addresses

David Chadwick, Mikhail Sahalayev
IS Institute
University of Salford
Salford
England
M5 4WT

Email: d.w.chadwick@salford.ac.uk
 M.Sahalayev@pgr.salford.ac.uk

 16. Changes

Changes since version 00.

1. An alternative name form for revoked certificate entries has been added for
those LDAP servers that don't support multiple valued RDNs.
2. Name forms for delta CRL entries and authority revocation list entries have
been added
3. x509CRL object class has been changed to ABSTRACT and three new STRUCTURAL
object classes have been added for CRLs, ARLs and delta CRLs.
4. Corrected some OID assignments
5. Minor editorial corrections

Changes since version 01

1. The object class structure has been re-vamped and x509base has been
transferred to the certificate schema ID [7]
2. Minor editorial corrections
3. Changed from Standards Track to Informational after discussions with area and
WP leaders.
4. Inserted IANA considerations section and Acknowledgement section

 97

Appendix 8. Final Detailed Design of an LDAP X.509 Parsing Server
M. Sahalayev, D. W. Chadwick

Release Number Release Date Comments
Version 1.0 15 November 2002 For public comment
Version 1.1 28 November 2002 Added Critical extensions on Modifies causes

rejection. Added if HasSubordinates is
missing. Removed storing to-be-deleted parent
entry in WAL. Minor editorials

Version 1.2 3 February 2003 Changed design for CRLs. Now a CRL creates
a subtree of entries rather than a single one.

Version 1.3 12 February 2003 Correcting bugs in the Name Form section for
revoked certificate entries.

Version 1.4 13 February 2003 Added a references for detailed design of the
parsing functions. Misc cleanup

Version 1.5 20 February 2003 Added new cofig option x509attrtypespath
Version 1.6 20 March 2003 Added new config option for attribute types
Version 1.7 12 May 2003 Added new option for ASN.1 ->X.509

attribute types mapping
Renamed several internal functions
Removed ''Specifics of the *** operation for
external server. Its functionality will be
provided by back-ldap backend
Removed LDAP API functions (they will not
be used, back-ldap will be used instead)

Version 1.8 8 August 2003 Redesign of Delete operation to do 1 level
search instead of full subtree search

Version 1.9 20 April 2004 Changed matching rule for Modify Delete
value to exact matching rule from binary
match

Purpose
The X.509 Certificate Parsing Server (XPS) is an intermediary server that sits between an LDAP
administrative client and LDAP server. It does not sit between an LDAP retrieval client and LDAP server. Its
purpose is to extract certificate and CRL attributes from Add and Modify commands and to create
subordinate certificate and CRL entries beneath the target entry that was destined to hold the certificate or
CRL. The certificates and CRLs are broken up into their component data fields and attributes are created
from each of them and placed in the certificate entry or CRL subtree of entries. For a CRL, a subtree of
entries is created, consisting of a root CRL entry (mandatory - holding the CRL fields, CRL extensions and
set of revoked certificate serial numbers) and a set of subordinate CRL entry entries (optional - holding the
serial number, revocation date and CRL entry extensions). In this way LDAP clients can Search for
certificates, CRLs and CRL entries that contain certain fields, without LDAP servers needing to be modified.
Note. This implementation of the XPS will be embedded inside an OpenLDAP server, so that XPS intercepts
the LDAP operations before passing them to the OpenLDAP server.

Limitations
There are a number of limitations with this approach, as follows.
Administrative clients and retrieval clients will have different views of the DIT. An administrative client
thinks that a certificate or CRL is held in the entry that it was destined for, whereas in fact it is actually held
in (a) subordinate(s) of the entry. (A configuration parameter will say if the attribute is held in the entry as
well, but this will increase the storage requirements even more - see next point) LDAP clients will only find
the subordinate entries in a Search operation and wont be able to retrieve the parent entry (where all the other
attributes of the object are held) along with the certificate, CRL or CRL entry.
The storage space in the LDAP server is considerably increased as the subordinate entries will hold the
original certificate or CRL as well as the extracted attributes (the storage will most likely be more than
doubled, although actual values will have to be determined after implementation).

 98

LDAP clients will not be able to perform Search operations that are looking for an entry containing more
than one certificate, or an entry containing a certificate and other user attributes, or a CRL containing a
particular CRL entry extension and CRL extension (although they cannot do this today anyway, except
perhaps for Searches that contain a certificate exact match).

Detailed Design
In this design we differentiate between LDAP X.509 administrative operations and all other LDAP
operations. The former are defined as:
An AddRequest for an entry holding an X.509 attribute in its AttributeList
A ModifyRequest with an X.509 attribute in any of its modification parameters
Any Delete Request
For the purpose of this design, X.509 attributes will be assumed to be any attribute in the X.509 specification
[X509].

XPS will be based on OpenLDAP and implemented as a part of it. The configuration file (slapd.conf) will be
extended in order to support XPS and configure it according to the administrators' needs.
OpenLDAP has the ability to support an internal database or a back-end LDAP server. This feature remains
unaltered with the XPS modifications, so that administrators can use OpenLDAP-XPS to front end their
existing LDAP server.

The WAL
The XPS server is quite complex, as it has to be able treat a set of LDAP operations emanating from a single
administrative operation as a single transaction. This is made more difficult in that LDAP does not support
transactions. Clearly one could build a simpler XPS implementation that only kept state information in
memory, but then if the XPS server crashed the LDAP server would be left in an indeterminate state with
respect to its X.509 attributes. This is clearly very undesirable given the importance of CRLs and certificates.
To avoid these problems we will use a Write Ahead Log (WAL). The information about all entries which are
about to be added or deleted will be kept on the disk in the WAL and if there are any errors during the
operations LDAP will be rolled back to its original state. The format of the WAL is a standard LDIF file
[LDIF]
If it is an ADD request only the DN of the entries1 will be required for rolling back. For adding a DN into
the WAL we will create the xps_dn2wal() function. It will take a pointer to a dn as an input parameter and
will return an error/success code.
In case of a DELETE request whole entries2 should be saved in the WAL. For this purpose the function
xps_entry2wal() will be created. It will require a pointer to the Entry structure as an input parameter and will
return an error/success code.
MODIFY requests will require more information for rolling back. We will store all of the children of the
entry to be modified. XPS will call xps_dn2wal() if the type of operation is add or xps_entry2wal() if it is
delete. We will not need a separate code if the type of operation is replace, because in this case XPS will
first delete all the child entries, then add the new ones. This will be logged as two separate WAL operations.
In the event that XPS or even the operating system crashes the WAL should contain all the information
required for rolling back the LDAP directory to its previous state. After every operation with the WAL,
fflush() will be called to be sure the information is written to the disk.
When the administrator starts the XPS, the WAL will be opened. It is possible that the WAL could be not
empty. This means that XPS had crashed before some administrative operation was finished. In this case
XPS will enter the recovery phase and will automatically roll back the directory using the data from the
WAL. A recovery log file will be opened (XPSrecovery.log). (The WAL will be marked Recovery In
Process before this starts. If XPS crashes again during the recovery process there is probably a bug in the
implementation and the administrator will have to empty the WAL and tidy up the LDAP directory by hand.)
In any case all information about recovery actions taken will be stored in the recovery log file
XPSrecovery.log. It will contain data about the recovery i.e. successful recovery actions and failed recovery

1 The DN of the entry to be added, plus the DNs of the subordinate X.509 entries to be added.
2 We will need to take a copy of the entry to be deleted plus all the subordinate X.509 entries.

 99

actions along with the cause of the failure. The purpose of this file is just to inform the administrator about
XPS recovery and giving as much information about probable directory corruption as possible.
The format of the messages sent to the XPSrecovery.log can be found in Appendix 1. Further information
about the WAL design can be found in [WAL].

Multi-tasking
OpenLDAP is capable of multi-tasking, in which several threads can be updating X.509 attributes
simultaneously. Therefore we will use multiple WAL files. Each thread will open its own WAL file using the
original entry's DN as the base for the file name. The file name will consist of the “wal” prefix, a 32-
character string representing the DN's hash, and “.log” file extention.

Configuration options
XPS configuration options will be held in a separate section of the OpenLDAP main configuration file
(slapd.conf). It will be placed between the global configuration directives and the backend definitions.
Note that all XPS configuration key words are case insensitive, as are their values

Note that all the default values have been chosen, so that the modified OpenLDAP code can run as a
standard LDAP server using the existing configuration file, and it wont perform XPS functionality

If OpenLDAP is to be used as an XPS then the administrator should define the following option and put yes
as the value.

EnableXPS [yes|no]

The default value is no.
If EnableXPS is off then all other XPS related options will be ignored.

pkcTypes [userCertificate userCertificate;binary cACertificate cACertificate;binary]

pkcTypes holds a space separated list of public key certificate LDAP attribute types that the XPS server
should trap in order to parse and split up into their component attributes

acTypes [attributeCertificate Attribute;binary attributeCertificateAttribute]

acTypes holds a space separated list of attribute certificate LDAP attribute types that the XPS server should
trap in order to parse and split up into their component attributes

crlTypes [certificateRevocationList;binary authorityRevocationList;binary
certificateRevocationList authorityRevocationList]

crlTypes holds a space separated list of certificate revocation list LDAP attribute types that the XPS server
should trap in order to parse and split up into their component attributes

DuplicateAttribute [yes|no]

DuplicateAttribute indicates if the certificate or CRL should be stored in the original entry as well as in the
child entry. Note that if it is decided to store the original attributes in the entry as well as in the child, then it
will increase the database size.
The default value is yes.

RevokedCertificateEntries [yes|no]

RevokedCertificateEntries indicates if separate entries should be created subordinate to the CRL entry for
each revoked certificate in the CRL. Each of these entries, if created, will hold the serial number of the
revoked certificate, its revocation date and any crl entry extensions present in the CRL (such as reason code

 100

and invalidity date). If these entries are not created, then the only information held about the revoked
certificates will in the serialNumbers attribute in the CRL entry.
The default value is no.

RevokedRDNformat [x509serialNumber+x509issuer | x509isssuerSerial |
 x509serialNumber]

The following RDN formats are available for RevokedCertificateEntries, as described in [Chadwick]. Note
that this parameter is ignored if RevokedCertificateEntries is No.
The default value is x509serialNumber.

x509serialNumber+x509issuer – multi-valued RDNs will be created from the certificate serial number
and issuer fields.
x509serialNumber – the RDN is created from the certificate serial number. This format of the RDN will
be suitable for the cases when all certificates | CRLs are issued by one CA.
x509issuerserial – a single valued RDN is created from the certificate serial number and issuer fields.
Administrators should use this format when the LDAP server does not support multi-valued RDNs.

CertRDNformat [x509serialNumber+x509issuer | x509isssuerSerial |
 x509serialNumber]

This defines the format of the RDNs for attribute certificate and public key certificate entries, as defined in
[Gietz] and [Chadwick].

The default value is x509serialNumber+x509issuer.

Walpath [path]

Write Ahead Logs (WAL) are needed for internal purposes, so the administrator may specify a path
for the WAL:

The default path if this parameter is missing, is /usr/local/var/xps/wals/

XPSerrorlog [path/filename]

The Administrator may specify a path for the XPS error logs:
The default file is /usr/local/var/xps/error.log

define_attr [ASN.1 attribute] [LDAP attribute]

This specifies the format for the matching between the ASN.1 type references of the fields in the
X.509 attributes (as defined in the ASN.1 input file, see [Parsing]) and their equivalent LDAP
attribute type names defined in the PKIX schemas [Chadwick], [Gietz], [Sahalayev]. Each line of
this file should be in the above format, as described in [Parsing]:

For example:
define_attr certificate.tbsCertificate.signature.algorithm x509signatureAlgorithm

All these definitions will be held in x509attrtypes.txt file (although the administrator can specify his
own file or even put the definitions into slapd.conf if he wishes)

Operations
If EnableXPS is NO, then all operations will pass straight through the XPS code and not be affected by it.

 101

If EnableXPS is YES, then the following operations will pass straight through the XPS server and not be
affected by it: Bind, Unbind, Compare, ModDN, Abandon, Search. The following administrative operations
will be intercepted by XPS and modified as described below: ADD, DELETE, and MODIFY, unless they
have a critical control set, in which case they will be rejected with Unsupported critical extension.
.

ADD operation
When XPS receives an ADD request the following actions will be taken. First it will check if the request
contains any X.509 attributes. If it does not the request will be processed as normal by OpenLDAP and
ignored by XPS. If it does then two lists of entries will be created (in OpenLDAP internal opaque structure)
from each X.509 attribute. One list will contain CRL, AC and PKC entries (held in the “xps_e_array” global
variable), the other one will contain revokedEntries from CRLs (if they are exist and if the
“RevokedCertificateEntries” configuration parameter is set to “yes”). These lists will be created using the
xps_create_entries() function (see [Parsing] for a full explanation). If duplicateAttribute is false, the X.509
attributes will be removed from the parent entry.

If parsing of the X.509 attribute values finishes successfully the DN of the parent entry will be added into the
WAL using xps_dn2wal(). The parent entry will then be added to the directory using the function (be-
>be_add)().

If the parent entry is added and there are no errors, XPS will call xps_add_entries(). This function will take
the first element from the “xps_e_array” list, add its DN to the WAL using xps_dn2wal() and then add the
entry to the directory using (be->be_add)(). The same operations will be performed for each element of the
“xps_e_array”. After adding all of the entries from the “xps_e_array” the entries from the “xps_revoked”
will be added using the same method.

If no error occurs the WAL will be cleaned and the client will receive the LDAP_SUCCESS return code. If
there was any error LDAP should be rolled back to its original state. At this point the WAL will contain a list
of already added entries (actually as LDIF delete entry commands). Using the LDIF commands from the
WAL all the entries will be deleted. After each entry is successfully deleted, its DN (LDIF command) will be
removed from the WAL. If any errors occur at this point the LDAP directory will contain entries that are not
supposed to be there. Their DNs will be stored in the WAL and in the OpenLDAP log if logging in switched
on. It will enable the administrator to remove them manually.

DELETE operation
When XPS receives a DELETE operation it will perform a one level SEARCH operation from the

original entry as the base entry, searching for entries of the x509base object class [Sahalaev]. Searching will
be done with (*be->be_search)()
Note. If the DELETE was for a non-leaf node near the root, then a full subtree SEARCH could return millions of
entries.

In OpenLDAP the SEARCH operation is perfomed by one of the backends. Normally, all the entries
that are found are sent straight to the client. We will use the OpenLDAP callback mechanism to change the
sending routine to our own routine – xps_sort_search_entries(). The routine will take each returned “Entry”
as an input parameter and place it into one of the arrays:

xps_level2 if one of x509AC, x509PKC or x509CRL object classes is present.
xps_level3 if x509CRLentry object classes is present.
xps_level1 if non of the above OCs are present.

Other callback routines have also been modified so that
i) if a referral is returned, or
ii) if an error is returned, or

 102

iii) if other callback routines other than “Entry” are called
then the DELETE will be rejected with UnwillingToPerform.

XPS will check that only Level 2 entries are returned. If there are some Level 3 entries this means
that the x509 entries are messed up and the DELETE operation will be rejected with
UnwillingToPerform. If there are no entries returned, then the DELETE was a non-XPS DELETE
and XPS will pass the operation to OpenLDAP for normal processing.

If there are one or more Level 2 entries returned, then XPS will check the object classes of the returned
entries, and for each x509CRL object class found, it will perform a 1-level SEARCH with the CRL entry as
base, searching for object class present. XPS will check that only level 3 entries are returned by these 1-level
Searches. If anything other than Level 3 entries are returned the DELETE will be rejected with
UnwillingToPerform.

XPS has now collected all the XPS generated entries beneath the entry to be deleted. XPS will now

perform a base object SEARCH, searching for object class present (i.e. read the entry to be deleted). XPS
will check that the entry has been inserted into the Level 1 array by the callback routine
xps_sort_search_entries(), otherwise the DELETE will be rejected with UnwillingToPerform.

XPS will now call xps_delete_entries(). This function will take the first entry from the xps_level3

array, if it's not empty, and will add the whole entry into the WAL using xps_entry2wal(), then delete it from
the directory using (be->be_delete)(). The same will be done with all the entries from the xps_level3 array.
After all entries from the xps_level3 array are deleted, xps_delete_entries() will do the same with the
xps_level2 and xps_level1 arrays (i.e. add to WAL and delete from the directory).

If no error occurred the WAL will be cleaned and the client will receive the LDAP_SUCCESS result code. If
there were any errors LDAP should be rolled back to it original state. All deleted entries are stored in the
WAL. They will be added back to the directory using (*be->be_add)(). When an entry is added to the
directory it will be removed from the WAL. If any errors occur at this point some entries will still be
missing from the directory. All of the failures will be stored in the XPS/recovery.log. The administrator will
have to add the missing entries manually.

MODIFY operation
If XPS receives an MODIFY request it will first check if there are any X.509 attributes in the modifications.
If there are none then the request will be processed as normal by OpenLDAP.
Otherwise, depending on the operation type (mod_op), the following actions will be taken for every X.509
attribute type found in the MODIFY operation.
Operation type is add.

In this case the sequence of actions is identical to the LDAP ADD operation. XPS will create 2 lists of
entries to be added (xps_e_array and xps_revoked) from the values provided with the MODIFY operation. It
will be done using the xps_create_entries() routine.

At this point in time XPS has a list of all the child and grandchild entries that need to be added to the
directory. XPS will then move to the next modification operation.
Operation type is delete.

If no attribute values are provided (i.e. Delete the attribute), XPS will perform a one level SEARCH
from the entry to be modified, searching for the attribute type to be deleted. The search for the attribute
values will be done with (*be->be_search)(). The callback function xps_sort_search_entries() will put all the
entries that are found into the xps_level2 array. If any entries are inserted into the level 1 or level 3 arrays
then the MODIFY will be rejected with UnwillingToPerform.

If an attribute value is provided (i.e. Delete an attribute value), XPS will perform a one level SEARCH
for this attribute value to check that it exists, by performing a certificateExactMatch for ACs and PKCs and a
certificateListExactMatch for CRLs. If it does exist, then the callback function will put the returned child

 103

entry into the xps_level2 array. (If it is put into the level 1 or level 3 arrays then the MODIFY will be
rejected with UnwillingToPerform.

NOTE that the xps_level2 array should have just one more entry in it after the SEARCH was performed than
before the SEARCH was performed. (It cannot assume that there were zero entries in there at the start.)

If the attribute value does not exist, the user will be sent the error message noSuchAttribute.
If the attribute type of the value(s) to be deleted is one of the configured crlTypes, a further set of one

level searches will be performed from the entry or entries returned from the first one level Search. XPS will
perform a 1-level SEARCH with the CRL entry as base, searching for object class present. The callback
function xps_sort_search_entries() should put all entries found into the xps_level3 array. XPS will check that
only level 3 entries are returned by these 1-level Searches. If anything other than Level 3 entries are returned
the MODIFY will be rejected with UnwillingToPerform.

At this point in time we have a list of all the child and grandchild entries that need to be deleted. XPS
will then move to the next modification operation.
Operation type is replace.

In this case XPS will act as it were two separate operations. The sequence of actions is the same as in
the preceding paragraphs for delete the attribute (with no attribute values provided), and add new attribute
value(s).
Finalising the Modify Operation

After going through all of the modifications in the MODIFY operation there will be 2 arrays of
entries to be deleted (xps_level2, xps_level3) and two arrays of entries to be added (xps_e_array and
xps_revoked). XPS will add these entries to the WAL then add or remove them from the directory, via calls
to xps_add_entries() and xps_delete_entries(). Note that whilst the new entries need to be added and old
ones deleted, the WAL must not be emptied yet.

If both sets of adds and deletes are finished successfully, the remaining attributes in the MODIFY
operation need to be modified in the parent entry, and duplicate attributes may also need adding or removing
from the parent entry. If duplicateAttribute = False, the X.509 attributes are removed from the original
MODIFY operation.

The MODIFY operation is then passed to OpenLDAP (unless it is empty i.e. it only contained X.509
attributes and duplicateAttribute = False). Note that the MODIFY operation is atomic, therefore it will either
all work, or all fail. For this reason we do not need to add it to the WAL.

If the Modify operation succeeds, the WAL will be cleaned and the user will receive an
LDAP_SUCCESS return code as the result of his MODIFY operation.

If the MODIFY operation fails and duplicateAttribute = True, remove the X.509 attributes from the
original MODIFY operation and try again. (This is because the administrator could have altered the value of
the duplicateAttribute parameter to True after the entry was created with duplicateAttribute = False). If the
Modify operation still fails, then XPS will have to go into rollback mode using the WAL. XPS must delete
all the added child (and grandchild) entries, and re-add back all the deleted child (and grandchild) entries.
NOTE. There will be a problem is the administrator changes the value of duplicateCertificates after adding some X.509
attributes but before running the Modify operation. If the initial value was False and the new value is True, then if the
Modify attempts to Delete the attribute it will fail because XPS will try to delete the duplicate attribute (which does not
exist). It is for this reason that we remove the duplicate attributes and try again. If the initial value was True and the new
value is False, then the Modify operation will delete the child entry, but the duplicate attribute will still remain in the
parent entry until the administrator removes it by hand.

Appendix A. XPSrecovery.log Format
When XPS finds a DN in the WAL the following message will be logged.

Undeleted entry found:
dn: [DN of the entry]
. . . removed. / . . . unable to remove

It will say “. . . removed” if the entry is successfully deleted, or failed to delete the entry because it did not
exist. If the entry exists but cannot be deleted the “. . . unable to remove” message will be logged.

When XPS finds an undeleted Attribute in the WAL the following message will be logged.

 104

Undeleted attribute value found:
dn: [DN of the entry]
[attribute type]: [attribute value]
. . . removed. / . . . unable to remove

It will say “. . . removed” if the entry is successfully deleted, or failed to delete the entry because it did not
exist. If the entry exists but cannot be deleted the “ . . . unable to remove” message will be logged.

When XPS finds an Entry in the WAL the following message will be logged.

Unrestored entry found:
dn: [DN of the entry]
[attribute type]: [attribute value]
.
[attribute type]: [attribute value]
. . . restored/. . . unable to restore

It will say “. . . restored” if the entry is successfully restored, or failed to restore the entry because it hadn't
been deleted. If the entry does not exist but cannot be added to the Directory the “ . . . unable to restore”
message will be logged.

When XPS finds an unrestored Attribute in the WAL the following message will be logged.

Unrestored attribute value found:
dn: [DN of the entry]
[attribute type]: attribute value
. . . restored/. . . unable to restore

it will say “. . . restored” if the Attribute is successfully restored, or failed to restore the Attribute because it
hadn't been deleted. If the Attribute does not exist but cannot be added the “ . . . unable to restore” message
will be logged.

Appendix B. List of Functions

XPS Functions
xps_create_entries() - this function creates 2 lists (xps_e_array and xps_revoked) of entries from

provided x.509 attibute values.
xps_delete_entries() - this function deletes entries held in the global arrays xps_level3, xps_level2 and

xps_level1 from the Directory.
xps_add_entries() - this function adds entries held in the global arrays xps_e_array and xps_revoked

to the Directory. This function first adds the DN of the entry-to-be-added to the WAL using xps_dn2wal()
and then adds the entry to the directory using (be->be_add)(). The same operations will be performed for
each element of the “xps_e_array”. After adding all of the entries from the “xps_e_array” the entries from
the “xps_revoked” array will be added using the same methods.

OpenLDAP internal functions for updating the backend database
(*be->be_add)() – adds an entry to the backend directory
(*be->be_delete)() – deletes an entry from the backend directory
(*be->be_modify)() – modifies an entry from the backend directory

These are internal OpenLDAP functions for adding, deleting and modifying entries and attributes. As
OpenLDAP has a number of different backends each of them has its own function for the operations. For
example, when the backend is defined the add function can be called using the pointer be->be_add. The same
is true for deleting and modifying.

 105

WAL Functions
xps_dn2wal() - this function will save the DN of an added entry in the WAL. It is used for rolling back
added entries, if necessary. The WAL will contain an LDIF command to delete the named entry.
xps_entry2wal() - this function will save an entry-to-be-deleted in the WAL. It is used for rolling back
deleted entries. The WAL will contain an LDIF command to add the entry to the DIT.

References
[API] M. Smith, A. Herron, M. Wahl, A. Anantha <draft-ietf-ldapext-ldap-c-api-xx.txt>
[Auth] Wahl, M., Alverstrand, H., Hodges, J., Morgan, R. "Authentication Methods for LDAP", RFC 2829,
May 2000
[Chadwick] D.W.Chadwick, M.V.Sahalayev. “Internet X.509 Public Key Infrastructure - LDAP
Schema for X.509 CRLs”. <draft-ietf-pkix-ldap-crl-schema-00.txt>, Feb 2003
[Gietz] N. Klasen, P. dsaGietz. "An LDAPv3 Schema for X.509 Certificates"<draft-klasen-ldap-
x509certificate-schema-00.txt>, Feb 2002.
[Sahalayev] D.W.Chadwick, M.V.Sahalayev. “Internet X.509 Public Key Infrastructure - LDAP
Schema for X.509 Attribute Certificates”. <draft-ietf-pkix-ldap-ac-schema-00.txt>, Feb 2003
[WAL] Mikhail Sahalayev, David Chadwick “Write Ahead Log (WAL) Design”, Feb 2003
[X509] ISO/ITU-T Rec. X.509(2000) The Directory: Authentication Framework
[Parsing] Mikhail Sahalayev, Ed Ball, David Chadwick “Parsing X.509 Attributes”, Feb 2003
[LDIF] G. Good “The LDAP Data Interchange Format (LDIF) - Technical Specification”, RFC 2829, June
2000

 106

Appendix 9. Write Ahead Log (WAL) Design
M. Sahalayev, D. W. Chadwick

Release Number Release Date Comments
Version 1.0 3 February 2003 Initial release for public comment

The purpose of the WAL is to store information about LDAP DNs or entries while performing
an LDAP operation such as ADD, DELETE or MODIFY. This will allow the X.509 Parsing Server
(XPS) to restore the initial state of the database in case of a failure.

When a user initiates an operation, the WAL file will be opened. It will stay opened until the
operation is finished and it’s no longer required,and then this file will be deleted.

The content of the WAL file is either the DN of an entry (for ADD requests) or a whole entry
(for DELETE requests). This information will be stored in LDIF format and multiple entries will be
separated by blank lines. All LDIF operations will be performed using the existing OpenLDAP
mechanisms. To be sure that information is actually written on the disk after every operation with
the WAL system function fflush() will be called.

Example:
If a user sends an ADD request which contains the entry with 2 X.509 certificates, then XPS

will create the entry and 2 additional X.509 entries. After storing the initial entry's DN in the WAL
this entry will be added to the Directory. Then the first X.509 entry's DN will be stored in the WAL
and the entry stored in the Directory. The same will be done for the second X.509 entry. At the end
the WAL file will be similar to the following, assuming that the serial numbers for the two X.509
certificates are 1111111 and 222222, and the DN of the CA is
“EMAILADDRESS=certify@pca.dfn.de, CN=DFN Toplevel Certification Authority, OU=DFN-
PCA, OU=DFN-CERT GmbH, O=Deutsches Forschungsnetz,C=DE”.

dn: =Roman Gebhart,ou=Payroll, o=Salford,c=gb
<CR LF>
dn: x509serialNumber=1111111, “EMAILADDRESS=certify@pca.dfn.de,CN=DFN

Toplevel Certification Authority,OU=DFN-PCA,OU=DFN-CERT GmbH,O=Deutsches
Forschungsnetz,C=DE”, cn=Roman Gebhart,ou=Payroll, o=Salford,c=gb

<CR LF>
dn: x509serialNumber=2222222, “EMAILADDRESS=certify@pca.dfn.de,CN=DFN

Toplevel Certification Authority,OU=DFN-PCA,OU=DFN-CERT GmbH,O=Deutsches
Forschungsnetz,C=DE”, cn=Roman Gebhart,ou=Payroll, o=Salford,c=gb

If all operations were successful the WAL file will be deleted. Otherwise the first blank line

from the end of file will be found. If the WAL contains the DN of an entry, this entry will be
deleted from the directory. If it’s a whole entry, it will be added back. Then this piece of
information will be deleted from the WAL.

 In the same way all the WAL file will be processed until it is empty. When all recovery
operations are finished, the WAL file will be deleted. For more information see [detailed design].
Note that when OpenLDAP/XPS first initialises, it must search for any WAL files left from the
previous invocations, and perform the recovery operations such as those above before the XPS is
ready to receive new requests.

The OpenLDAP server is multitasking and it is capable of handling multiple requests at once.

So XPS may be running in different threads simultaneously. To avoid collisions different WALs
will be required for each thread. Since the format of the WAL is a text file, each operation will

 107

create its own file. In order to avoid name collisions each file name will be constructed using the
following information:

“wal” – the same part for every WAL file, distinguishing it from other OpenLDAP and XPS files.

32 ASCII symbols representing a 128-bit hash of the DN of the entry to be modified. This will

avoid collisions and also will keep the XPS from modifying the same entry concurrently,
since only one process can work with the particular WAL file. The hashing will be done
using OpenLDAP lutil_MD5Init(), lutil_MD5Update(), and lutil_MD5Final() functions.
For the converting 128-bit hash into ASCII string the function int hash2string(char *hash,
char *dn) will be created. The input parameters are
dn - input string, containing the DN of the entry.
hash - 32-character string, representing the created hash. It will be 32 hexadecimal numbers
(0-9, a-f)

hash2string () will return 0 if hashing was successful, or 1 - if not. .log – file extension, serves for
information only purposes.

Example:
If there are three operations beingperformed by OpenLDAP/XPS at the present time there will

be three log files in the directory, defined in slapd.conf. If walpath is set to /usr/local/var/xps/wals/
the result of ls /usr/local/var/xps/wals/ will be similar to the following:

walKHWIHfdsafJG420ghdlT4YG.log
walerq1DRF2gagLVPE8efabNVT.log
wal1tr12LH9KhjtIO96lqR1MxQv.log

A collision may appear when some of the old WAL files are left from the previous running of

the OpenLDAP/XPS server (for example if the system crashed due to some reason). In this case
during the OpenLDAP startup XPS will try to restore the information from every WAL file
(described above) and, regardless of the result, delete the WAL file (if the restoration wasn’t
successful if will be logged in xpsrecovery.log).

 108

Appendix 10. Parsing X.509 Attributes
E.Ball, M.Sahalayev

Version Date Comment
1.0 28 February 2003 Initial release
1.1 13 May 2003 Update of first release with

change to x509attrfile.txt

When the XPS finds x.509 attributes in the entry to be added it calls one of the
x509***_2_mods() functions.

There are three such functions:
x509AC_2_mods() - converts Attribute Certificate into the list of Modifications
x509CRL_2_mods() - converts Certificate Revocation List into the list of Modifications
x509PKC_2_mods() - converts Public Key Certificate into the list of Modifications

All these functions are generated by an ASN.1 compiler, written by E.Ball.

ASN1 compiler description
The compiler is based on a sub-set of the ASN.1 defined by X.680 (12/97) with some

restrictions and additions. The additions are support for the ANY DEFINED BY type, which has
been included for backwards support, and also a new EXTENSION type. This is for support of the
extensions mechanism used in X509 certificates, whereby a value is passed in binary as OCTET
STRING but actually also has an ASN.1 definition for the contents of the octet string.

The compiler is built using the compiler generator tools flex and bison. Flex is based on the
well known UNIX lex and builds a lexical analyzer which is used to process the text input to the
complier. The lexical analyzer recognize keywords in the ASN1, identifiers, numbers etc. and
removes white space in the traditional way. The definition used by flex to build the lexical analyzer
is contained in the file asn1.lex (see Appendix 1). The output from the lexical analyzer is actually a
sequence of tokens and corresponding values that are used by the compiler itself. The compiler is
built using the tool bison, a compiler generator based on the well known UNIX tool yacc. The
definition of the compiler is contained in the file asn1.y (see Appendix 1), and consists of Bachus-
Naur type definitions that closely follow the ASN1 definition described above.

Although bison is extremely useful in automatically building a parser that will recognize input
in its definition file, it does not automatically generate parse trees and output code. These must be
added to the definition file, in the form of embedded actions, to build a parse tree, and also a code
generator. After the input has been scanned and a parse tree built, the code generator walks this tree
and translates this into output code.

The Parse Tree
The C structures used by the compiler are contained in a file called common.h (see Appendix

1).
The most important are the Definition and the Type, corresponding to the equivalent ASN.1.

The compiler maintains an internal stack that holds Type values and as each Type is recognized it is
put onto the stack. Where Types may be combined together, as defined by the ASN1, they are
pulled from the stack and a new Type put back on the stack. Eventually, assuming that the input is
good, an ASN.1 definition will be recognized and a Definition structure will be created and put on a
linked list. The Definition will contain a linked list of Type structures that are part of the Definition.

 109

Generating the Code
Starting with the first Definition in the parse tree it is analyzed and the text of a C subroutine

written to the output file. This has the name decodeABCD, where ABCD is replaced by the name of
the Definition. For each Type contained in the typelist of the Definition a C TypeDescription
structure is defined in the written routine. These are combined together into an array and passed to a
more basic decode function.

For example:-
ABCD ::= SEQUENCE { x INTEGER, y BIT STRING }

would produce:-

void decodeABCD(char * name,int tag,int tagOption,byte **P,int
count,TypeDescription TD[],int optional,int Default,char *ObjectIdentifier)
{int t;
TypeDescription _TD0={"x",-1,2,0,(_CPF)decodeINTEGER,0,0,""};
TypeDescription _TD1={"y",-1,2,0,(_CPF)decodeINTEGER,0,0,""};
TypeDescription _TD[]={_TD0,_TD1};
printf("%s ",name);
decodeSEQUENCE("ABCD",tag,tagOption,P,2,_TD,optional,Default,"");
}

The Code Library
A skeleton library has been written called decodelib.c. This provides the basic support for all

the ASN.1 built in types, and it takes the user to the value part of each TLV ber structure in the
input. The user must decide what it is that he wants to do with this value, e.g put it into his own
structure, throw it away or whatever.

The library also copes with ASN.1 OPTIONAL and DEFAULT situations, although it is left
up to the user to supply any missing DEFAULT values.

The library implements basic error checking, i.e. that tags are of the required type and that
lengths of sequences are not exceeded.

Using the Compiler
The compiler is called decoder and it takes two command line arguments, the first being the

name of the file containing the ASN1 definition, the second being the file name into which the
generated C will be written. At the moment the compiler first copies the file decoderlib.c to this file
and then writes the routines that it generates. It could be easily modified to miss out copying the
library and this could then be simply linked in with the user's application.

e.g. decoder q.asn1 q.c
 This will compile the definition in q.asn1 and write the file q.c

ASN.1 Additions
In order to support the EXTENSION mechanism the ASN.1 TypeAssignment has been

extended from:-

TypeAssignment ::= typereference "::=" Type

to:-

 110

TypeAssignment ::= typereference "::=" Type | OID typereference "::=" Type

Where OID is an object identifier production in dotted integer notation e.g 1.2.3.4 This

allows an OID to be associated with an ASN1 type.

The Type ExtensionType is defined:-

ExtensionType ::= "EXTENSION" lcID, where lcID is a lowercase prefixed
identifier.

These two modifications combine as follows:-

X509 DEFINITIONS ::=
BEGIN
Test::= SEQUENCE{
 abc OBJECT IDENTIFIER,
 e EXTENSION abc}
0.1.2.3.4 A::= INTEGER
END

Here EXTENSION abc means that e will be encoded as an OCTET STRING but that its

internal structure will be defined by the OID contained in the value abc. At run time the OID is
extracted from abc and stored. When the decodeEXTENSION code is reached this OID is looked
up from abc and compared with those of known definitions. In this example if it is 0.1.2.3.4 then the
value of e will be decoded as an INTEGER. If the OID is not known an error will be generated.

Generating the parsing functions
To generate these functions the ASN.1 definitions of CRL, PKC and AC have been written

(files pkc.asn1, ac.asn1, crl.asn1 - see Appendix 1)
The following commands

 decoder pkc.asn1 pkc.c
 decoder ac.asn1 ac.c
 decoder crl.asn1 crl.c

produce C files that contain the required functions along with necessary library functions.

Since the functions, created be the ASN.1 compiler use the strings from ASN.1 type

references as attribute types, they will need to be replaced with the actual LDAP attribute types,
taken from the LDAP PKI schema IDs [CRL], [AC], [PKC]. For example the ASN.1 type
serialNumber will need to be replaced with the x509serialNumber LDAP attribute type. This is
achieved as follows: a configuration file x509attrtypes.txt comprises two columns of strings. The
first column holds the ASN.1 type reference, the second holds the corresponding LDAP attribute
type name. An example x509attrtypes.txt file is shown in Appendix 1. If the LDAP schema
definitions change, or new ones are defined, then the file x509attrtypes.txt can be updated, the new
LDAP schemas can be added, OpenLDAP can be restarted and the new schema definitions will take
effect. If however, a new X.509 extension is defined, this can only be supported by: adding the new
X.509 extension to the appropriate asn1 file (pkc, ac or crl), recompiling it using the ASN.1
compiler, updating the file x509attrtypes.txt and updating the OpenLDAP schema.

 111

Parsing the extensions
If a CRL, PKC or AC has any extensions they will be parsed as and stored in the memory as

an "Extension " attribute. The XPS supports a number of the selected attributes, so their values have
to be decoded as well. For this purpose the XPS will have a list of OIDs of the supported attributes
(held in file x509attrtypes.txt) and a corresponding parsing function from the library, described
above. For example, the Subject Altenative Name extension for the PKC has the following ASN.1
definition:

 SubjectAltName ::= GeneralNames

 GeneralNames ::= SEQUENCE SIZE (1..MAX) OF GeneralName

 GeneralName ::= CHOICE {
 otherName [0] OtherName,
 rfc822Name [1] IA5String,
 dNSName [2] IA5String,
 x400Address [3] ORAddress,
 directoryName [4] Name,
 ediPartyName [5] EDIPartyName,
 uniformResourceIdentifier [6] IA5String,
 iPAddress [7] OCTET STRING,
 registeredID [8] OBJECT IDENTIFIER}

If the OID of this extension is found while parsing the certificate the following function will

be called:

void decodeSEQUENCE(char *name,int tag,int implicit,byte **P,int count, TypeDescription

TD[],int optional,int Default,)

The attribute types will be replaced with the corresponding ones from the schema [CRL],

[AC], [PKC].

References
[AC] Chadwick, D.W., Sahalayev, M. V. "Internet X.509 Public Key Infrastructure LDAP

Schema for X.509 Attribute Certificates", <draft-ietf-sahalayev-pkix-ldap-ac-schema-
00.txt>, February 2003

[CRL] Chadwick, D.W., Sahalayev, M. V. "Internet X.509 Public Key Infrastructure LDAP
Schema for X.509 CRLs", <draft-ietf-sahalayev-pkix-ldap-crl-schema-00.txt>, February
2003

[PKC] Klasen, N., Gietz, P. "An LDAPv3 Schema for X.509 Certificates",<draft-klasen-ldap-
x509certificate-schema-00.txt>, February, 2002

Appendix 1 Example input file structures

Example asn1.lex file

%{

 112

#include "asn1.tab.h"
#include "printtoken.h"
//SCOPEVAL "("[0-9a-zA-Z]+".."[0-9a-zA-Z]+")"
//{SCOPEVAL} {printf("%s ",yytext);strcpy(yylval.str,yytext); return SCOPE;}
%}

ID [A-Z][A-Za-z0-9]*
lcID [a-z][a-zA-Z0-9]*
TAG "["[0-9]*"]"
NUMBER [0-9]+

%%

"IA5String" {printf("%s ",yytext); strcpy(yylval.str,yytext);return IA5STRING;}
"TeletexString" {printf("%s ",yytext);
 strcpy(yylval.str,yytext);
 return TELETEXSTRING;
 }
"PrintableString" {printf("%s ",yytext);
 strcpy(yylval.str,yytext);
 return PRINTABLESTRING;
 }
"BMPString" {printf("%s ",yytext);
 strcpy(yylval.str,yytext);
 return BMPSTRING;
 }
"UniversalString" {printf("%s ",yytext);
 strcpy(yylval.str,yytext);
 return UNIVERSALSTRING;
 }
".." {printf(".. dotdot");strcpy(yylval.str,yytext); return DOTDOT;}

EXTENSION {printf("EXTENSION ");yylval.val=EXTENSION;
 return EXTENSION;}

GeneralizedTime {printf("GeneralizedTime ");
 yylval.val=GeneralizedTime;
 return GeneralizedTime;}

UTCTime {printf("UTCTime ");yylval.val=UTCTime; return UTCTime;}

"(" {printf("("); strcpy(yylval.str,yytext); return OPENBR;}
")" {printf(") ");strcpy(yylval.str,yytext);return CLOSEBR;}

MIN {printf("%s ",yytext); strcpy(yylval.str,yytext); return MIN;}
MAX {printf("%s ",yytext); strcpy(yylval.str,yytext); return MAX;}

 113

NULL {printf("%s ",yytext);yylval.val=_NULL; return _NULL;}

REAL {printf("%s ",yytext);yylval.val=REAL; return REAL;}

SIZE {printf("SIZE ");yylval.val=SIZE;return SIZE; }
OF {printf("OF ");yylval.val=OF; return (OF);}
ANY {printf("ANY "); yylval.val=ANY; return(ANY);}
DEFINED {printf("DEFINED "); yylval.val=DEFINED; return(DEFINED);}
BY {printf("BY "); yylval.val=BY; return(BY);}

DEFAULT {printf("DEFAULT ");yylval.val=DEFAULT;return DEFAULT; }
IMPLICIT {printf("IMPLICIT ");yylval.val=IMPLICIT;return IMPLICIT;} /* consume this
keyword */
OPTIONAL {printf("OPTIONAL ");yylval.val=OPTIONAL;return OPTIONAL;}
EXPLICIT {printf("EXPLICIT ");} /* consume */
TRUE {printf("TRUE ");yylval.val=TRUE;return TRUE;}
FALSE {printf("**FALSE ");yylval.val=FALSE; return FALSE;}

{TAG} {int i,sum=0;
 char *pnt=yytext;// convert the tag digits to an int
 for(i=1;i<strlen(yytext)-1;i++)
 sum=sum*10+pnt[i]-'0';

 printf("%s ",yytext);yylval.val=sum; return(TAG);
 }
{NUMBER} {int i,sum=0; // (0)
 char *pnt=yytext;// convert the value digits to an int
// printf("\n**NUMBER yytext=%s\n",yytext);
 for(i=0;i<strlen(yytext);i++)
 sum=sum*10+pnt[i]-'0';

 printf("%d",sum);yylval.val=sum; return(NUMBER);
 }

"," {printf(", ");return (COMMA);}
"{" {printf("\n{ ");yylval.val=_br;return(_br);}
"}" {printf("}\n");yylval.val= br_;return (br_);}

::= {printf("::= "); return(DFB);}

{lcID} {printf("%s ",yytext);
 strcpy(yylval.str,yytext);
 return(lcID);
 }

BOOLEAN {printf("%s ",yytext);yylval.val=BOOLEAN; return BOOLEAN;}

OCTET {printf("OCTET ");
 yylval.val=OCTET;
 return (OCTET);}

 114

BIT {printf("BIT ");yylval.val=BIT;return BIT;}

STRING {printf("STRING ");
 yylval.val=STRING; return STRING;}

OBJECT {printf("%s ",yytext);
 yylval.val=OBJECT;
 return(OBJECT);}
IDENTIFIER {printf("%s ",yytext);
 yylval.val=IDENTIFIER;
 return(IDENTIFIER);}

DEFINITIONS {printf("DEFINITIONS ");return(DEFINITIONS);}

BEGIN {printf("BEGIN ");return(_BEGIN);}

INTEGER {printf("INTEGER "); yylval.val=INTEGER; return (INTEGER); }

END {printf("END "); return(_END);}

ENUMERATED {printf("ENUMERATED ");yylval.val=ENUMERATED; return
ENUMERATED;}

"..." {printf("... ");yylval.val=DOTDOTDOT; return(DOTDOTDOT);}

CHOICE {printf("CHOICE ");
 yylval.val=CHOICE;
 return(CHOICE);}

SEQUENCE {printf("SEQUENCE ");
 yylval.val=SEQUENCE;
 return(SEQUENCE);}

SET {printf("SET ");
 strcpy(yylval.str,yytext);
 return(SET);}

{ID} {printf("%s ",yytext);
 strcpy(yylval.str,yytext);
 return(ID);}

"--{" {printf("%s ",yytext); yylval.val=LEFTMATCH;return LEFTMATCH;}
"}--" {printf("%s ",yytext); yylval.val=RIGHTMATCH; return RIGHTMATCH;}

"--" {register int c;
 while ((c = input()) != '\n' && c != EOF) ;
 } /* consume comments */
"." {printf("%s",yytext); return DOT;}

 115

[\n]+ {printf("\n");}
[\t]+ /* whitespace */

Example asn1.y file
/* special purpose asn1 grammar for component matching project*/

%{
#include <stdio.h>
#include "type.h"
#include "asn1type.h"
#include "definition.h"
#include "stack.h"
#include "oid.h"

#define TERMINAL 0 // used to denote a terminal token
 Stack ST;
 int i;
 int paircount=0;
 Definition *top=0;
 char buf[100];
 Type AnyType={"",{"ANY",ANY},0,{0,-1}};
 Type AnyDefinedByType={"",{"ANY DEFINED BY",ANY_DEFINED_BY},0,{0,-1}};
 Type BitStringType={"",{"BIT STRING",BIT_STRING},0,{0,-1}};
 Type RealType={"",{"REAL",REAL},0,{0,-1}};
 Type ObjectIdentifierType={"",{"OBJECT IDENTIFIER",OBJECT_IDENTIFIER},0,{0,-1}};
 Type ChoiceType={"",{"CHOICE",CHOICE},0,{0,-1}};
 Type NullType={"",{"NULL",_NULL},0,{0,-1}};
 Type IdType={"",{"",0},0,{0,-1}};

 Type EnumeratedType={"",{"ENUMERATED",ENUMERATED},0,{0,-1}};
 Type IntegerType={"",{"INTEGER",INTEGER},0,{0,-1}};

 Type OctetStringType={"",{"OCTET STRING",OCTET_STRING},0,{0,-1},0,0,0};
 Type ExtensionType={"",{"EXTENSION",EXTENSION},0,{0,-1},0,0,0};

 Type SequenceOfType={"",{"SEQUENCE OF",SEQUENCE_OF},0,{0,-1}};
 Type SetType={"",{"SET",SET},0,{0,-1}};
 Type BooleanType={"",{"BOOLEAN",BOOLEAN},0,{0,-1}};
 Type SequenceType={"",{"SEQUENCE",SEQUENCE},0,{0,-1}};

 Type SetOfType={"",{"SET OF",SET_OF},0,{0,-1}};
 Type UTCTimeType={"",{"UTCTime",UTCTime},0,{0,-1}};
 Type IA5StringType={"",{"IA5String",IA5STRING},0,{0,-1}};
 Type TeletexStringType={"",{"TeletexString",TELETEXSTRING},0,{0,-1}};
 Type PrintableStringType={"",{"PrintableString",PRINTABLESTRING},0,{0,-1}};
 Type BMPStringType={"",{"BMPString",BMPSTRING},0,{0,-1}};
 Type UniversalStringType={"",{"UniversalString",UNIVERSALSTRING},0,{0,-1}};

 Type GeneralizedTimeType={"",{"GeneralisedTime",GeneralizedTime},0,{0,-1}};

 116

 Type *TypePnt;
// ASN1Type * apnt;
 char buf[100]; // for temp storage of lcIDs
 ASN1Type asn1Syntax={"Syntax",0};
 ASN1Type asn1OctetString={"OCTET STRING",OCTET_STRING};
%}

%union {int val; char str[100];}
%token <str> TRUE FALSE _NULL OCTET STRING
%token <val> VALUE VALUE_OF
%token <str>ANY DEFINED BY ANY_DEFINED_BY
%token <str> DEFAULT IMPLICIT
%token <str> DFB _BEGIN _END DEFINITIONS IDENTIFIER
%token <str> CHOICE
%token <str>IMPLICIT OPTIONAL
%token <str> ModuleDefinition SET SET_OF SEQUENCE_OF
%token <str> COMMA
%token <val> TAG MINUS NUMBER
%token <str> lcID UTCTime GeneralizedTime
%token <val> INTEGER OCTET_STRING BIT_STRING BOOLEAN SEQUENCE OF
%token <str> ID OPENBR CLOSEBR
%token <str> _br br_ MIN MAX DOTDOT
%token <str> SIZE SCOPE OBJECT IDENTIFIER OBJECT_IDENTIFIER
%token <str> REAL BIT ENUMERATED DOTDOTDOT DOT
%token <val> NAMED_NUMBER
%token <str> LEFTMATCH, RIGHTMATCH
//%token <str> OIDVAL
%token <val> EXTENSION
%token <str> IA5STRING, TELETEXSTRING, PRINTABLESTRING,BMPSTRING,
UNIVERSALSTRING

%type <str> typereference TaggedType DefinedType
%type <str> ComponentTypeList ComponentType
%type <str> ReferencedType ChoiceType ChoiceThing
%type <str> AlternativeTypeList AlternativeType
%type <str> NullType OctetStringType SetType SetOfType SetThing
%type <str> ObjectIdentifierType RealType BitStringType EnumeratedType
%type <str> RootEnumeration Enumeration Enumerations AdditionalEnumeration
%type <str> XXX EnumerationItem
%type <val> NamedNumber SignedNumber
%type <val> IntegerType BooleanType SequenceType SequenceOfType SequenceThing
%type <val> BuiltInType Type
%type <str> lcID NamedType
%type <str> SizeConstraint UTCTimeType
//%type <str> SyntaxDefinition
%type <str> Oid

%%

exp : ID DEFINITIONS DFB {resetStack(&ST);} _BEGIN ModuleBody {} _END
 {//printf("\nASN1 parsed ok\n");

 117

 } ;

Oid : NUMBER {Type T=IdType; // e.g 0.1.2.3.4
 sprintf(T.ObjectIdentifier,"%d",$1);
 pushType(&ST,&T);
 } DOT OidList
 {int i;
 Type A,T;
 pullType(&ST,&A);
 pullType(&ST,&T);
 strcat(T.ObjectIdentifier,".");
 strcat(T.ObjectIdentifier,A.ObjectIdentifier);
 pushType(&ST,&T);

 };
OidList: NUMBER {Type T=IdType;
 sprintf(T.ObjectIdentifier,"%d",$1);
 pushType(&ST,&T);
 }
 | Oid {};

ModuleBody : AssignmentList | /* empty */ {};

AssignmentList : Assignment | AssignmentList Assignment {} ;

Assignment: TypeAssignment {};

// | ValueAssignment ;

/*
SyntaxDefinition: LEFTMATCH SyntaxList RIGHTMATCH
 {Type T;

 //printf("***syntax definition ");
// printStack(&ST);
 }

 ;

SyntaxList: ID {Type T,*new;
 strcpy(T.name,$1);
 pushType(&ST,&T);
 //printStack(&ST);
 }
 | ID COMMA SyntaxList
 {//There is a type on the stack containing syntaxlist
 Type SL,*new;
 pullType(&ST,&SL);//get it
 new=newType($1,&asn1Syntax,0);
 SL.next=new;

 118

 pushType(&ST,&SL);

 } ;
*/

TypeAssignment : typereference {}DFB Type

{ Type A;Type T;int i;
 Definition *D;

printStack(&ST);
 pullType(&ST,&A);// the Type e.g. SEQUENCE
 pullType(&ST,&T);// the typereference
// printf("***Typeassignment tag=%d %d\n",T.tag.value,A.tag.value);
 addDefinition(top,&T);
 D=currentDefinition(top);
 D->aType=A.aType; // e.g. ("SEQUENCE" SEQUENCE) or ("AAA" 0)
 D->tag.value=A.tag.value;
 D->tag.flag=A.tag.flag;

 strcpy(D->ObjectIdentifier,T.ObjectIdentifier);

// D->SyntaxDefinition= A.SyntaxDefinition;
 D->typelist=A.next;
 D->next=0;

 }
 ;

typereference : ID {Type T=IdType;
 // printf("\n**ID= %s\n",$1);
 strcpy(T.aType.name,$1);
 pushType(&ST,&T);
 }
 | Oid ID
 {Type T=IdType, A;
 // printf("\n**OID= %s ID= %s\n",$1,$2);
 pullType(&ST,&A); //the oid
 strcpy(T.ObjectIdentifier,A.ObjectIdentifier);
 strcpy(T.aType.name,$2);
 pushType(&ST,&T);
 // sprintType(&T);
 } ;

Type : BuiltInType { } | ReferencedType {} | ConstrainedType {};

ConstrainedType: TypeWithConstraint {} ;

 119

TypeWithConstraint: SequenceSizeConstraintOf {} ;

SequenceSizeConstraintOf: SEQUENCE SizeConstraint OF Type
 {Type T1=SequenceOfType;
 Type T2,*new;

 pullType(&ST,&T2); // the value left by Type

 new=newType(T2.name,&T2.aType,0);// make some new storage
 new->tag=T2.tag;
 T1.next=new;
 pushType(&ST,&T1);

 } ;

SizeConstraint: SIZE {} Constraint {} ;

Constraint: OPENBR {}LowerEnd {} DOTDOT {} UpperEnd {} CLOSEBR {} ;

LowerEnd: NUMBER {}| MIN {} ;

UpperEnd: NUMBER {}| MAX {} ;

ReferencedType : DefinedType {} ;

DefinedType : typereference
 {
 } ;

BuiltInType : IntegerType {} | BooleanType {}| SequenceType{}|
 CharacterStringType {} |
 SetOfType {}| SequenceOfType {}| OctetStringType {}|
 TaggedType {}|NullType {}|ChoiceType {} |
 SetType {} | ObjectIdentifierType{}|
 RealType {} | BitStringType{}|
 AnyType {}| AnyDefinedByType{}|
 UTCTimeType {} | GeneralizedTimeType {} |
 ExtensionType {}
 | EnumeratedType {} ;

CharacterStringType : IA5StringType | TeletexStringType |
 PrintableStringType | BMPStringType|
 UniversalStringType;

IA5StringType: IA5STRING {pushType(&ST,&IA5StringType);
 };
TeletexStringType: TELETEXSTRING {pushType(&ST,&TeletexStringType);
 };
PrintableStringType: PRINTABLESTRING {pushType(&ST,&PrintableStringType);
 };

 120

BMPStringType: BMPSTRING {pushType(&ST,&BMPStringType);
 };
UniversalStringType: UNIVERSALSTRING {pushType(&ST,&UniversalStringType);
 };

ExtensionType : EXTENSION lcID
 {Type e;
 e=ExtensionType;
 strcpy(e.ObjectIdentifier,$2);
// printf("\n***extension ");
 sprintType(&e);
 pushType(&ST,&e);
 } ;

AnyDefinedByType: AnyDefinedByThing {} ;

AnyDefinedByThing: ANY DEFINED BY lcID {pushType(&ST,&AnyDefinedByType);
 } | ANY DEFINED BY ID
 {pushType(&ST,&AnyDefinedByType);
 };

AnyType: ANY {pushType(&ST,&AnyType);} ;

NamedNumber: lcID {} _br SignedNumber {} br_
 {Type T,A;
 T=IdType;
 strcpy(T.name,$1);
 pullType(&ST,&A); // the value
 T.value=A.value;
 pushType(&ST,&T);

 };

SignedNumber: NUMBER
 {Type T;
 T.value=$1;
 pushType(&ST,&T);
 } | MINUS NUMBER
 { Type T;
 T.value= - $1;
 pushType(&ST,&T);
 } ;

EnumeratedType: ENUMERATED _br Enumerations br_
 {Type T;
 T=EnumeratedType;
 pushType(&ST,&T);
 };

Enumerations: RootEnumeration ; //| RootEnumeration XXX ;

 121

XXX: COMMA DOTDOTDOT | COMMA DOTDOTDOT COMMA AdditionalEnumeration;

AdditionalEnumeration: Enumeration ;

RootEnumeration: Enumeration ;

Enumeration: EnumerationItem | EnumerationItem COMMA Enumeration ; // this needs extending

EnumerationItem: NamedNumber {}; // | lcID {} ; // for the moment dont allow lcID

RealType: REAL {pushType(&ST,&RealType);} ;

BitStringType: BIT STRING {pushType(&ST, &BitStringType);} ;

ObjectIdentifierType: OBJECT IDENTIFIER {pushType(&ST,&ObjectIdentifierType);};

SequenceOfType: SEQUENCE OF
 {
 }
 Type
 {Type T1=SequenceOfType;
 Type T2,*new;

 pullType(&ST,&T2); // the value left by Type

 new=newType(T2.name,&T2.aType,0);// make some new storage
 //printTypeList(&T2);
 T1.next=new;
 pushType(&ST,&T1);

 } ;

SetOfType: SET OF Type
 {Type T1=SetOfType;
 Type T2,*new;

 pullType(&ST,&T2); // the value left by Type
 //printTypeList(&T2);
 new=newType(T2.name,&T2.aType,0);// make some new storage

 T1.next=new;
 pushType(&ST,&T1);

 } ;

SetType: SetThing {} ;

SetThing: SET _br br_ {pushType(&ST,&SetType);}|

 122

 SET _br AlternativeTypeList br_
 {Type T1,T2;
 //printf("\n**set type");
 T2=SetType;
 //printStack(&ST);
 //stack contains "componenttype list "
 pullType(&ST,&T1); //a ABC etc in linked list

 T2.next=T1.next;//the move the chain across
 pushType(&ST,&T2);
 //printStack(&ST);
 } ;

OctetStringType : OCTET STRING {pushType(&ST,&OctetStringType);} ;
/* |
 OCTET STRING SyntaxDefinition
 {
 Type *SyntaxDef;
 Type *new,A;
 pullType(&ST,&A);
 new=newType("",&asn1OctetString,0);
 SyntaxDef=newType("",&asn1Syntax,0);
 strcpy(SyntaxDef->name,A.name);
 SyntaxDef->next=A.next;
 new->SyntaxDefinition=SyntaxDef;
 pushType(&ST,new);
 // printf("***OCTET STRING");
 // printStack(&ST);
 };
*/
ChoiceType: ChoiceThing {} ;

ChoiceThing : CHOICE _br AlternativeTypeList br_
 {Type T1,T2;
 //printf("\n**choice type");
 T2=ChoiceType;
 //printStack(&ST);
 //stack contains "componenttype list "
 pullType(&ST,&T1); //a ABC etc in linked list
 T2.tag=T1.tag;
 printf("****choice tag=%d %d\n",T2.tag.value,T2.tag.flag);
 T2.next=T1.next;//the move the chain across
 pushType(&ST,&T2);
 //printStack(&ST);
 };

AlternativeTypeList : AlternativeType {} | AlternativeTypeList COMMA AlternativeType
{Type T1,T2,*pnt;
 // we now take two types off the stack & join them together
 // so the top of stack gets one added onto its linked list

 123

 //printf("\nalternative type list");
 // printStack(&ST);
 pullType(&ST,&T1);pullType(&ST,&T2);
 // sprintType(&T1);
 // sprintType(&T2);
 pnt=T2.next; // the first malloced one
 // find the end of the chain

 while(pnt->next!=0) pnt=pnt->next;
 //pnt is now the end
 pnt->next=T1.next;
 pushType(&ST,&T2);
 //printStack(&ST);
 };

AlternativeType: NamedType {Type T,*new;
 // have a named type or a type on the stack
 // create a newTYpe (malloc)
 // add it it on to the next pointer of the one on the stack
 // printf("\n**alternative type");
 // printStack(&ST);
 pullType(&ST,&T);
 new=newType(T.name,&T.aType,0);//new Type
 new->tag=T.tag;
 T.next=new;
 pushType(&ST,&T);
 // printStack(&ST);
 } |
 Type
 {Type T,*new;
 // have a named type or a type on the stack
 // create a newTYpe (malloc)
 // add it it on to the next pointer of the one on the stack
 //printf("\n**alternative type");
 //printStack(&ST);
 pullType(&ST,&T);
 new=newType(T.name,&T.aType,0);//new Type
 new->tag=T.tag;
 T.next=new;
 pushType(&ST,&T);
 // printStack(&ST);
 };

NullType : _NULL {pushType(&ST,&NullType);} ;

TaggedType: TAG {Type T;
 T.tag.value=$1 +0xA0;
 T.tag.flag=0;
 strcpy(T.name,"tag");

 124

 // printf("**tag=%d\n",T.tag.value);
 pushType(&ST,&T);
 // printStack(&ST);
 }
 Type
 {Type TagT,T;
 printf("\n***tag type ");
 //printStack(&ST);
 pullType(&ST,&T);
 pullType(&ST,&TagT);

 T.tag=TagT.tag;

 printf("\n****tag=%d %d",T.tag.value,T.tag.flag);
 pushType(&ST,&T);
 printStack(&ST);
 }|

 TAG {Type T;
 T.tag.value=$1;
 strcpy(T.name,"tag");
 pushType(&ST,&T);
 // printStack(&ST);
 }
 IMPLICIT
 Type
 {Type TagT,T;
 printf("\n***IMPLICIT tag type ");
 //printStack(&ST);
 pullType(&ST,&T);
 pullType(&ST,&TagT);
 //printf("\n***tag=%d",TagT.tag.value);

 T.tag.value=TagT.tag.value;
 T.tag.flag=IMPLICIT_TAG;
 pushType(&ST,&T);
 // printStack(&ST);
 };
IntegerType : INTEGER {pushType(&ST,&IntegerType);} |
 INTEGER _br NamedNumberList br_ {pushType(&ST,&IntegerType);} ;

NamedNumberList: NamedNumber {} | NamedNumberList COMMA NamedNumber {};

NamedNumber: lcID OPENBR NUMBER CLOSEBR {};

SequenceType : SEQUENCE _br br_ {pushType(&ST,&SequenceType);} |
 SequenceThing {} ;

SequenceThing: SEQUENCE _br {} ComponentTypeList br_
 {Type T1,T2;
 //printf("\n**sequence type");

 125

 T2=SequenceType;
 //printStack(&ST);
 //stack contains "componenttype list "
 pullType(&ST,&T1); //a ABC etc in linked list

 T2.next=T1.next; // move the chain across
 pushType(&ST,&T2);
 //printStack(&ST);
 } ;

ComponentTypeList : ComponentType {} | ComponentTypeList COMMA ComponentType
 {Type T1,T2,*pnt;
 // we now take two types off the stack & join them together
 // so the top of stack gets one added onto its linked list
 // printf("\n***componenttypelist ");
 // printStack(&ST);
 pullType(&ST,&T1);
// printf("match=%s!",T1.matchingRule);
 pullType(&ST,&T2);
// printf("match=%s$",T2.matchingRule);
 pnt=T2.next; // the first malloced one
 // find the end of the chain
 while(pnt->next!=0) pnt=pnt->next;
 //pnt is now the end
 pnt->next=T1.next;
 pushType(&ST,&T2);

 };

ComponentType: NamedType
 {Type T,*new;
 printf("\n**Component type");
 // have a named type on the stack
 // create a newTYpe (malloc)
 // add it it on to the next pointer of the one on the stack
 //printStack(&ST);
 pullType(&ST,&T);
 // printf("***1\n");
 new=newType(T.name,&T.aType,0);//new Type tagged on to T
 // printf("***2\n");
 new->tag.value=T.tag.value;
 new->tag.flag=T.tag.flag;
 strcpy(new->ObjectIdentifier,T.ObjectIdentifier);
 T.next=new;

 pushType(&ST,&T);
 //printStack(&ST);
 } |
 NamedType OPTIONAL
 {Type T,*new;

 126

 printf("\nComponent type optional");
 // have a named type on the stack
 // create a newTYpe (malloc)
 // add it it on to the next pointer of the one on the stack
 pullType(&ST,&T);
 new=newType(T.name,&T.aType,0);//new Type tagged on to T
 new->tag.value=T.tag.value;
 new->tag.flag=T.tag.flag;
 new->optional=1;
 strcpy(new->ObjectIdentifier,T.ObjectIdentifier);
 T.next=new;
 pushType(&ST,&T);
 // printStack(&ST);
 } |
 NamedType DEFAULT Value
 {Type T,*new;
 //printf("\nComponent type");
 // have a named type on the stack
 // create a newTYpe (malloc)
 // add it it on to the next pointer of the one on the stack
 pullType(&ST,&T);
 new=newType(T.name,&T.aType,0);//new Type tagged on to T
 new->tag.value=T.tag.value;
 new->tag.flag=T.tag.flag;
 new->Default=1;
 strcpy(new->ObjectIdentifier,T.ObjectIdentifier);
 T.next=new;
 pushType(&ST,&T);
 //printStack(&ST);
 };

Value : NUMBER {} | TRUE {} | FALSE {} |lcID {};

NamedType: lcID {Type T;
 strcpy(T.name,$1);
 pushType(&ST,&T);}
 Type
 {Type T,A;
// printf("\n**named type");
// printStack(&ST);
 pullType(&ST,&T);
// sprintType(&T);
 pullType(&ST,&A); //lcID
 // printf(" %s ",A.name);
 strcpy(T.name,A.name);
 pushType(&ST,&T);
 // printStack(&ST);
 // printf("\n** end named type tag %d %d ",T.tag.value,A.tag.value);

 };

 127

BooleanType : BOOLEAN {pushType(&ST,&BooleanType);} ;

UTCTimeType : UTCTime {pushType(&ST,&UTCTimeType);};

GeneralizedTimeType : GeneralizedTime {pushType(&ST,&GeneralizedTimeType);} ;

%%
// extern FILE *yyin;
/*
main(int argc,char *argv[])
{ ++argv, --argc; /* skip over program name */
/*
 if (argc > 0)
 yyin = fopen(argv[0], "r");
 else
 yyin = stdin;
yyparse();
 //printf("top=%s\n",top.name);
}
*/

yyerror (char *s){printf("%s\n",s);exit(0);}

yywrap () {/*printf("paircount is %d done\n",paircount);*/}

Common.h file

#if ! defined _oidstuff
#define _oidstuff
typedef struct _oid{int length;char *oidbytes;} OID;

typedef struct _oidfunct {void (* function)();unsigned char *oidString;} OidFunction;

typedef struct _oidref {char *name;
 OID *oid;
 struct _oidref *next;
 }OIDREF;
//OID *newOID(OID oid);
#endif
#if ! defined _choice

#define _choice

typedef void(* _CPF)(char * , unsigned char **);
typedef void(* _CPFPLUS)(char *,int,int,unsigned char **,int, void *,int,int, char *);
typedef struct _typedesc
 {
 char * name;
 int tag;// just for user specified tags

 128

 int primitive; // 30 for SEQUENCE etc
 int tagOption;// IMPLICIT_TAG or EXPLICIT_TAG
 // void (* function)(char *,unsigned char **) ;
 _CPF function;
 int optional;
 int Default;
 char *ObjectIdentifier;
 }
TypeDescription;
#endif

#if ! defined _tagg
#define _tagg
typedef struct _tagg{
 int flag; // implicit or explicit
 int value;// the actual tagoidbytes

#define IMPLICIT_TAG 0
#define EXPLICIT_TAG 1

}Tag ;

#endif

#if ! defined _asndef
#define _asndef
typedef struct _asn1type{
 char name[100];
 int token;
} ASN1Type;
#endif

#if !defined _typedef
#define _typedef
typedef struct _type{
 char name[100];

 ASN1Type aType;
 struct _type *next;
 Tag tag;
 int optional;// 1 if OPTIONAL 0 otherwise
 int Default;// 1 if this is a default type
// struct _type *SyntaxDefinition;
 char ObjectIdentifier[100];
 int value; // for NUMBER types & enumerations
 }Type;
#endif

 129

#if ! defined _stackdef
#define _stackdef
typedef struct _stack{
 Type array[50];
 int index;
}Stack;
#endif

#if ! defined s_def
#define s_def
typedef struct _definition {
 char name[100];
 struct _definition *next;
 Type *typelist;
 Tag tag;
 ASN1Type aType;
 // Type * SyntaxDefinition;
 char ObjectIdentifier[100];
// char matchingRule[100];
} Definition;

#endif

pkc.asn1

X509 DEFINITIONS ::=
BEGIN

 Certificate ::= SEQUENCE {
 tbsCertificate TBSCertificate,
 signatureAlgorithm AlgorithmIdentifier,
 signatureValue BIT STRING }
 TBSCertificate ::= SEQUENCE {
 version [0] EXPLICIT Version DEFAULT v1,
 serialNumber CertificateSerialNumber,
 signature AlgorithmIdentifier,
 issuer Name,
 validity Validity,
 subject Name,
 subjectPublicKeyInfo SubjectPublicKeyInfo,
 issuerUniqueID [1] IMPLICIT UniqueIdentifier OPTIONAL,
 -- If present, version shall be v2 or v3
 subjectUniqueID [2] IMPLICIT UniqueIdentifier OPTIONAL,
 -- If present, version shall be v2 or v3
 extensions [3] EXPLICIT Extensions OPTIONAL
 -- If present, version shall be v3
 }
 Version ::= INTEGER { v1(0), v2(1), v3(2) }
 CertificateSerialNumber ::= INTEGER

 130

 AlgorithmIdentifier ::= SEQUENCE {
 algorithm OBJECT IDENTIFIER,
 parameters ANY DEFINED BY algorithm OPTIONAL }
 Name ::= CHOICE {
 rdnSequence RDNSequence }
 RDNSequence ::= SEQUENCE OF RelativeDistinguishedName
 RelativeDistinguishedName ::=
 SET OF AttributeTypeAndValue
 AttributeTypeAndValue ::= SEQUENCE {
 type AttributeType,
 value AttributeValue }

 AttributeType ::= OBJECT IDENTIFIER
 AttributeValue ::= ANY DEFINED BY AttributeType
-- MODIFIED by E Ball
 Validity ::= SEQUENCE {
 notBefore Time,
 notAfter Time }
 Time ::= CHOICE {
 utcTime UTCTime,
 generalTime GeneralizedTime }
 UniqueIdentifier ::= BIT STRING
 SubjectPublicKeyInfo ::= SEQUENCE {
 algorithm AlgorithmIdentifier,
 subjectPublicKey BIT STRING }
 Extensions ::= SEQUENCE SIZE (1..MAX) OF Extension
 Extension ::= SEQUENCE {
 extnID OBJECT IDENTIFIER,
 critical BOOLEAN DEFAULT FALSE,
 extnValue OCTET STRING }
END

ac.asn1

X509ATTRIBUTECERTIFICATE DEFINITIONS ::=
BEGIN

AttributeCertificate ::= SEQUENCE {
 acinfo AttributeCertificateInfo,
 signatureAlgorithm AlgorithmIdentifier,
 signatureValue BIT STRING
 }

 AttributeCertificateInfo ::= SEQUENCE {
 version AttCertVersion DEFAULT 1,
 holder Holder,
 issuer AttCertIssuer,
 signature AlgorithmIdentifier,
 serialNumber CertificateSerialNumber,

 131

 attrCertValidityPeriod AttCertValidityPeriod,
 attributes Attributes,
 issuerUniqueID UniqueIdentifier OPTIONAL,
 extensions Extensions OPTIONAL
 }
Attributes ::= SEQUENCE OF Attribute

 AttCertVersion ::= INTEGER { v2(1) }
 Holder ::= SEQUENCE {
 baseCertificateID [0] IssuerSerial OPTIONAL,
 -- the issuer and serial number of
 -- the holder's Public Key Certificate

 entityName [1] GeneralNames OPTIONAL,
 -- the name of the claimant or role
 objectDigestInfo [2] ObjectDigestInfo OPTIONAL
 -- used to directly authenticate the holder,
 -- for example, an executable
 }

 ObjectDigestInfo ::= SEQUENCE {
 digestedObjectType ENUMERATED {
 publicKey (0),
 publicKeyCert (1),
 otherObjectTypes (2) },
 -- otherObjectTypes MUST NOT
 -- be used in this profile
 otherObjectTypeID OBJECT IDENTIFIER OPTIONAL,
 digestAlgorithm AlgorithmIdentifier,
 objectDigest BIT STRING
 }

 AttCertIssuer ::= CHOICE {
 v1Form GeneralNames, -- MUST NOT be used in this
 -- profile
 v2Form [0] V2Form -- v2 only
 }

 V2Form ::= SEQUENCE {
 issuerName GeneralNames OPTIONAL,
 baseCertificateID [0] IssuerSerial OPTIONAL,
 objectDigestInfo [1] ObjectDigestInfo OPTIONAL
 -- issuerName MUST be present in this profile
 -- baseCertificateID and objectDigestInfo MUST NOT
 -- be present in this profile
 }

 IssuerSerial ::= SEQUENCE {
 issuer GeneralNames,
 serial CertificateSerialNumber,
 issuerUID UniqueIdentifier OPTIONAL

 132

 }

 AttCertValidityPeriod ::= SEQUENCE {
 notBeforeTime GeneralizedTime,
 notAfterTime GeneralizedTime
 }

 AlgorithmIdentifier ::= SEQUENCE {
 algorithm OBJECT IDENTIFIER,
 parameters ANY DEFINED BY algorithm OPTIONAL }

 CertificateSerialNumber::= INTEGER

 GeneralNames ::= SEQUENCE SIZE (1..MAX) OF GeneralName

 GeneralName ::= CHOICE {
 otherName [0] AnotherName,
 rfc822Name [1] IA5String,
 dNSName [2] IA5String,
 x400Address [3] OCTET STRING,
 directoryName [4] Name,
 ediPartyName [5] EDIPartyName,
 uniformResourceIdentifier [6] IA5String,
 iPAddress [7] OCTET STRING,
 registeredID [8] OBJECT IDENTIFIER
 }

 AnotherName ::= TYPEIDENTIFIER

 TYPEIDENTIFIER ::= SEQUENCE {
 typeid OBJECT IDENTIFIER,
 value ANY DEFINED BY typeid }

 EDIPartyName ::= SEQUENCE {
 nameAssigner [0] DirectoryString OPTIONAL,
 partyName [1] DirectoryString
 }
 UniqueIdentifier::= BIT STRING

 Name::= CHOICE {rdnSequence RDNSequence }
 RDNSequence ::= SEQUENCE OF RelativeDistinguishedName

 RelativeDistinguishedName::= SET OF AttributeTypeAndValue

 AttributeTypeAndValue ::= SEQUENCE {
 type AttributeType,
 value AttributeValue }
 AttributeType::= OBJECT IDENTIFIER
 AttributeValue::= ANY DEFINED BY AttributeType

 133

DirectoryString ::= CHOICE {
 teletexString TeletexString,
 printableString PrintableString,
 bmpString BMPString,
 universalString UniversalString
}

-- Attribute types

 Extensions ::= SEQUENCE SIZE (1..MAX) OF Extension
 Extension ::= SEQUENCE {
 extnID OBJECT IDENTIFIER,
 critical BOOLEAN DEFAULT FALSE,
 extnValue EXTENSION extnID }

 Attribute ::= SEQUENCE {
 type AttributeType,
 values AttributeValues
 -- at least one value is required
 }
AttributeValues::= SET OF AttributeValue

END

crl.asn1

X509 DEFINITIONS ::=
BEGIN
CertificateList ::= SEQUENCE {
 tbsCertList TBSCertList,
 signatureAlgorithm AlgorithmIdentifier,
 signatureValue BIT STRING }

 TBSCertList ::= SEQUENCE {
 version Version OPTIONAL,
 -- if present, shall be v2
 signature AlgorithmIdentifier,
 issuer Name,
 thisUpdate Time,
 nextUpdate Time OPTIONAL,
 revokedCertificates SEQUENCE OF SEQUENCE {
 userCertificate CertificateSerialNumber,
 revocationDate Time,
 crlEntryExtensions Extensions OPTIONAL
 -- if present, shall be v2
 } OPTIONAL,
 crlExtensions [0] EXPLICIT Extensions OPTIONAL
 -- if present, shall be v2
 }

 134

Version::= INTEGER

 Name::= CHOICE {rdnSequence RDNSequence }
 RDNSequence ::= SEQUENCE OF RelativeDistinguishedName

 RelativeDistinguishedName::= SET OF AttributeTypeAndValue

 AttributeTypeAndValue ::= SEQUENCE {
 type AttributeType,
 value AttributeValue }
 AttributeType::= OBJECT IDENTIFIER
 AttributeValue::= ANY DEFINED BY AttributeType

 Time ::= CHOICE {

 utcTime UTCTime,
 generalTime GeneralizedTime }
 UniqueIdentifier ::= BIT STRING

Extensions ::= SEQUENCE SIZE (1..MAX) OF Extension

Extension ::= SEQUENCE {
 extnID OBJECT IDENTIFIER,
 critical BOOLEAN DEFAULT FALSE,
 extnValue OCTET STRING }

CertificateSerialNumber ::= INTEGER

AlgorithmIdentifier ::= SEQUENCE {
 algorithm OBJECT IDENTIFIER,
 parameters ANY DEFINED BY algorithm OPTIONAL }

END

Example x509attrtypes.txt file

Define_attr X509Certificate.tbsCertificate.version x509version
Define_attr X509Certificate.tbsCertificate.validity.notBefore x509validityNotBefore
Define_attr X509Certificate.tbsCertificate.validity.notAfter x509validityNotAfter
Define_attr X509Certificate.tbsCertificate.Extention.holderAltName.rfc822name
x509pkcHolderRfc822Name
Define_attr X509Certificate.tbsCertificate.Extention.holderAltName.HolderDnsName
x509pkcHolderDnsName
Define_attr X509Certificate.tbsCertificate.Extention.holderAltName.HolderDN x509pkcHolderDN
Define_attr X509Certificate.tbsCertificate.Extention.holderAltName.HolderURI x509pkcHolderURI
Define_attr X509Certificate.tbsCertificate.Extention.holderAltName.HolderIpAddress
x509pkcHolderIpAddress
Define_attr X509Certificate.tbsCertificate.Extention.holderAltName.HolderRegisteredID
x509acHolderRegisteredID

 135

Define_attr X509Certificate.tbsCertificate.Extention.IssuerAltName.IssuerRfc822Name
x509IssuerRfc822Name
Define_attr X509Certificate.tbsCertificate.Extention.IssuerAltName.IssuerRfc822Name
x509IssuerDnsName
Define_attr X509Certificate.tbsCertificate.Extention.IssuerAltName.IssuerRfc822Name x509IssuerURI
Define_attr X509Certificate.tbsCertificate.Extention.IssuerAltName.IssuerRfc822Name
x509IssuerIpAddress
Define_attr X509Certificate.tbsCertificate.Extention.IssuerAltName.IssuerRfc822Name
x509IssuerRegisteredID
Define_attr X509Certificate.tbsCertificate.Extention.IssuerAltName.IssuerRfc822Name
x509authorityCertIssuer

