Adding Certificate Retrieval to OpenLDAP

Deliverable D4: Final Report

Version 1.0. D.W.Chadwick 8 August 2004

Table of Contents

[g LA oo 18 ot 1 o o H TSP PRRI 1
INItIAl ODJECHIVES ... e sre e sne e 1
[Nitial ProjECt PLaN ..o 1
Initial Set of DElIVErabIESc.oiiiicece e 1
PI O] ECL S PIOGIESS ...ttt bttt b ettt e e b e ene e 2
FINAl ODJECLIVES.....cciee et e et e s b e s beesreesnneens 4
FINal DEIVEr GDIES........c.ooiieee e 5
REASONSTOr DEIAYS.....ccuiieiiecieccie ettt e b e reesreesnreens 5
CONCIUSION .ttt b ettt e bbb e 5
REFEI BNCES.......eeee e 6
Appendix 1 Detailed Progress REDOIT........coviiririerieriese e 7
Appendix 2 Original Planned Tasksand RESOUICES...........ccceveeiiieeieeciieesiee e, 16
Appendix 3Revised Project Plan ... 17
Appendix 4. Returning Matched Valueswith LDAPV3........ccccoooeevivieeieeceeen, 18
Appendix 5. LDAP Schemafor X.509 Certificates........ccocvereririenieeiiieneseseniens 27
Appendix 6. LDAP Schema for X.509 Attribute Certificates..........cccccevevvvereenen. 58
Appendix 7. LDAP Schemafor X.509 CRLS.......cccooirirerinininieeeeeeesee e 80
Appendix 8. Final Detailed Design of an LDAP X.509 Parsing Server 97
Appendix 9. Write Ahead Log (WAL) DESIGNcoovriiriiriinirieneeeeeeie e 106

Appendix 10. Parsing X.509 AttribUteS.......ccccoviiiiiece e 108

Introduction

There are anumber of deficienciesin LDAP when it isused to support PKIs. Firstly it
IS not possible to retrieve a single attribute value from a multi-valued attribute.
Secondly, it is not possible to search for an X.509 [1] attribute (i.e. a public key
certificate (PKC), attribute certificate (AC) or certificate revocation list (CRL)) based
on its value. These and other deficiencies have been described more fully in a paper in
Communications of the ACM [2]. There were anumber of Internet Drafts [3,4,5] that
once implemented, would solve both of these problems. The intention of this
TERENA project was to implement two of these I Ds, namely matched values [4] and
certificate matching rules [5] and to build them into the OpenL DAP source code.

OpenLDAP Software [6] is acommunity developed LDAP implementation that
provides an enterprise level LDAP server aswell as client tools and SDKSs.
OpenLDAP Software aso serves as a reference implementation for the community.
OpenLDAP Software’ s open source licensing allows vendors to incorporate
enhancements into their products which furthers the availability of these technologies.

Initial Objectives

The specific objectives at the start of the project were:

1. Toimplement the matched values LDAPv3 control in the OpenL DAP source code

2. Toimplement the matched values LDAPv3 control in an LDAP client, so asto
demonstrate its functionality

3. Toimplement (a subset of) the certificate matching rules specified in [5] in the
OpenLDAP source code

4. Toimplement (asubset of) the certificate matching rules specified in [5] in an
LDAP client so as to demonstrate its functionality

5. To progressthe Internet Drafts[3, 4, 5] to RFC proposed standard status.

Initial Project Plan

The project was planned to run for 18 months, starting in September 2001. It wasto
consist of 3 phases. A detailed set of the tasks and resources needed to achieve thisare
shown in Appendix 2.

Phase 1. After 6 months to demonstrate that a certificate can be added to OpenLDAP
and its fields stored in the indexes so that it can subsequently be searched for.

Phase 2. After 12 months to demonstrate the retrieval of single certificates from an
entry using equality matching.

Phase 3. After 18 months to demonstrate an enhanced LDAP client that can request
certificates that match on certain fields contained within them e.g. the email address
of the user, the name of the CA, the key usage fields etc.

It was noted that it would never be possible to implement the complete set of fieldsin
a certificate given the myriad of possible extensions that can be included, but that the
exact set of fields would be chosen by talking to the Terena TF-LSD and PKI-
COORD groups and determining their user requirements.

Initial Set of Deliverables

The project initially had 4 deliverables as shown in the Table below. Thisreport isthe
fourth of these deliverable.

Phase Deliverable number Date due Title / Description

1 D1 6 months from start Detailed design document for modifying
OpenL DAP source code

3 D2 End of Project Updated Internet RFCs or IDs for [3,4,5]

3 D3 End of Project Enhanced OpenL DAP source code

3 D4 End of Project Project Report to TERENA (this document)

Project’s Progress

Just before the project started David Chadwick had a meeting with Kurt Zeilenga and
Steven Legg at the IETF meeting in London, August 2001. It was decided to
fundamentally change the design of the project, to align with anew Internet Draft
published by Steven Legg entitled "LDAP & X.500 Component Matching Rules”,
subsequently to become RFCs [7] and [8]. Thiswould significantly improve the
functionality of the certificate matching in OpenLDAP, and make it infinitely
extensible, in order to cater for new certificate and CRL extensions that might be
defined in the future. Of course, it would make the design more complex, and would
require LDAP clients to be modified to support thisinstead of the origina scheme, but

we believed that we could handle this within the scope of the current project.
Note that subsequent to this decision, this approach has been sanctioned by the IETF as the standard
way to search for certificates with LDAP, so the decision was fundamentally sound.

Component matching is pictorially illustrated in Figure 1 below.

Figure 1. Component Matching

e
.o
!

Search for Comps
..Componenti in
attribute

Return X.5009 attrily

4 August, 2004 © 2003 University of Saford 10

The project initially made good progress and for the first 8 months stayed broadly on
track with the original plan shown in Appendix 2. The Matched Values functionality
was released on time at the end of month 8 and the corresponding Internet Draft
successfully passed Last Call (since then it has been with the Area Director for over
18 months, but recently has just passed the IANA considerations hurdle and should be
soon issued as a standards track RFC). However, progress was hampered by the
amost complete lack of documentation concerning the internal workings of
OpenLDAP. In most cases the code was the documentation.

During month 9, a MACE-DIR telephone call raised the subject of certificate
matching, and discussed a new approach proposed by Peter Gietz et a. [13]. Thiswas
based on creating a new entry for a certificate, and creating attributes from all the
fields of a certificate. A major benefit isthat LDAP servers do not need to be
modified, since they can run our modified OpenLDAP XPS server as afront end
processor between their LDAP server and their CA/AA. Another major benefit is that
LDAP clients do not need to be modified to support this approach. The outcome was
that we decided to poll the NRENSs to see which design of certificate matching they
preferred. They voted almost unanimously for the Gietz approach rather than the
component matching approach, and so we decided to change our design to this
scheme. This attribute extraction approach is shown in Figure 2 below.

Figure 2 Attribute Extraction

Search for Att 1..\Att i
Return X.509 attribute

4 August, 2004 © 2003 University of Saford 13

This significant change of design obviously caused some delay to the project, but a
revised project plan was produced (Appendix 3), which predicted that we could still

finish on time.

Note that subsequent to this decision, the IETF decided that thisis not to be the standard approach to
certificate matching in LDAP, but rather is to be a short term expedient approach. Consequently the
Internet Drafts [16, 17] upon which this approach is based, are only to become Information RFCs rather
than standards track RFCs.

A new Detailed Design was produced [15] in parallel with the implementation (this
was because we needed to understand the internals of OpenLDAP, so acertain
amount of experimentation was necessary) and submitted to the TF-ACE group in
month 15. At this stage the project was judged to be about one month behind
schedule. Supporting Internet Drafts [16, 17] were produced in month 18.

However, as the detailed design was being implemented a number of problems arose.
These included:
- itwasrealised that a CRL could produce awhole subtree of LDAP entries,
rather than asingle entry,

- theinternal search primitive returned the search result entries directly to the
client, and not to the internal calling code. This meant we needed to modify
the send_search_entry function to trap the results

- during the debugging we uncovered a potential denial of service attack,
whereby a malicious user could submit a spurious X PS del ete attribute
operation on the root (or close to the root) of the DIT. Thiswould cause afull
subtree Search to be performed, which obviously would consume huge
resources.

These problems led to significant redesigns being needed and consequent delaysin
the project. Nevertheless we persevered and eventually overcame them all. The full
bimonthly reports of the project’s progress can be found in Appendix 1.

A demonstration of the XPS server was successfully made at the Terena Networking
Conference in Rhodes in June 2004. A screen shot from this demonstration can be
seen in Figure 3.

Figure3 LDAP Client view of XPS

& LDAP Browser\Editor v2.8.1 - [Idap://146.87.80.15/c=gb]

File Edit View LDIF Help

[B][z]a]a|[e]w]e][~][o]a][2]]
c=gh
& o=epp
@ [0=PERMIS
@ [o=University of Salford
@ [o=MNHS
& 9 o=Government
©- [o=Salford City Council
@ [o=salford
% O3 nu=Accounting
@ [T cn=John Smith
& [x508serialNumber=1000
& [#509CRLThisUpdate=20030430085031 2
@ T cn=vipi velasguez
% I #509CRLThisUpdate=200304300950312
&] xan9serialMurnber=1000
& I #509CRLThisUpdate=200304300955462
©- [x509serialNumber=1000
& [(w508serialMumber=1001
% C1#509CRLThisUpdate=200304301 006462
©- 7 xa0gserialumber=1000 :
| e

Attribute Walue
089setialMNumber 1001
09CRLCertRevocationDate 200304300955467
¥509hase
*A09CRLentry

[4]

Final Objectives

The final objectives of the project were:

1. Toimplement the matched values LDAPv3 control in the OpenL DAP source code

2. Toimplement the matched values LDAPv3 control in an LDAP client, so asto
demonstrate its functionality

3. Toimplement attribute extraction using the PKC, CRL and AC schemas specified
in[13, 16, 17] in the OpenLDAP source code

4. To progressthe Internet Drafts [4, 13, 16, 17] to as near to RFC status as possible.

Final Deliverables
Thefina set of deliverablesis asfollows.

Phase Deliverable number Date due Title / Description

1 D1 18 months from start | Detailed design documents [15, 18, 19] (See
Appendices 8, 9,10)

3 D2 End of Project Updated Internet RFCs or IDsfor [4, 13, 16,
17] (See Appendices 4, 5, 6, 7)

3 D3 End of Project Enhanced OpenL DAP source code

3 D4 End of Project Project Report to TERENA (this document)

Reasons for Delays

The project was delivered approximately 14 months late. This was due to a number of
factors, but primarily because we underestimated the complexity of the task and the
lack of documentation for OpenLDAP. We also completely changed designs twice
during the project, once at the start, and once midway through. We hopelessly
underestimated the amount of time that testing would take. Thiswas originaly
estimated to be 2 man months, but in reality it took nearer to 12 man months. This
was due to several factors: difficulty in finding out how OpenLDAP actually worked
(it wasn’t until it was tested that we found it worked otherwise to our beliefs), design
limitations in OpenLDAP (e.g. could only return a maximum of 500 entries), security
flawsin the final design (we uncovered a denia of service attack), and non-optimum
design (this was improved upon as knowledge of OpenLDAP improved). All in all we
had 9 versions of the XPS Detailed Design document. Furthermore we did not
provision for migrating between OpenLDAP releases. During the project we had to
make 2 major migrations, from OpenLDAP 2.0to 2.1 and 2.1 to 2.2, and many minor
migrations. The implementation of MatchedV alues control on both client and server
sides had to be migrated from version 2.0 to 2.1. Since alot of the new code was
based on the existing code, which had been altered, it took a considerable amount of
time to change the new code accordingly (around 1 man month). During the process
of implementing XPS, OpenLDAP 2.1 had 20 minor version releases. They included
bug fixes and small changes in design. In any case the XPS code had to be moved
onto the new versions since, due to the size of the OpenLDAP project, the effects that
those changes and fixes could have had on XPS could not be predicted. The only way
to account for them was to test them with XPS by migrating the code and testing it.
Finally, version 2.2 introduced a number of significant internal redesigns (including
some code contributed by third parties). It forced changes in the XPS detailed design
and corresponding changes in the code.. This consumed about 4 man monthsin total.

Overall the project took nearer 4 man years of effort to complete rather than the 2 man
years originally budgeted for. The only reasons we managed to complete the project at
all was that Mikhail Sahalayev worked for nearly ayear on the project without
receiving any finances from the project, and that the University of Salford paid for
nearly 1 man year of extratime.

Conclusion

Despite all the complexities, design changes and code migrations, neverthelessin the
end the project was completed successfully. Four Internet RFCs will be published in
due course as aresult of this project - one standard’ s track and three informational.
The OpenLDAP software has for over two year included the matched values code and

no significant problems have been reported with its use. Finaly, the OpenLDAP XPS
server code has been delivered to the OpenL DAP consortium and at the time of
writing it is progressing through their quality assurance procedures ready for
incorporation in a subsequent release.

References

[1] 1SO 9594-8/ITU-T Rec. X.509 (2001) The Directory: Public-key and attribute
certificate frameworks

[2] D.W.Chadwick. “Deficienciesin LDAP when used to support a Public Key
Infrastructure”, Communications of the ACM, March 2003/Vol 46, No. 3 pp. 99-104
[3] Chadwick, D.W., “Internet X.509 Public Key Infrastructure Operational Protocols
—LDAPV3’ Internet Draft <draft-pkix-ldap-v3-05.txt>, July 2002

[4] Chadwick, D.W., Mullan, S. “Returning Matched Values with LDAPv3", <draft-
|dapext-matchedval-07.txt>, July 2003 (see Appendix 4)

[5] Chadwick, D.W., Legg, S. “Internet X.509 Public Key Infrastructure, Additional
LDAP Schemafor PKlsand PMIs’, <draft-pkix-ldap-schema-01.txt>, September
2000.

[6] See www.openldap.org

[7] Legg, S. “Generic String Encoding Rules (GSER) for ASN.1 Types’, RFC 3641,
October 2003.

[8] Legg, S. “Lightweight Directory Access Protocol (LDAP) and X.500 Component
Matching Rules’. RFC 3687. February 2004.

[9] J. Sermersheim. “LDAP —the protocol” <draft-ietf-ldapbis-protocol-07.txt>,
March 2002.

[10] Chadwick, D.W., Legg, S. “Internet X.509 Public Key Infrastructure, Additional
LDAP Schemafor PMIS’, <draft-ietf-pkix-Idap-pmi-schema-00.txt>, 27 June 2002
[11] Chadwick, D.W., Legg, S. “Internet X.509 Public Key Infrastructure, Additional
LDAP Schemafor PKIS’, <draft-ietf-pkix-ldap-pki-schema-00.txt>, 27 June 2002
[12] D.W.Chadwick “LDAPv3 DN strings for use with PKIs" <draft-ietf-pkix-
dnstrings-00.txt>, April 2002.

[13] Gietz, P., Klasen, N. "Internet X.509 Public Key Infrastructure Lightweight
Directory Access Protocol Schemafor X.509 Certificates',
<draft-ietf-pkix-ldap-pkc-schema-00.txt>, August 2004 (See Appendix 5)

[14] M.Wahl, SKille, T. Howes.“Lightweight Directory Access Protocol (v3): UTF-8
String Representation of Distinguished Names®, RFC 2253, Dec 1997

[15] M. Sahalayev, D. W. Chadwick. “Detailed Design of an LDAP X.509 Parsing
Server”, Version 1.0, 15 November 2002

[16] D.W.Chadwick, M. V. Sahalayev. “Internet X.509 Public Key Infrastructure -
LDAP Schemafor X.509 Attribute Certificates’, <draft-ietf-pkix-ldap-ac-schema-
OL1.txt>, July 2004 (See Appendix 6)

[17] Chadwick, D.W., Sahalayev, M. V. "Internet X.509 Public Key Infrastructure -
LDAP Schemafor X.509 CRLS", <draft-ietf-pkix-ldap-crl-schema-02.txt>, June 2004
(See Appendix 7)

[18] M. Sahalayev, D. W. Chadwick. “Write Ahead Log (WAL) Design”, Feb 2003
(See Appendix 9)

[19] E. Ball, M. Sahaayev. “Parsing X.509 Attributes’, Feb 2003 (See Appendix 10)
[20] M. Sahalayev, D. W. Chadwick. “XPS Test Plan”. March 2003

Appendix 1 Detailed Progress Report

First Bimonthly Period 1 Sept - 31 Oct 2001

The original contract suggested a start date of 1 August 2001. During that month
David Chadwick attended the IETF meeting in London to discuss the project with
Kurt Zeilenga, the leader of the OpenL DAP project, and Steven Legg, the joint author
with David Chadwick of the PKI and PMI schema Internet Draft [5]. During this
meeting it was agreed to fundamentally change the way that certificate matching isto
be done, to take advantage of the new Internet Draft (now an RFC) by Steven on
Component Matching [7]. Thiswill have significant and fundamental ramifications
for the project as follows. Once component matching has been implemented it will
mean that any new ASN.1 type definition will be able to be matched against with
significantly less effort than the current project. Thiswill mean, for example, that new
certificate extensions will easily be able to be matched against. Thisis because the
certificate matching rules will be built up of generic ASN.1 components, instead of
rules built specifically for certificates. The other implication isthat it will no longer be
necessary to ask the TF-L SD and PKI-Coord meetings which set of certificate fields
to implement first, asit should now be within the scope of the project to match on any
certificate field or combination of fields. However, the implementation will now be
somewhat more difficult as specific matching rules will have to be made more
generic, and configuration parameters will need to be provided to dictate what isto be
matched upon.

During the meeting we also learnt that someone else had aready implemented
certificate equality matching (task 3) and that this would be in the next release of
OpenLDAP (v2.1). Until we got the release, we wouldn’t be able to say how this
would impact upon our project. Kurt also advised us that extensible matching had also
been implemented earlier than anticipated and that this should also be availablein
release 2.1.

Notwithstanding the above, it proved impossible to start the project fully in August
due to vacations and the delay in appointing a new researcher to work on the project.
It was agreed to amend the contract to an official start date of 1 September 2001.

During September and October half of task 2 was completed and half of task 1. The
project team was very disappointed to find that there was very little documentation,
and in many cases no documentation, for the OpenL DAP code that we were working
on. This made the project far more difficult than was at first anticipated. However,
Kurt Zeilenga assured us of his support for the project, and provided us with useful
input and answers to our email questions whenever we asked him.

Second Bimonthly Report for the Period 1 Nov - 31Dec 2001

During this period, we worked on the design of component matching for certificates
(tasks 1 and 6). We also worked on the design for the matched values control [4]
(tasks 1 and 4). Draft designs were produced in time for the December |ETF meeting.

We updated two Internet Drafts [4], [5], and attended the 52" |ETF meeti ng in Salt
L ake City to present them to the PKI1X meeting. We also met with Kurt Zeilenga to
discuss the project design documents produced by our team. Kurt provided good
feedback on the designs, and these were subsequently incorporated by the designers.

The team members joined the LDAP developers mailing list and emailed all their
subsequent designsto the list for comment and feedback.

Third Bimonthly Report for the Period 1 Jan — 28 Feb 2002

During this period, we continued to work on the design and implementation of
component matching for certificates (tasks 1, 2 and 6). Asit wasrealised that the
implementation of component matching required the detailed specification of which
matching rule must apply to each component of the ASN.1 entry in the directory, a
modification of the ASN.1 specification for directory entries was devised. This
consisted of embedding within a conventional ASN.1 specification special comments
of the matching rule viz: --{ MatchingRule } -- where MatchingRule is the name of a
specified matching rule.

A grammar was written to describe this new notation and a home written ASN.1
compiler was modified to include this new grammar. A back-end to the syntax
analyser of this compiler was also written to allow a compiled ASN.1 specification to
be output in a convenient form for use by other programs that had been and would be
developed. Thefirst of these programs was a graphical user interface that was used to
form Component Filters as specified by the RFCs of SLegg [7, 8]. This program
takes the output from the ASN.1 compiler and makes a graphical tree representing an
entry. Using this tree with other GUI components allows a complex component
matching filter to be generated in a point/click manner. The generated filter can be
output either in LDAP string notation or as ASN.1 BER. This GUI was used to form
L DAP searchReqguests using MatchingRuleAssertions and these requests were used to
help test the behaviour of the latest development version of the OpenL DAP server
(2.1 apha). Initial modifications were made to the OpenL DAP server code to allow it
to recognise and deal with such searchRequests but thiswork was only initsinitia
stages. As can be appreciated this work was extremely complex and will expected to
take much longer than originally anticipated, but will produce afar better product in
the end since the certificate matching will be infinitely extensible. Not only will it
apply to al certificate fields and current extensions, but any new extensions should
easily be catered for by feeding in the new ASN.1 definitions.

We aso worked on the implementation of the matched values control [4] (task 4). We
also started to modify the ldapSearch client so that it could send the matched values
control (task 5). We made good progress and by the end of February we had a basic
system working (complete with bugs!). We also spotted an error in the Matched
Values ID, so once we finished implementing the control we reissued the ID.

We updated one Internet Drafts [3], and submitted it in time for the 53" |ETF
meeting in Minneapolis. Unfortunately we weren't able to attend the meeting to
present this, but we planned to attend the next meeting in July. We attended the X.500
standards meeting in Geneva (26 Feb-3 March), which has awork item on LDAP
alignment, as well as updates to X.509.

Fourth Bimonthly Report for the Period 1 March — 30 Apr 2002

During this period tasks 4 and 5 (matched values [4]) were completed on schedule and
the source code was sent to OpenLDAP for review. Kurt Zeilenga then organised a
review of this code. The matched values ID [4] was also progressed by the 1SG, and
they asked for an updated version to be provided for Last Call.

The LDAPv3 RFCs were being revised so that LDAPv3 could move to draft standard
status. The work was assigned by the IETF to the LDAPbis group. Considerable
discussion was held during this period by the LDAPbis group about the use of ;binary
encodings for the transfer of certificates, and the use of transfer encodingsin general
by LDAPv3. Thereason for thisis that there are still some interoperability problems
with the PKI attributes. Kurt Zeilenga set up to two design teams during this period, to
review the text in the latest revision of LDAPv3 [9]. The design teams were given
different remits. Design Team A was to offer replacement text consistent with the
position that ;binary must be used to indicate the transfer of binary encoded values.
The team members were: Mark Smith (Lead), Steven Legg and David Chadwick.
Design Team B was to offer replacement text consistent with the position that the use
of ;binary is not necessary to indicate the transfer of binary encoded values. The team
members were: David Chadwick (Lead), Chris Olivaand Tim Hahn. The design
teams finished their work at the beginning of May and reported that, given the known
interoperability problems with ;binary, and its limitations, the ;binary feature (and all
mention of transfer options) should be removed from the LDAPv3 specification. The
L DAPbis group were then digesting and discussing the teams' conclusion, and the
final decision will be reported in the next bimonthly report. The final decision effects
the contents of [5], and so publication of the next version of [5] was held up pending
resolution of the ;binary issue.

During this period, we continued to work on the design of component matching for
certificates (tasks 1, 2 and 6). The design was also discussed with Kurt Zielenga and
Steven Legg, the author of [7] and [8]. As stated previoudly, this feature is extremely
complex, and our latest findings are that a new subschema component will need to be
defined in both the X.500 and LDAP standards. We circulated the ITU-T X.500 group
with notification about this, and proposed to progress the definition of the new
subschema element at the next ITU-T meeting in September in the USA.

The design continually evolved during this period as we gained more understanding
of the OpenLDAP code and the detailed ramifications of component matching. For
example, we realised that the embedding of a matching rule within a conventional
ASN.1 specification, as reported in the last bimonthly report, was insufficient as up to
3 different matching rules may be required. We then decided to embed either an
attribute type OID or LDAP syntax OID and tried to work out which would be the
best one to use. The home written ASN.1 compiler will need more modificationsto
include this new grammar once it is finalised.

Fifth Bimonthly Report for the Period 1 May — 30 June 2002

Tasks 4 and 5 (matched values) were completed on schedule during the last reporting
period by Mr Sahalaev and the source code was sent to OpenL DAP for review. Kurt
Zeilenga reviewed the code, which was satisfactory, and it was included in Release
2.1 of OpenLDAP at the beginning of June 2002. David Chadwick updated the
Matched Values ID [4] ready for the IETF Last Call.

Asreported in the Bimonthly Report 4, the LDAPbis group decided to remove ;binary
encodings from the LDAPv3 protocol [9]. We updated the LDAP PKI and PMI
schema Internet Draft ready for the Y okohama | ETF meeting to take account of this,
and, in accordance with the decision of a previous |ETF meeting the ID was split into

two separate IDs [10][11]. Also release 2.1 of OpenLDAP contained certificate
equality matching (task 3), and so the ID [11] was updated to ensure that it agrees
with how the existing implementation works. We aso wrote anew Internet Draft [12]
that would allow new attribute type names used in PKI distinguished names, to be
sent as encoded stringsin LDAP DNs. Thiswas circulated to the PKIX list.

Peter Gietz, Kurt Zeilenga and David Chadwick were on the MACE-DIR steering
committee and during one of their regular monthly conference telephone callsin May
certificate retrieval by LDAP was discussed. The discussion covered both Peter's

new PKI schema approach [13] and the original PKI schema [5] and component
matching [7, 8] approach that Salford were currently implementing in OpenLDAP.
The outcome of these discussions were that Salford decided to ask the NRENs and
TERENA if Salford should change direction and implement Peter Gietz's new schema
inanew X.509 Certificate Parsing Server implementation (XPS). David Chadwick
produced a high level design specification for this, which was duly circulated to
TERENA and the NRENS. The support for the new proposal was virtually unanimous,
and so at the end of June Salford agreed to stop development of component matching
in OpenLDAP and move to a certificate parsing server instead. The work already
performed on parsing and analysing ASN.1 certificates could now be used in the latter
instead of the former. Appendix 3 contains a revised project plan for producing the
XPS.

Sixth Bimonthly Report for the Period 1 July — 31 August 2002

The Matched Values ID [4] successfully completed the IETF Last Call. A couple of
minor changes were requested by the area director at the end of August and these
were be completed during the next reporting period.

Dr Chadwick attended the IETF meeting in Y okohamain July. An informal joint
meeting was held between PKIX and LDAP experts, including David Chadwick, Kurt
Zeilenga, Steve Kent and Tim Polk. The prime motivation for this meeting was to
discuss the PKIX requirements for the use of LDAP. The three topics discussed were
the use of ;binary in attribute descriptions, the registration of additional attribute type
names for use in PKI LDAP DNs[12], and how X.520 matching rules should operate
on non-ASCII characters e.g. when comparing subject names in X.509 certificates.
These three topics were also discussed in the LDAPbis meeting. The last topic was
uncontentious and everyone agreed that more work needed to be done on this. There
was considerabl e disagreement about the first two topics. Not all LDAP experts
agreed with removing ;binary for transferring certificates, as recommended by the
LDAP design teams, and considerable discussion about this continued on the
LDAPBIis mall list during this period. The joint meeting decided that a poll would be
taken of the PKIX list, to see how existing PKI implementation use LDAPv2 and
LDAPv3 to transfer certificates and CRLs. When current usage is better understood,
the decision about whether to remove ;binary or not will be continued.

Concerning the registration of additional attribute type names for usein PKI LDAP
DN, this discussion was started by the ID written by David Chadwick [12]. The base
LDAP document for this[14] discourages other strings to be used/registered and
suggests that OIDs be used instead. However, this causes problems with PKI
implementers who have to use a mixture of OlDs and LDAP strings when composing
LDAP DNs. But the use of new LDAP strings may cause interworking problems until

10

al implementations register the new strings. The meeting decided to poll the PKIX
list for views, which was duly done, and there was mixed support for the idea.

During this period we started to work on the detailed design of the X.509 certificate
parsing server (XPS).

Seventh Bimonthly Report for the Period 1 September — 31
October 2002

It turned out that in order to write the detailed design for the X509 Parsing Server
(XPS), we had to do some coding in OpenLDAP in order to discover how things
actually worked. Thus the detailed design and coding ran in parallel somewhat since
the beginning of September. The detailed design was ailmost complete and it was
anticipated that it would be distributed to the steering committee by 15 November.

The following coding was completed:
- theconfiguration file
- the add and delete operations for an internal LDAP server,
- theextraction and creation of child entries for certificates.

We a'so pointed out some deficiencies in the schema document [13] and fed these
back to Peter Gietz.

The revised version of Matched Values [4] was sent to the ID editor on 7 September
for progression as an RFC.

Dr Chadwick attended the ITU-T X.500/509 standard’s meeting at NIST in
Gaithersberg in September. One item on the agenda was X.500 alignment with LDAP.
During this meeting a questionnaire was composed and circulated to the IETF PKIX
list requesting their input on the use of the LDAP protocols (v2 and v3) for certificate
storage and retrieval. This was designed to help the IETF groups in their work on how
to make LDAPv3 give better support to PKIs.

Eight Bimonthly Report for the Period 1 November — 31 December
2002

The detailed design for XPS [15] was completed and was distributed to the steering
committee on 15 November.

We attended the Terena TF-ACE meeting in Bromma on 25-27 November, where we
presented the results of the project so far. We also had a discussion of the Detailed
Design document. Thiswas followed by more detailed email comments about the
design, which were very helpful, and as aresult, an updated design was published on
28 November.

We continued to code up the detailed design, but due to the complexity of the design,
we were running an estimated 1 month behind the schedule in Appendix 3.

We produced internal LDAP schema |Ds for CRLs and ACs (which were
subsequently issued as Internet Drafts [16, 17] during the next period).

11

Ninth Bimonthly Report for the Period 1 January — 28 February
2003

We revised our internal LDAP schema IDs for CRLs and ACs, by adding more
features from X.509, and merging common components with those from Klasen [13].
These were duly submitted to the Internet Editor [16][17], so that they could be
discussed at the San Francisco |ETF meeting.

We also proposed many changes to the Klasen ID [13], to bring it into align with the
new CRL and AC IDs. These were mostly accepted by its authors, and arevised
version (02.txt) was published by them in March 2003. The authors also agreed to
meet during the 56" IETF meeti ng in San Francisco to resolve any final discrepancies.
It was then planned that Last Call versions could be issued in time for the next IETF
meeting.

As aresult of the new schema IDs[16] [17], four new versions of the Detailed Design
[15] were issued during February (versions 1.2, 1.3. 1.4 and 1.5).

Version 1.2 introduced a major change to the design, asit was realised that a CRL
could produce awhole subtree of LDAP entries, rather than asingle entry, asin the
original design. Thisis because each revoked certificate (CRL entry) comprises: its
serial number, revocation date and optional CRL entry extensions such as the
revocation reason. Thusin order to be able to search for particular revoked certificates
with particular entry extensions, each revoked certificate in the CRL hasto be held in
aseparate LDAP entry. We therefore added a configuration parameter to allow
administrators to switch this subtree feature on or off.

Simultaneously with issuing the revised detailed design, we also published the design
of the Write Ahead Log [18], which provides XPS with its rollback and recovery
capability.

Version 1.3 of the Detailed Design corrected a minor flaw in the 1.2 design,
concerning how the revoked certificate entries are to be named. Other minor editorial
corrections were made.

Version 1.4 added a reference to the design about how the X.509 attributes are parsed
and turned into LDAP attributes. This additional parsing document [19] describes
how the ASN.1 X.509 attributes are handled, and how the parsing implementation can
be modified to handle additional X.509 certificate and CRL extensions.

In version 1.5 we enhanced the design by adding a configuration file that maps the
LDAP attributes into elements of the X.509 ASN.1 attributes. This alowsan
administrator of the XPS server to (a) determine precisely which LDAP attributes he
wishes to support, and (b) as new certificate and CRL extensions and their
corresponding LDAP attributes are defined, update the configuration file to
incorporate them.

We continued to code up the revised detailed design, but due to the complexity of the
design, and the addition of new features during this period, we estimated that we were
running approximately 2 months behind schedule. This means that the development
would not be completed until early March 2003, after which testing can start.

12

Tenth Bimonthly Report for the Period 1 March — 30 April 2003

David Chadwick attended the San Francisco | ETF meeting and presented the new
PKIX LDAP schema IDs[16][17]. Prior to this, he met informally with Peter Gietz,
the author of [13], and they resolved the final discrepancies between their IDs. Asa
result of their discussions, a new configuration parameter was added to XPSto list the
X.509 attribute types that would be trapped, and version 1.6 of the detailed design was
released [15].

Prior to the PKIX meeting, an informa PKIX-LDAP meeting was arranged by Tim
Polk the chair of PKIX. It was attended by Russ Housley (the new security Area
Director), Peter Gietz, Tim Polk, Kurt Zeilenga, Bob Morgan, Steven Legg and David
Chadwick. The meeting agreed that component matching (the original design for this
project) is technically more elegant and preferable to splitting a certificate up into
separate attributes for searching, asin the current design. However, the meeting
agreed that vendors seem to be reluctant to implement this, and splitting the attributes
up is ashort term pragmatic solution that does not need LDAP vendors to change their
servers. Conseguently the meeting agreed that component matching should be
progressed as a standards track RFC, and that this might encourage vendorsin the
longer term to implement this solution; whilst the extraction IDs from Gietz,
Chadwick et al should be progressed as Experimental or Informational RFCs if the

areadirectors agree to this.
(Note that prior to the meeting the ADs did agree to issuing the IDs as Informational RFCs, but not
until after the component matching 1Ds have been published as standard track RFCs.)

On Friday of the same week, David Chadwick attended an OpenLDAP developers
meeting, and gave a presentation about this project. At this meeting, Kurt announced
that it should be possible to incorporate the certificate matching code into Release 2.2
of OpenLDAP, dueto be released in September 2003.

We continued to code up the revised detailed design, and this was broadly finished by
the end of March. One problem we encountered, was that prior to a Delete operation
we need to Search the backend to see how many certificate entries there are.
However, the current be->be_search primitive returns the search result entries directly
to the client, and not to the caller. This meant we needed to modify the
send_search_entry function to trap the results, but Kurt Zeilenga was not able to
advise us of the best way to do this until the beginning of May.

A pre-release version of the code was distributed to Bige Nikita, a Programmer
System Administrator from Signal-com, Moscow, Russia, (see http://www.signal -
com.ru/eng/about/index.html), who contacted Mikhail to say he needed the PKC
features that we were providing for a project he was working on. He tested some of
our code and was able to parse and store public key certificates in his OpenLDAP
server.

At this stage of the project we were just at the beginning of rigorous testing and
debugging. We produced a Test Plan [20]. Thiswould require us to creating awhole
range of PKCs, ACs and CRL s containing various extensions and fields, asan aid to
the debugging, so that as many options as possible could be tested. The codeis
complex, and the extensions are numerous, so thereisalot of testing to do. We

13

anticipated that the testing would take approximately 3 months, so the project should
be completed by the end of July.

Report for the Period May 2003-June 2004

May-June

Kurt Zeilenga was not able to advise us of the best way to trap search results until the
beginning of May. We then set about working out the precise details of how to do
this. Thiswas complex, and took us approximately one month to sort oui.
Consequently we not able to start full debugging and testing until the middle of June.
However, during this period more was learnt about the internal functioning of the
OpenLDAP code, and this lead to a number of design changes that made the XPS
code more efficient. In particular, we removed the specific operations that called an
external server (for the case where XPS was to front another LDAP backend server)
and used native OpenL DAP functionality instead (the back-ldap backend servers
functionality). We also removed the LDAP API functions from XPS as they were no
longer used. The back-ldap was used instead. Version 1.7 of the Detailed Design was
issued in May. This aso included a new option for ASN.1 ->X.509 attribute types
mapping.

July-August 2003

Earlier in the year we produced a paper about the project, and we found that it was
accepted for presentation at the IFIP Database and Applications Security conference
in Colorado in August. (See http://www.cs.colostate.edu/~ifip03/). Dr Chadwick
attended the conference and presented the paper.

Mikhail continued debugging the code throughout the summer. During the debugging
we uncovered a potential denial of service attack, whereby a malicious user could
submit a spurious X PS delete attribute operation on the root (or close to the root) of
the DIT. Thiswould cause a full subtree Search to be performed, which obviously
would consume huge resources. We thus had to redesign the Delete operation to do a
series of 1 level searches instead of afull subtree search. This was obviously more
complicated but should stop most denial of service attacks from happening since any
spurious search would be killed after the first level was completed. A new Detailed
Design (v1.8) was released in August.

September-October 2003

We finished the new coding in September and resumed the debugging. At this point in
time we anticipated the testing/debugging would finish by the end of November.
However, the next release of OpenLDAP came out in September, so after we have
finished the debugging we will then need to migrate to the latest development release
of OpenLDAP. Thus we anticipated that we would finish the project by the end of
2003.

November -December 2003

In order to expedite debugging a second programmer was brought onto the project to
do code inspections. This worked well, and 20 new bugs were found in the code.
However the sole remaining original developer (Mikhail) was now working for no
pay, since the project budget was long since exhausted. Consequently he had to take
part time demonstrating work at the university in order to eke out aliving. Debugging
was therefore taking longer than anticipated.

January-February 2004

Adds and Deletes were now fully debugged but there were still some bugsin the
Modify that needed to be fixed. In addition, the code experienced a number of

14

memory leaks, so that in soak testing it would work for maybe a dozen times or so,
and then would hang or crash. Locating and eliminating all of the memory leaks took
nearly two months, and required a significant re-write of the ASN.1 parsing code.
Since the original ASN.1 programmer had now left the university, it took Mikhall
significantly longer to do this than it would have taken the original programmer. Once
the code was debugged it was sent to a programmer in Moscow for testing, and he
reported several more bugs which were duly fixed.

March-April 2004

The fully debugged code in OpenLDAP2.1 was migrated to the |latest development
release of OpenLDAP 2.2, (branch 2.2.11) so that it could be incorporated into the
next public release. However, OpenL DAP had undergone a number of significant
changes, so that the migration was not straight forward. For example, the development
release had now changed the matching rule for Modify and Delete values to exact
matching from binary match. Consequently we needed to publish arevised Detailed
Design document (v.1.8) in April. Furthermore the OpenL DAP development code had
anumber of major bugsin it, which meant that even when XPS was fully debugged,
the compl ete code would not run properly for any significant period of time. One of
the major problemsisthat OpenLDAP has a built in limit to the number of interna
search results that it can return (currently 500). This meansthat if XPSis being used
to store CRL subtrees, and the CRL has more than 500 entriesin it, it causes
problems. It is expected that once the OpenLDAP bugs are fixed, XPS will work as
expected.

May-June 2004

The code was finally released to the OpenL DAP development team in mid May. It
then has to undergo QA inspections by Kurt Zeilenga et a before it can be scheduled
for inclusion in the next OpenL DAP release (tentatively scheduled for Sept 2004).

We successfully demonstrated X SP at the Terena Networking Conference in Greece
in June.

July-August 2004

We published final versions of the Internet Drafts [16] [17] and presented them along
with [13] at the IETF meeting in San Diego in August. It was agreed at this meeting
that all 3 could proceed to Last Call in September and then be finalised and sent to the
RFC editor at the Washington meeting in November.

We produced the final report.

15

Appendix 2 Original Planned Tasks and Resources

Task 1. Familiarisation with OpenLDAP code, ASN.1 toolkits, INDI toolkits,
Certificate parsing and field extraction etc. 3 man months

Task 2. Write amodule to parse a certificate and extract the fields that a user is likely
to filter on. Add these fields to the indexes in the OpenLDAP source code, to aid the
rapid searching for particular certificates. 1 man month

(Note. The exact set of fieldswill be chosen by talking to the Terena TF-L SD and PKI-
COORD groups and determining their user requirements.)

Task 3. Simple Searching. Implement the certificate EQUALITY matching rule. 1
man month

Task 4. Implement matched values control in OpenLDAP as a new module. 3 man
months

Task 5. Modify an LDAP client so that it can @) pass the new matched values control
in the protocol, and b) allow the user to ask for this control in auser friendly manner.
We will attempt to do thisin Netscape or MS LDAP client, but if it proves too
difficult, we will build our own simple Java client or extend the OpenLDAP
|dapsearch(1) client. 3 man months.

Task 6. Complex searching. Implement the new extensible certificateM atch matching
rule. Thiswill extract the new filter items from the incoming Search, will scan the
new indexes looking for a match and will find the entry with the correct certificate.
Return the entry. 3 man months.

Note. Kurt Zeilenga advises that the OpenL DAP extensible matching infrastructureis still
immature, so placing this task after tasks 4 and 5 rather than before them, which would seem
more natural, will give him time to stabilise this code.

Task 7. Modify an LDAP client so that it can @) pass the new certificate filter itemin
the protocol and b) allow the user to type in the request in a user friendly manner. We
will attempt to do thisin Netscape or MS LDAP client, but if it provestoo difficult,
we will either build our own simple Java client or extend the OpenLDAP ud(1) client.
3 man months.

Task 8. Update the Internet Drafts as the implementation proceeds, and progress these
through the IETF. 0.5 man months

Task 9. Contingency 20% 3 man months

Task 10. Production of Final Report for Terena. 0.5 man months

Taks 11. Project Management 10% 2 man months

Total 23 man months

16

Appendix 3 Revised Project Plan

Task 1. Produce a detailed design for the X.509 Certificate Parsing Server (XPS).
(July-Sept 2002)

Task 2. Implement the XPS server (Oct-Dec 2002)

Task 3. Test the XPS server (Jan-Feb 2003)

Task 4. Write and progress new PKIX LDAP schemas for the XPS (Oct-April 2003)
Task 5. Write Final Terenareport plus Contingency (March 2003)

17

Appendix 4. Returning Matched Values with LDAPv3

I nternet-Draft Davi d Chadwi ck
LDAPEXt WG Uni versity of Salford
I ntended Category: Standards Track Sean Ml | an

Sun M crosystens
Expires: 16 January 2004 16 July 2003

Ret urni ng Matched Val ues with LDAPv3
<draft-ietf-I|dapext-matchedval -07.txt>

STATUS OF THI S MEMO

This docunent is an Internet-Draft and is in full conformance with
all the provisions of Section 10 of RFC2026 [1].

Internet-Drafts are working docunents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that other
groups may al so distribute worki ng docunents as Internet-Drafts.

Internet-Drafts are draft docunents valid for a maxi num of six nonths
and nay be updated, replaced, or obsol eted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress.”

The list of current Internet-Drafts can be accessed at
http://ww. ietf.org/ietf/1lid-abstracts.txt.

The list of Internet-Draft Shadow Directories can be accessed at
http://ww.ietf.org/shadow html .

Conments and suggestions on this docunent are encouraged. Conmments on
this docunent should be sent to the LDAPEXT wor ki ng group di scussion
list:

i etf-I| dapext @et scape. com

or directly to the authors.

ABSTRACT

Thi s docunent describes a control for the Lightweight Directory
Access Protocol version 3 that is used to return a subset of
attribute values froman entry, specifically, only those val ues that
match a "values return" filter. Wthout support for this control, a
client nmust retrieve all of an attribute's values and search for
specific values locally.

1. Introduction

Wien reading an attribute froman entry using the Lightweight
Directory Access Protocol version 3 (LDAPv3) [2], it is normally only
possible to read either the attribute type, or the attribute type and
all its values. It is not possible to selectively read just a few of
the attribute values. If an attribute holds many val ues, for exanple,
the userCertificate attribute, or the subschema publishing
operational attributes objectC asses and attributeTypes [3], then it

18

may be desirable for the user to be able to selectively retrieve a
subset of the values, specifically, those attribute values that natch
some user defined selection criteria. Wthout the control specified
in this docunent a client nust read all of the attribute's values and
filter out the unwanted val ues, necessitating the client to inplenent
the matching rules. It also requires the client to potentially read
and process nany irrelevant values, which can be inefficient if the
val ues are |large or conplex, or there are many val ues stored per
attribute.

Thi s docunent specifies an LDAPv3 control to enable a user to return
only those values that matched (i.e. returned TRUE to) one or nore
elenments of a newy defined "values return' filter. This control can
be especially useful when used in conjunction with extensible

mat ching rules that match on one or nore conponents of conplex binary
attribute val ues

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOWENDED', "MAY", and "OPTIONAL" in this
docunment are to be interpreted as described in RFC 2119 [4].

2. The valuesReturnFilter Contro

The val uesReturnFilter control is either critical or non-critical as
determined by the user. It only has nmeaning for the Search operation
and SHOULD only be added to the Search operation by the client. If
the server supports the control and it is present on a Search
operation, the server MJST obey the control regardl ess of the val ue
of the criticality flag.

If the control is marked as critical, and either the server does not
support the control or the control is applied to an operation other
than Search, then the server MJST return an

unavai l abl eCritical Extension error. |f the control is not nmarked as
critical, and either the server does not support the control or the
control is applied to an operation other than Search, then the server
MJST ignore the control

The object identifier for this control is 1.2.826.0.1.3344810. 2. 3.
The control Value is an OCTET STRI NG, whose val ue is the BER encodi ng

[15], as per Section 5.1 of RFC 2251 [2], of a value of the ASN. 1
[14] type Val uesReturnFilter

Val uesReturnFilter ::= SEQUENCE OF SinpleFilterltem
SimpleFilterltem::= CHO CE {
equal i tyMat ch [3] AttributeVal ueAssertion
substrings [4] SubstringFilter
greaterOrEqual [5] AttributeVal ueAssertion
| essOr Equal [6] AttributeVal ueAssertion
pr esent [7] AttributeDescription
appr oxMat ch [8] AttributeVal ueAssertion
ext ensi bl eMatch [9] Si npl eMat chi ngAssertion }
Si npl eMat chi ngAssertion ::= SEQUENCE {
mat chi ngRul e [1] Matchi ngRul el d OPTI ONAL,
type [2] AttributeDescription OPTI ONAL,
--- at least one of the above nust be present
mat chVal ue [3] AssertionVal ue}

19

Al'l the above data types have their standard neanings as defined in

[2].

If the server supports this control, the server MIST make use of the
control as follows:

(1) The Search Filter is first executed in order to deternine
which entries satisfy the Search criteria (these are the
filtered entries). The control has no inpact on this step

(2) If the typesOnly paraneter of the Search Request is TRUE
the control has no effect and the Search Request is processed as
if the control had not been specified.

(3) If the attributes paranmeter of the Search Request consists
of a list containing only the attribute with QD "1.1"
(specifying that no attributes are to be returned), the contro
has no effect and the Search Request is processed as if the
control had not been specified.

(4) For each attribute listed in the attributes parameter of the
Search Request, the server MJST apply the control as follows to
each entry in the set of filtered entries:

i) Every attribute value that eval uates TRUE agai nst one or
nore el ements of the ValuesReturnFilter is placed in the
correspondi ng SearchResul tEntry.

ii) Every attribute value that eval uates FALSE or undefi ned
against all elements of the ValuesReturnFilter is not

pl aced in the correspondi ng SearchResultEntry. An

attribute that has no values selected is returned with an
enpty set of vals.

Note. If the AttributeDescriptionList is enpty or conprises "*"
then the control MJST be applied against every user attribute.

If the AttributeDescriptionList contains a "+" then the contro
MUST be applied agai nst every operational attribute.

3. Relationship to X 500

The control is a superset of the matchedVal uesOnly (MO bool ean of
the X. 500 Directory Access Protocol (DAP) [5] Search argunent, as
anended in the latest version [6]. C ose exanination of the

mat chedVal uesOnly bool ean by the LDAP Extensions (LDAPEXT) WbrKking
Group reveal ed anbiguities and conplexities in the MVO bool ean that
could not easily be resolved. For exanple, it was not clear if the
MVO bool ean governed only those attribute values that contributed to
the overall truth of the filter, or all of the attribute val ues even
if the filter itemcontaining the attribute evaluated to fal se. For
this reason the LDAPEXT group decided to replace the MO bool ean with
a sinple filter that renmoves any uncertainty as to whether an
attribute val ue has been selected or not.

4. Relationship to other LDAP Controls
The purpose of this control is to select zero, one or nore attribute

val ues from each requested attribute in a filtered entry, and to
discard the remai nder. Once the attribute val ues have been di scarded

20

by this control they MJST NOT be re-instated into the Search results
by ot her controls.

This control acts independently of other LDAP controls such as server
side sorting [10] and duplicate entries [7]. However, there m ght be
i nteractions between this control and other controls so that a
different set of Search Result Entries are returned, or the entries
are returned in a different order, dependi ng upon the sequencing of
this control and other controls in the LDAP request. For exanple,
with server side sorting, if sorting is done first, and value return
filtering second, the set of Search Results nmay appear to be in the
wrong order since the value filtering may renove the attribute val ues
upon which the ordering was done. (The sorting docunent specifies
that entries without any sort key attribute val ues should be treated
as conming after all other attribute values.) Similarly with duplicate
entries, if duplication is performed before value filtering, the set
of Search Result Entries nay contain identical duplicate entries,
each with an enpty set of attribute values, because the val ue
filtering removed the attribute values that were used to duplicate
the results.

For these reasons the ValuesReturnFilter control in a SearchRequest

SHOULD precede other controls that affect the nunber and ordering of
Sear chResul t Entrys

5. Exanpl es

Al'l entries are provided in LDAP Data Interchange Format (LDIF)[8].

The string representation of the valuesReturnFilter in the exanples
bel ow uses the following ABNF [12] notation:

val uesReturnFilter = "(" 1*sinpleFilterltem")"
sinpleFilterltem="(" item")"

where itemis as defined bel ow (adapted from RFC2254 [11]).

item = sinple / present / substring / extensible
sinmpl e = attr filtertype val ue
filtertype = equal / approx / greater / less
equal = "=
appr ox = "=
greater = ">="
| ess = "<="
extensible = attr [":" matchingrule] ":=" value
[":" matchingrule ":=" val ue
present = attr "=*"
substring = attr "=" [initial] any [final]
initial = val ue
any = "*" *(value "*")
final = val ue
attr = AttributeDescription from Section 4.1.5 of [1]
mat chi ngrul e = MatchingRuleld from Section 4.1.9 of [1]
val ue = AttributeValue from Section 4.1.6 of [1]

(1) The first exanple shows how the control can be set to return al
attribute values fromone attribute type (e.g. tel ephoneNunber) and a
subset of values fromanother attribute type (e.g. mail).

The entries bel ow represent organi zati onal Person object cl asses

21

| ocat ed sonewhere beneath the distinguished nane dc=ac, dc=uk

dn: cn=Sean Mul | an, ou=peopl e, dc=sun, dc=ac, dc=uk
cn: Sean Ml an

sn: Ml lan

obj ect O ass: organi zati onal Person

obj ect d ass: person

obj ect d ass: i net OrgPerson

mai | : sean. mul | an@ot mai | . com

mai | : mul |l an@ast. sun. com

t el ephoneNunber: + 781 442 0926

t el ephoneNunber: 555-9999

dn: cn=Davi d Chadw ck, ou=i si, o=sal f ord, dc=ac, dc=uk
cn: David Chadw ck

sn: Chadw ck

obj ect d ass: organi zati onal Person

obj ect O ass: person

obj ect d ass: i net OrgPerson

mai | : d.w chadwi ck@al ford. ac. uk

An LDAP search operation is specified with a baseChject set to the
DN of the search base (i.e. dc=ac,dc=uk), a subtree scope, a filter
set to (sn=mullan), and the list of attributes to be returned set to
"mai |, tel ephoneNunber” or "*". In addition, a ValuesReturnFilter
control is set to ((mail=*hotmail.comn(tel ephoneNunber=*))

The search results returned by the server would consist of the
follow ng entry:

dn: cn=Sean Mul | an, ou=peopl e, dc=sun, dc=ac, dc=uk
mai | : sean. mul | an@ot nai | . com

t el ephoneNunber: + 781 442 0926

t el ephoneNunber: 555-9999

Note that the control has no effect on the values returned for the
"t el ephoneNunber” attribute (all of the values are returned), since
the control specified that all values should be returned.

(2) The second exanpl e shows how one night retrieve a single
attribute type subschena definition for the "gunk" attribute with QD
1.2.3.4.5 fromthe subschema subentry

Assume the subschema subentry is held below the root entry with DN
ch=subschema subentry, o=nyorg and this holds an attributeTypes
operational attribute holding the descriptions of the 35 attributes
known to this server (each description is held as a single attribute
val ue of the attributeTypes attribute).

dn: cn=subschenma subentry, o=myorg

cn: subschema subentry

obj ect d ass: subschena

attributeTypes: (2.5.4.3 NAME 'cn' SUP nane)

attributeTypes: (2.5.4.6 NAME 'c' SUP nane S| NGLE- VALUE)

attributeTypes: (2.5.4.0 NAME 'objectd ass' EQUALITY obj
ectldentifierMatch SYNTAX 1.3.6.1.4.1.1466.115.121.1.38)

attributeTypes: (2.5.18.2 NAME 'nodifyTi mestanp’ EQUALITY gen
eral i zedTi neMat ch ORDERI NG gener al i zedTi meOr deri ngivat ch SYN
TAX 1.3.6.1.4.1.1466. 115.121. 1. 24 SI NGLE- VALUE NO USER-
MODI FI CATI ON USAGE directoryQOperation)

22

attributeTypes: (2.5.21.6 NAME 'objectC asses' EQUALITY obj
ectldentifierFirstConponent Mat ch SYNTAX 1. 3.

6.1.4.1.1466. 115.121. 1. 37 USACGE directoryQOperation)
attributeTypes: (1.2.3.4.5 NAME 'gunk' EQUALITY casel gnor eMat
ch SUBSTR casel gnoreSubstri ngsivat ch SYNTAX 1. 3.
6.1.4.1.1466. 115. 121. 1. 44{ 64})
attributeTypes: (2.5.21.5 NAME '"attributeTypes' EQUALITY obj
ectldentifierFirstConponent Mat ch SYNTAX 1. 3.

6.1.4.1.1466. 115.121. 1. 3 USAGE directoryQperation)

pl us another 28 - you get the idea.

The user creates an LDAP search operation with a baseObject set to
ch=subschenma subentry, o=nyorg, a scope of base, a filter set to

(obj ect d ass=subschenma), the list of attributes to be returned set to
"attributeTypes", and the ValuesReturnFilter set to
((attributeTypes=1.2.3.4.5))

The search result returned by the server would consist of the
follow ng entry:

dn: cn=subschema subentry, o=nyorg

attributeTypes: (1.2.3.4.5 NAME 'gunk' EQUALITY casel gnor eMat
ch SUBSTR casel gnoreSubstri ngsvatch SYNTAX 1. 3.
6.1.4.1.1466. 115. 121. 1. 44{64})

(3) The final exanple shows how the control can be used to match on a
userCertificate attribute value. Note that this exanple requires the
LDAP server to support the certificateExactMatch matching rule
defined in [9] as the EQUALITY matching rule for userCertificate.

The entry bel ow represent a pki User object class stored in the
directory.

dn: cn=Davi d Chadwi ck, ou=peopl e, o=Uni versity of Sal ford, c=gb

cn: David Chadw ck

obj ect d ass: person

obj ect O ass: organi zati onal Person

obj ect d ass: pki User

obj ect d ass: inet OrgPerson

sn: Chadw ck

mai | : d.w. chadwi ck@al ford. ac. uk

userCertificate;binary: {binary representation of a certificate with
a serial number of 2468 issued by o=truetrust |td, c=gb}
userCertificate;binary: {binary representation of certificate with a
serial nunber of 1357 issued by o=truetrust |td, c=gb}
userCertificate;binary: {binary representation of certificate with a
serial nunber of 1234 issued by dc=certsRus, dc=con}

An LDAP search operation is specified with a basehject set to
o=University of Salford,c=gb, a subtree scope, a filter set to
(sn=chadwi ck) and the list of attributes to be returned set to
"userCertificate;binary". In addition, a ValuesReturnFilter contro
is set to ((userCertificate=1357%0=truetrust Itd, c=gb)).

The search result returned by the server woul d consist of the
follow ng entry:

dn: cn=Davi d Chadwi ck, ou=peopl e, o=Uni versity of Sal ford, c=gb

23

userCertificate;binary: {binary representation of certificate with a
serial nunber of 1357 issued by o=truetrust |td, c=gb}

6. Security Considerations
Thi s docunment does not primarily discuss security issues.

Not e however that attribute values MJST only be returned if the
access controls applied by the LDAP server allow themto be returned,
and in this respect the effect of the ValuesReturnFilter control is
of no consequence.

Note that the Val uesReturnFilter control may have a positive effect
on the depl oynent of public key infrastructures. Certain PK
operations, like searching for specific certificates, becone nore
practical when conbined with X. 509 certificate matching rules at the
server, and nore scal able, since the control avoids the downl oadi ng
of potentially |arge nunbers of irrelevant certificates which would
have to be processed and filtered locally (which in sone cases is
very difficult to perform.

7. | ANA Consi derations

Regi strigration of the Matched Val ues control as an LDAP Protoco
Mechani sm [16] is requested:

Subj ect: Request for LDAP Protocol Mechani sm Registration

bject ldentifier: 1.2.826.0.1.3344810.2.3

Description: Matched Val ues Contro

Person & emnil address to contact for further information:
Davi d Chadw ck <d.w. chadwi ck@al ford. ac. uk>

Usage: Contro

Speci fication: RFCxxxx

Aut hor/ Change Controller: |ESG

Comments: none

This docunent uses the O D 1.2.826.0.1.3344810.2.3 to identify the
mat chedVal ues control described here. This O D was assigned by
TrueTrust Ltd, under its BSI assigned English/ Wl sh Registered
Conpany nunber [13].

8. Acknow edgenent s

The authors would like to thank nenbers of the LDAPExt list for their
constructive comments on earlier versions of this docunent, and in
particular to Harald Al vestrand who first suggested having an
attribute return filter and Bruce Greenblatt who first proposed a
syntax for this control

9. Copyright

Copyright (C) The Internet Society (date). Al Rights Reserved.

This docunment and translations of it nay be copied and furnished to

others, and derivative works that comment on or otherw se explain it
or assist in its inplenentation my be prepared, copied, published

24

and distributed, in whole or in part, w thout restriction of any

ki nd, provided that the above copyright notice and this paragraph are
i ncluded on all such copies and derivative works. However, this
docunent itself nmay not be nodified in any way, such as by renoving
the copyright notice or references to the Internet Society or other

I nternet organi zations, except as needed for the purpose of
devel opi ng Internet standards in which case the procedures for
copyrights defined in the Internet Standards process nust be
followed, or as required to translate it into | anguages other than
Engl i sh.

The linited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.

This docunent and the infornmation contained herein is provided on an
"AS | S" basis and THE | NTERNET SOCI ETY AND THE | NTERNET ENGQ NEERI NG
TASK FORCE DI SCLAI M5 ALL WARRANTI ES, EXPRESS OR | MPLI ED, | NCLUDI NG
BUT NOT LI M TED TO ANY WARRANTY THAT THE USE OF THE | NFORMATI ON
HEREI N W LL NOT | NFRI NGE ANY RI GHTS OR ANY | MPLI ED WARRANTI ES OF
MERCHANTABI LI TY OR FI TNESS FOR A PARTI CULAR PURPCSE.

10. References
Nor mati ve

[1] S. Bradner. "The Internet Standards Process -- Revision 3", RFC
2026, Cctober 1996

[2] M wWahl, T. Howes, S. Kille, "Lightweight Directory Access
Protocol (v3)", Dec. 1997, RFC 2251

[3] M wahl, A Coul beck, T. Howes, S. Kille, "Lightweight Directory
Access Protocol (v3): Attribute Syntax Definitions", RFC 2252, Dec
1997

[4] S.Bradner. "Key words for use in RFCs to |Indicate Requirenent
Level s, RFC 2119, March 1997.

[14] ITU T Reconmendation X 680 (1997) | |1SO | EC 8824-1:1998,

I nformation Technol ogy - Abstract Syntax Notation One (ASN. 1):

Speci fication of Basic Notation

[15] ITUT Recommendati on X. 690 (1997) | |1SO | EC 8825-1, 2, 3: 1998
Information technology - ASN. 1 encoding rules: Specification of Basic
Encodi ng Rul es (BER), Canonical Encoding Rules (CER) and

Di stingui shed Encodi ng Rul es (DER)

[16] K. Zeilenga. "IANA Considerations for LDAP' RFC 3383, Septenber
2002

I nformati ve

[5] ITUT Rec. X 511, "The Directory: Abstract Service Definition",
1993.

[6] Draft ISOIEC 9594 / I TU T Rec X 511 (2001) The Directory:
Abstract Service Definition

[7] J. Sernmersheim "LDAP Control for a Duplicate Entry
Representati on of Search Results", Internet Draft <draft-ietf-

| dapext -1 dapv3- dupent - 08. t xt >, Sept enber 2002

[8] G Good. "The LDAP Data Interchange Format (LDIF) - Technica
Speci fication". RFC 2849, June 2000.

[9] D. Chadw ck, S.Legg. "Internet X 509 Public Key Infrastructure -
Addi tional LDAP Schema for PKIs", Internet Draft <draft-pkix-Idap-
pki - schema- 00. t xt >, June 2002

[10] T. Howes, M Wahl, A Anantha, "LDAP Control Extension for

25

Server Side Sorting of Search Results", RFC 2891, August 2000

[11] T. Howes. "The String Representation of LDAP Search Filters"
RFC 2254, Decenber 1997.

[12] D. Crocker, Ed. "Augnented BNF for Syntax Specifications: ABNF."
RFC 2234. Novenber 1997.

[13] BRI TI SH STANDARD BS 7453 Part 1. Procedures for UK Registration
for Open System Standards Part 1: Procedures for the UK Nane

Regi stration Authority.

11. Aut hors Addresses

Davi d Chadwi ck

IS Institute
University of Salford
Sal ford Mb AWK

Engl and

Email : d.w chadw ck@al f ord. ac. uk
Tel : +44 161 295 5351

Sean Mul | an
Sun M crosystens
East Poi nt Busi ness Park

Dublin 3

Irel and

Tel : +353 1 853 0655

Emai |l : sean. nul |l an@un. com

12. Changes since version 2

i) Revi sed the exanples to be nore appropriate

ii) Section on interactions with other LDAP controls added

iii) Removed Editor's note concerning present filter

iv) Ti ght ened wordi ng about its applicability to other operations
and use of criticality field

Changes since version 3

i) Mandat ed that at |east one of type and matchingRule in
si npl eMat chi ngAssertion be present

ii) Fi xed LD F nistakes in the exanples

iii) Additional mnor editorials only

Changes since version 4

i) corrected the ABNF for single itens of val uesReturnFilter
Changes since version 5

i) added sone adapted BNFL from|[11l] into the exanples
(specifically the [":dn"] conponent was renpved)

ii) general editorial tidying up prior to Last Cal

Changes since version 6

i) First exanple had all attributes (*) added to it

ii) Ref erences to ASN. 1 standards added

iii) Syntax error in third exanple corrected
iv) I ANA consi derations section added

26

Appendix 5. LDAP Schema for X.509 Certificates

Net wor k Wor ki ng Group P. Getz
Internet-Draft DAASI | nternational GrbH
Expi res: Novenber 30, 2004 N. Kl asen
Avi nci

June 2004

Internet X. 509 Public Key Infrastructure Lightweight Directory Access
Prot ocol Schema for X 509 Certificates
draft-ietf-pkix-Idap-pkc-schema-00

Status of this Meno

This docunent is an Internet-Draft and is in full conformance wth
all provisions of Section 10 of RFC2026.

Internet-Drafts are working docunents of the Internet Engineering
Task Force (I1ETF), its areas, and its working groups. Note that
ot her groups may al so distribute working docunments as
Internet-Drafts.

Internet-Drafts are draft documents valid for a maxi num of six nonths
and may be updated, replaced, or obsoleted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress.”

The list of current Internet-Drafts can be accessed at
http://ww. ietf.org/ietf/1lid-abstracts.txt.

The list of Internet-Draft Shadow Directories can be accessed at
http://ww.ietf.org/shadow htm .

This Internet-Draft will expire on Novenber 30, 2004.
Copyri ght Notice
Copyright (C The Internet Society (2004). Al Rights Reserved.
Abst r act
Thi s docunent describes an LDAP schenma whi ch can be used to inpl enent
a certificate store for X. 509 certificates. Specifically, two
structural object classes for X 509 user and CA certificates are
defined. Key fields of a certificate are stored in LDAP attributes
so that applications can easily retrieve the certificates needed by
usi ng basic LDAP search filters. Miltiple certificates for a single

entity can be stored and retrieved.

Conventions used in this docunent

Getz & Klasen Expi res Novenber 30, 2004 [Page 1]

I nt ernet-Draft PKI X LDAP PKC Schemn

The key words "MJST", "MJST NOT", "REQU RED', "SHALL",

"SHOULD', "SHOULD NOT", "RECOMMENDED', "MAY", and

" OPTI ONAL"

docunent are to be interpreted as described in [RFC2119].

June 2004

"SHALL NOT",

inthis

The foll owi ng syntax specifications use the augmented Backus- Naur

Form (ABNF) as described in [RFC2234].

Schena definitions are provided using LDAPv3 description formats
[RFC2252]. Definitions provided here are formatted (line w apped)

for readability.

Tabl e of Contents

1. Introduction . 4
2. Conparison with Values Return Fllter Cbntrol 5
3. Comparison wth Conponent Matching approach - 6
4. The attribute types of the x509certificate object classes 7
4.1 Attributes for mandatory fields of an X. 509 certificate 7
4.1.1 X. 509 version 7
4.1.2 Serial nunber 7
4.1.3 Si gnature al gorithm 7
4.1.4 | ssuer 8
4.1.5 Validity . 8
4.1.6 Subj ect e e e e 9
4.1.7 Subj ect public key info algorithm 9

4.2 Attributes for selected extensions . 9
4.2.1 Aut hority key identifier extension . 10
4.2.2 Subj ect key identifier extension . 11
4.2.3 Key usage extension . . 11
4.2.4 Policy information |dent|f|er extenS|on 12
4.2.5 Subj ect alternative nane extension . 12
4.2.6 | ssuer alternative nane extension 14
4.2.7 Basi c constraints extension 16
4.2.8 Ext ended key usage extension . 16
4.2.9 CRL distribution points extension 16

4.3 Addi tional attributes 17
4.3.1 Certificate location . 17
4.3.2 Certificate hol der 17

5. X. 509 schenma object classes 17
5.1 X. 509 base object class 18
5.2 X. 509 PKC object class . . 18
5.3 X. 509 user certificate object class 18
5.4 X.509 CA certificate object class 19
5.5 X. 509 certificate hol der object class 19
6. DIT structure and naming . 20
7. Security Considerations 21
8. | ANA Consi derations 21
9. Acknow edgnents 21
Getz & Kl asen Expi res November 30, 2004 [Page 2]

28

I nternet-Draft PKI X LDAP PKC Schemn June 2004

10. Ref erences . . . e e e e s s s s, 22
10.1 Normative references G e e s s 22
10.2 Non-nornative references 23
Authors' Addresses24

A. Sanple directory entries 25
B. Sanple searches . . . Y
C. Changes from previous EXafts . . 28
C1 Changes in draft-Kkl asen- Idap x5090ert|f|cate schena 01 . . 28
C2 Changes in draft-kl asen-1dap-x509certificate-schema-02 . . 28
C3 Changes in draft-kl asen-1dap-x509certificate-schema-03 . . 28
C.4 Changes in draft-ietf-pkix-Idap-pkc-schemm-00 29
Intell ectual Property and Copyright Statements 30

G etz & Klasen Expi res Novermber 30, 2004 [Page 3]

29

I nt ernet-Draft PKI X LDAP PKC Schemn June 2004

1. I nt roducti on

A key conponent in the w de-spread adoption of a Public Key
Infrastructure is the general availability of public keys and their
certificates. Today, certificates are often published in an X 500
conpliant directory service. These directories are accessed by
applications using the LDAP v3 [RFC3377] protocol. An LDAPv3 schema
for PKI repository objects is specified in [pkix-Idap-schema], where
a set of object classes, attribute types, syntaxes, and extended
matching rules are defined. For storing certificates, the
"userCertificate" and "cACertificate" attribute types are used. Al
certificates of an entity are stored as values in these multi-val ued
attributes. This solution has a serious drawback. |n LDAP, the
smal | est granularity of data access is the attribute. The directory
server will therefore always return the full list of certificates of
an entry to clients dealing with certificates. |f the nunber of
certificates for an entity is large this will result in considerable
over head and burden to the client.

Thi s docunent proposes to solve this problemby the use of the
structural object classes x509userCertificate and x509caCertificate
for storing certificates. Each certificate will be stored in a
separate entry in the directory. Having each certificate stored in a
separate entry provides flexibility in structuring the Directory
Information Tree. The certificate entries can be stored either bel ow
a person entry or below a CA entry as a certificate only repository,
as shown in figure 1.

1.) below Person entry:

per son

/A \

/ | \
certl cert2 cert3

2.) below CA cert repository:

CA

certificate repository
/ | \
/ | \
certl cert2 ... cert 1008

Figure 1. exanples of possible D T-structures

Getz & Kl asen Expi res November 30, 2004 [Page 4]

30

I nternet-Draft PKI X LDAP PKC Schemn June 2004

Fields of certificates which are needed to identify a certificate and
t hose which are often used in searching for an appropriate
certificate, are extracted fromthe certificate and stored as
attributes of the entry. Applications can thus search for specific
certificates with sinple LDAP filters. This approach could be naned
a netadata approach, since data (attributes) about data (certificate)
are stored.

The use of sinple attributes also makes a |large scale widely
distributed certificate repository service possible by using an

i ndexi ng service based on The Conmon | ndexi ng Protocol (ClIP)

[RFC2651], which defines a protocol between index servers for
exchangi ng i ndex objects in order to facilitate query routing. The
Tagged | ndex Cbject format as specified in [RFC2654] was specified to
carry directory server information, by collecting the single
attributetypes and values. By using the schema proposed in this
docurent, index objects can include certificate information in
attributes.

If certificates are stored redundantly in person entries and in
certificate entries bel ow the person entries, maintainers of
repositories MUST nake sure that the sane certificates are stored in
the person entry and the respective certificate entries and keep this
consi stency. Alternatively they MJST | eave out any certificates in

t he person entry.

Thi s docunent is one of a set followi ng this approach conpri sing:

1. the LDAP schema for X 509 public key certificates (this docunent)
2. the LDAP schena for X 509 attribute certificates [|dap-ac-schenms]
3. the LDAP schema for X. 509 CRLs [l dap-crl-schema]

Future docunents nay be witten that use the same nethod for
Qualified certificates as described in [RFC3039] or any other

evol ving pkix certificate standard. An auxiliary object class for
i ncl udi ng additional metadata that are not included in the
certificate is also outside the scope of this docunent.

Two alternative approaches are discussed in the next two sections.
2. Conparison with Values Return Filter Contro

In [matchedval] a control has been defined that allows for only a
subset of values of a specified attribute to be returned froma

mat ching entry, by defining a filter for the returned values. In
this section, this approach is conmpared with the one proposed in this
document .

The maj or benefit of the Values Return Filter Control is that it does

G etz & Klasen Expi res Novermber 30, 2004 [Page 5]
31

I nt ernet-Draft PKI X LDAP PKC Schemn June 2004

not require any changes to the D T.

VWile it is a sinple matter to nodify the DIT in such a way that al
certificate information is renoved fromthe entries and placed in the
container directly beneath the entries according to the definitions
of this specification, it is less sinple to simultaneously nodify al
of the applications that depend on certificates being stored in the
entry. Thus, it may be desirable to duplicate the certificate

i nformati on, by having it appear in the entry, as well as in the
cont ai ner beneath the entry for a short period of time, in order to
allow for migration of the applications to the new LDAP schema. As
in any situation in which information is duplicated, great care nust
be taken in order to ensure the integrity and consistency of the

i nformati on.

There are several advantages in using the x509certificate object
class. No special matching rules are needed to retrieve a specific
certificate. Any field in the certificate can be used in the search
filter. Even information that doesn't appear in the certificate can
be used in a search filter. It is easier to renpve certificates from
the DIT, since the entire certificate BER/ DER encodi ng does not have
to be supplied in the nodify operation. Searches that don't need
extensi bl e matching rules and Values Return Filter Control will
perform faster.

Anot her advantage of the solution proposed here is that it will not
be necessary to nmodify existing server inplenentations to support
this schema. The extended matching rules proposed in

[pki x-1 dap-schema] woul d require substantial changes in the servers

i ndexi ng mechanisms. | n contrast, servers inplenmenting the
x509certificate schema can easily |everage their indexing support for
standard LDAPv3 synt axes.

A Cl P-based indexing systemfor a wide scale distributed certificate
repository will rather be possible by using the solution proposed
here due to its dependency on attribute val ues.

3. Conparison with Conponent WMatching approach

[RFC3687] defines a new mechani sm for matching in conpl ex syntaxes,
by defining generic matching rules that can nmatch any user sel ected
conponent parts in an attribute value of any arbitrarily conpl ex
attribute syntax. W believe that this mght be the proper way to
sol ve search problens in the longer term but that it will take a

long tine until such ASN. 1 based mechanisnms will be inplemented in
LDAP servers and clients. Even if this has happened the nechani sm
proposed here, will still be useful in the frane of CIP. A sinple

and easy to inmplenent nmechanismis needed today and this is what this

Getz & Kl asen Expi res November 30, 2004 [Page 6]

32

I nt ernet-Draft PKI X LDAP PKC Schemn June 2004

menop wants to provide
4. The attribute types of the x509certificate object classes

The description of all attributes with relevance to fields and
extensions of an X. 509 certificate include a respective reference to
[X. 509-2000] and to [RFC3280].

4.1 Attributes for mandatory fields of an X 509 certificate
4.1.1 X.509 version

X. 509 Version of the encoded certificate (See X 509(2000) 7, RFC3280
4.1.2.1.) or of the CRL.

(1.3.6.1.4.1.10126.1.5.3.1
NAME ' x509ver si on'
DESC ' X. 509 Version of the certificate, or of the CRL
EQUALI TY i nt eger Mat ch
SYNTAX 1.3.6.1.4.1.1466.115.121.1. 27
SI NGLE- VALUE)

Val ues of this attribute may either be 0, 1, 2 or 3 corresponding to
X. 509 v1, v2, v3, or v4.

4.1.2 Serial nunber

The serial number is an integer assigned by the CA to each
certificate. It is unique for each certificate issued by a given CA
(i.e., the issuer nane and serial nunber uniquely identify a
certificate). See X 509(2000) 7, RFC3280 4.1.2.2

(1.3.6.1.4.1.10126.1.5.3.2
NAME ' x509seri al Nunber'
DESC ' Uni que integer for each certificate issued by a
particul ar CA
EQUALI TY i nt eger Mat ch

SYNTAX 1.3.6.1.4.1.1466.115.121.1.27)

4.1.3 Signature algorithm

O D identifying the algorithmused by the CAin signing the
certificate (see X. 509(2000) 7, RFC3280 4.1.2.3) or the CRL.

Getz & Kl asen Expi res November 30, 2004 [Page 7]

33

I nt ernet-Draft PKI X LDAP PKC Schemn June 2004

(1.3.6.1.4.1.10126.1.5.3.3
NAME ' x509si gnat ur eAl gori t hni
DESC 'O D of the algorithmused by the CAin
signing the CRL or the certificate'
EQUALI TY obj ectldentifierMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1. 38
SI NGLE- VALUE)

4.1.4 |ssuer

String representation of the issuer's distinguished nane (see
X.509(2000) 7, RFC3280 4.1.2.4)

(1.3.6.1.4.1.10126.1.5.3.4
NAME ' x509i ssuer’
DESC ' Di stingui shed nane of the entity who has signed and
i ssued the certificate'
EQUALI TY di sti ngui shedNaneMat ch
SYNTAX 1.3.6.1.4.1.1466.115.121.1. 12
SI NGLE- VALUE)

Val ues of this attribute type nust be encoded according to the syntax
given in [RFC2253] .

4.1.5 Validity

The "validity" attribute in an X 509 certificate (see X 509(2000) 7,
RFC3280 4.1.2.5) consists of an ASN. 1 sequence of two timestanps

whi ch define the begin and end of the certificate's validity period.
Thi s sequence has been split up into two separate attributes
"x509val i di t yNot Bef ore" and "x509val i dityNot After". The tines are
represented in string formas defined in [RFC2252] .

(1.3.6.1.4.1.10126.1.5.3.5
NAME ' x509val i di t yNot Bef or e
DESC ' Date on which the certificate validity period begins
EQUALI TY general i zedTi meMat ch
ORDERI NG gener al i zedTi neOr deri nghat ch
SYNTAX 1.3.6.1.4.1.1466. 115.121.1. 24
SI NGLE- VALUE)

(1.3.6.1.4.1.10126.1.5.3.6
NAME ' x509val i dit yNot After’
DESC ' Date on which the certificate validity period ends
EQUALI TY general i zedTi meMat ch
ORDERI NG gener al i zedTi neOr deri nghat ch

Getz & Kl asen Expi res November 30, 2004 [Page 8]

34

I nt ernet-Draft PKI X LDAP PKC Schemn June 2004

SYNTAX 1.3.6.1.4.1.1466.115.121.1. 24
SI NGLE- VALUE)

Note that the field in the certificate nay be in UTC or
CeneralizedTine format. If in UTC format, the creator of this
attribute MJUST convert the UTC time into GeneralisedTinme formt when
creating the attribute val ue.

4.1.6 Subject

String representation of the subject's distinguished nane (see
X.509(2000) 7, RFC3280 4.1.2.6).

(1.3.6.1.4.1.10126.1.5.3.7
NAME ' x509subj ect
DESC ' Di stingui shed name of the entity associated with this
publ i c-key'
EQUALI TY di sti ngui shedNanmeMat ch
SYNTAX 1.3.6.1.4.1.1466.115.121.1. 12
SI NGLE- VALUE)

Val ues of this attribute type nmust be encoded according to the syntax
given in [RFC2253].

4.1.7 Subject public key info algorithm

O D identifying the algorithmassociated with the certified public
key (see X.509(2000) 7, RFC3280 4.1.2.7).

(1.3.6.1.4.1.10126.1.5.3.8
NAME ' x509subj ect Publ i cKeyl nf oAl gori t hn
DESC 'O D identifying the algorithm associated with the certified
public key'
EQUALI TY obj ectl dentifierMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1. 38
SI NGLE- VALUE)

4.2 Attributes for sel ected extensions

As this specification intends to only facilitate applications in
finding certificates, only those extensions have to be defined that
m ght be searched for. Thus extensions described in [RFC3280] |ike
the followi ng are not dealt with here:

0 private key usage period extension

o policy mappi ngs extension

0 subject directory attributes extension

Getz & Kl asen Expi res November 30, 2004 [Page 9]

35

I nternet-Draft PKI X LDAP PKC Schemn June 2004

basi ¢ constraints extension

nane constraints extensions

policy constraints extensions

i nhi bit any policy extension

freshest CRL extension

authority informati on access extension
subj ect information access extension

O O O o o o o

4.2.1 Authority key identifier extension

This attribute identifies the public key to be used to verify the
signature on this certificate or CRL (see X 509(2000) 8.2.2.1,
RFC3280 4.2.1.1). The key may be identified by an explicit key
identifier in the keyldentifier conponent, by identification of a
certificate for the key (giving certificate issuer in the

aut horityCertlssuer conponent and certificate serial nunber in the
aut horityCert Serial Number conponent), or by both explicit key
identifier and identification of a certificate for the key.

4.2.1.1 Authority key identifier

(1.3.6.1.4.1.10126.1.5.3.11
NAME ' x509aut horityKeyl dentifier'
DESC 'Key ldentifier field of the Authority Key Ildentifier
ext ensi on’
EQUALI TY octet StringhMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1. 40
SI NGLE- VALUE)

4.2.1.2 Authority cert issuer

(1.3.6.1.4.1.10126.1.5.3.12
NAME ' x509aut horityCertlssuer'
DESC ' Aut hority Cert Issuer field of the Authority Key Ildentifier
ext ensi on'
EQUALI TY di sti ngui shedNaneMat ch
SYNTAX 1.3.6.1.4.1.1466.115.121.1. 12
SI NGLE- VALUE)

In this specification, only the "Name" choice, encoded according to
[RFC2253], of the "General Nane" type may be used.

Getz & Klasen Expi res Novenber 30, 2004 [Page 10]
36

I nt ernet-Draft PKI X LDAP PKC Schemn June 2004

4.2.1.3 Authority cert serial nunber

(1.3.6.1.4.1.10126.1.5.3.13
NAME ' x509aut hori tyCert Seri al Nunber'
DESC 'Authority Cert Serial Nunber field of the
Authority Key ldentifier extension'
EQUALI TY i nt eger Mat ch
SYNTAX 1.3.6.1.4.1.1466.115.121. 1. 27
SI NGLE- VALUE)

4.2.2 Subject key identifier extension

This attribute identifies the public key being certified (see
X.509(2000) 8.2.2.2, RFC3280 4.2.1.2). It enables distinct keys used
by the sane subject to be differentiated.

(1.3.6.1.4.1.10126.1.5.3.14
NAME ' x509subj ect Keyl denti fier'
DESC ' Key identifier which nmust be unique with respect to al
key identifiers for the subject
EQUALI TY octet Stri nghMatch
SYNTAX 1.3.6.1.4.1.1466. 115.121. 1. 40
SI NGLE- VALUE)

4.2.3 Key usage extension

This attribute defines the purpose (e.g., enciphernment, signature,
certificate signing) of the key contained in the certificate (see
X.509(2000) 8.2.2.3, RFC3280 4.2.1.3).

(1.3.6.1.4.1.10126.1.5.3.15
NAME ' x509keyUsage'
DESC ' Purpose for which the certified public key is used’
EQUALI TY casel gnor el A5Mat ch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15)

Val ues of this type are encoded according to the follow ng BNF, so
t hat each val ue corresponds to the respective bit in the ASN. 1
"KeyUsage" bitstring

x509keyUsage-val ue ="digital Signature" / "nonRepudi ati on" /

"keyEnci phernent” / "dat aEnci phernent” / "keyAgreement" /
"keyCert Sign" / "cRLSign" / "encipherOnly" / "deci pherOnly"

Getz & Kl asen Expi res November 30, 2004 [Page 11]

37

I nternet-Draft PKI X LDAP PKC Schemn June 2004

4.2.4 Policy information identifier extension

This attribute contains O Ds which indicate the policy under which
the certificate has been issued and the purposes for which the
certificate nay be used (see X 509(2000) 8.2.2.6, RFC3280 4.2.1.5).

(1.3.6.1.4.1.10126.1.5.3.16

NAME ' x509pol i cyl nformati onl dentifier’

DESC ' O D which indicates the policy under which the
certificate has been issued and the purposes for which
the certificate nay be used’

EQUALI TY obj ect I dentifierMatch

SYNTAX 1.3.6.1.4.1.1466.115.121.1. 38

SI NGLE- VALUE)

4.2.5 Subject alternative nane extension

The subject alternative name extension allows additional identities
to be bound to the subject of the certificate (see X 509(2000)
8.3.2.1, RFC3280 4.2.1.7). Separate attribute types are defined for
all choices of the ASN. 1 type "General Name" except for "otherNane",
"Xx400Address" and "edi PartyName".

4.2.5.1 Subject RFC822 nane

(1.3.6.1.4.1.10126.1.5.3.17
NAME ' x509subj ect Rf c822Nane'
DESC 'Internet electronic nail address of the entity
associated with this public-key'
EQUALI TY casel gnor el A5Mat ch
SUBSTR casel gnor el A5Subst ri ngsMat ch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

Val ues of this attribute nust be encoded according to the syntax
gi ven in [RFC0822] .

4.2.5.2 Subject DNS name

(1.3.6.1.4.1.10126.1.5.3.18
NAME ' x509subj ect DnsNarne'
DESC ' I nternet domain nanme of the entity
associated with this public-key'
EQUALI TY casel gnor el A5Mat ch
SUBSTR casel gnor el A5Subst ri ngsMat ch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

Val ues of this attribute nmust be encoded as Internet domain nanes in

Getz & Klasen Expi res Novenber 30, 2004 [Page 12]
38

I nt ernet-Draft PKI X LDAP PKC Schemn June 2004

accordance with [RFCL035].
4.2.5.3 Subject directory nane

(1.3.6.1.4.1.10126.1.5.3.19
NAME ' x509subj ect Di r ect or yNaneg'
DESC ' Di sti ngui shed narme of the entity
associated with this public-key'
EQUALI TY di sti ngui shedNaneMat ch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.12)

Val ues of this attribute type nmust be encoded according to the syntax
given in [RFC2253].

4.2.5.4 Subject Uniform Resource ldentifier

(1.3.6.1.4.1.10126.1.5.3.20
NAME ' x509subj ect URI'
DESC ' Uni form Resource Identifier for the Wrl d-Wde Wb
of the entity associated with this public-key’
EQUALI TY caseExact | ASvat ch
SUBSTR caseExact | A5Substri ngshat ch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

Val ues of this attribute nust be encoded according to the syntax
given in [RFC2396] .

4.2.5.5 Subject |IP address

(1.3.6.1.4.1.10126.1.5.3.21
NAME ' x509subj ect | pAddr ess
DESC 'I nternet Protocol address of the entity
associated with this public-key'
EQUALI TY casel gnor el A5Mat ch
SUBSTR casel gnor el A5Subst ri ngsMat ch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

Val ues of this attribute type nmust be stored in the syntax given in
Appendi x B of [RFC2373].

Getz & Kl asen Expi res November 30, 2004 [Page 13]

39

I nternet-Draft PKI X LDAP PKC Schemn June 2004

4.2.5.6 Subject registered ID

(1.3.6.1.4.1.10126.1.5.3.22
NAME ' x509subj ect Regi st eredl D
DESC 'O D of any registered object identifying the entity
associated with this public-key'
EQUALI TY obj ectl dentifierMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.38)

registeredlD is an identifier of any registered object assigned in
accordance with ITU T Rec. X 660.

4.2.6 |ssuer alternative nane extension

The issuer alternative names extension allows additional identities
to be bound to the subject of the certificate or CRL (see X 509(2000)
8.3.2.2, RFC3280 4.2.1.8). Separate attribute types are defined for
all choices of the ASN. 1 type "General Name" except for "otherNane",
"x400Address”" and "edi PartyName".

4,2.6.1 |I|ssuer RFC 822 name

(1.3.6.1.4.1.10126.1.5.3.23
NAME ' x509i ssuer Rf c822Nane'
DESC 'Internet electronic nail address of the entity who has
signed and issued the certificate'
EQUALI TY casel gnor el A5Mat ch
SUBSTR casel gnor el A5Subst ri ngsMat ch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

Val ues of this attribute nust be encoded according to the syntax
gi ven in [RFC0822] .

4,2.6.2 |ssuer DNS name

(1.3.6.1.4.1.10126.1.5.3.24
NAME ' x509i ssuer DnsNane'
DESC 'Internet donamin name of the entity who has
signed and issued the certificate'
EQUALI TY casel gnor el A5Mat ch
SUBSTR casel gnor el A5Subst ri ngsMat ch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

Val ues of this attribute nmust be encoded as Internet domain nanes in
accordance with [RFCL035].

Getz & Klasen Expi res Novenber 30, 2004 [Page 14]
40

I nt ernet-Draft PKI X LDAP PKC Schemn June 2004

4.2.6.3 Issuer directory namne

(1.3.6.1.4.1.10126.1.5.3.25
NAME ' x509i ssuer Di r ect or yNane'
DESC ' Di sti ngui shed name of the entity who has
signed and issued the certificate'
EQUALI TY di sti ngui shedNaneMat ch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.12)

Val ues of this attribute type nust be encoded according to the syntax
given in [RFC2253].

4.2.6.4 1ssuer Uniform Resource ldentifier

(1.3.6.1.4.1.10126.1.5.3.26
NAME ' x509i ssuer URI'"
DESC ' Uni form Resource Identifier for the Wrl d-Wde Wb
of the entity who has signed and issued the certificate'
EQUALI TY caseExact | ASvat ch
SUBSTR caseExact | A5Substri ngshat ch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

Val ues of this attribute nust be encoded according to the syntax
given in [RFC2396] .

4.2.6.5 Issuer |IP address

(1.3.6.1.4.1.10126.1.5.3.27
NAME ' x509i ssuer | pAddr ess
DESC 'I nternet Protocol address of the entity who has
signed and issued the certificate'
EQUALI TY casel gnor el A5Mat ch
SUBSTR casel gnor el A5Subst ri ngsMat ch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

Val ues of this attribute type nmust be stored in the syntax given in
Appendi x B of [RFC2373].

4.2.6.6 |ssuer registered ID
(1.3.6.1.4.1.10126.1.5.3.28
NAME ' x509i ssuer Regi st eredl D
DESC 'O D of any registered object identifying the entity who has
signed and issued the certificate'
EQUALI TY obj ect | dentifierMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.38)

registerediIDis an identifier of any registered object assigned in

Getz & Kl asen Expi res November 30, 2004 [Page 15]

a1

I nt ernet-Draft PKI X LDAP PKC Schemn June 2004

accordance with | TU-T Rec. X 660.
4.2.7 Basic constraints extension

This attribute indicates whether the subject of the certificate is a
CA (see X.509(2000) 8.4.2.1, RFC3280 4.2.1.10). If the value of this
attribute is "TRUE", the certificate MJST be stored in the
“cacertificate" attribute.

(1.3.6.1.4.1.10126.1.5.3.29
NAME ' x509basi cConstrai nt sCa'
DESC 'l dentifies whether the subject of the certificate is a
CA
EQUALI TY bool eanMat ch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.7
SI NGLE- VALUE)

4.2.8 Extended key usage extension

This attribute indicates one or nore purposes for which the certified
public key may be used, in addition to or in place of the basic
purposes indicated in the "x509keyUsage" attribute (see X 509(2000)
8.2.2.4, RFC3280 4.2.1.13). These purposes are identified by their
a D

(1.3.6.1.4.1.10126.1.5.3.30
NAME ' x509ext KeyUsage'
DESC ' Pur poses for which the certified public key may be used,
identified by an A D
EQUALI TY obj ectldentifierMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.38)

4.2.9 CRL distribution points extension

This attribute identifies howthe full CRL information for this
certifacte can be obtained (see X 509(2000) 8.6.2.1, RFC3280
4.2.1.14).

(1.3.6.1.4.1.10126.1.5.3.32
NAME ' x509f ul | CRLDI stri buti onPoi nt URI''
DESC ' URI type of DistributionPointName for the full CRL
EQUALI TY caseExact | ASMat ch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

In this specification, only the "unifornmResourceldentifier" choice of
"distributionPoint.full Nane" field is supported. |If this attribute

Getz & Kl asen Expi res November 30, 2004 [Page 16]

42

I nternet-Draft PKI X LDAP PKC Schemn June 2004

exists in an entry, both the "reasons" and "cRLIssuer" fields MJST be
absent fromthe certificate, i.e. the CRL distributed by the

di stribution point contains revocations for all revocation reasons
and the CRL issuer is identical to the certificate issuer

Val ues of this attribute nust be encoded according to the URI syntax
given in [RFC2396] .

4.3 Additional attributes
4.3.1 Certificate |ocation

This attribute contains a pointer to the directory entry of a
certificate. Thus it is possible to point to the certificate from
an, e.g., white pages entry.

(1.3.6.1.4.1.10126.1.5.4.74
NAME ' x509cert Locati on'
DESC ' Pointer to a x509certificate Entry
EQUALI TY di sti ngui shedNaneMat ch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.12)

4.3.2 Certificate hol der

This attribute contains a pointer to the directory entry of the end
entity to which this certificate was issued. Thus it is possible to
link a certificate entry in a certificate repository to, e.g., a
white pages entry of the subject.

(1.3.6.1.4.1.10126.1.5.4.75
NAME ' x509cert Hol der’
DESC ' Pointer to the directory entry of the end entity to which this
certificate was issued’
EQUALI TY di sti ngui shedNaneMat ch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.12)

5. X. 509 schenma object classes

The obj ect classes have been designed to forma |ogical set and be
extensible in an orderly way as new PKC/ CRL/ AC extensions are
defined. The nethodology is as follows. Every X 509 entry (for a
PKC, CRL or AC) is of the x509base abstract object class. There is
then an additional abstract object class for each, derived from
x509base, which holds the attributes extracted fromthe basic PKC AC/
CRL ASN. 1 structure (excluding all extensions). The PKC object class
is then instantiated by two structural object classes for user

Getz & Klasen Expi res Novenber 30, 2004 [Page 17]
43

I nt ernet-Draft PKI X LDAP PKC Schemn June 2004

certificates and for CA certificates.
5.1 X 509 base object class

The x509base object class is the abstract object class that is the
superior of all of the x.509 entry object classes

(1.3.6.1.4.1.10126.1.5.4.2.1
NAME ' x509base
ABSTRACT
MAY x509ver sion)

5.2 X 509 PKC object class

Thi s abstract object class contains the fields of an X 509 user
certificate or CA certificate that are used in searches as attributes
and in nane fornms. It is derived fromthe abstract object class
x.509base as specified in [l dap-crl-schema] and is base for the two
foll owi ng object cl asses.

(1.3.6.1.4.1.10126.1.5.4.2.3
NAME ' x509PKC
SUP x509base
ABSTRACT
MUST (x509seri al Nunber $ x509val i dityNotBefore $
x509val i di t yNot After $ x509subj ect Publ i cKeyl nf oAl gorithm $
x509si gnat ureAl gorithm $ x509i ssuer)
MAY (x509aut horityKeyldentifier $
x509aut horityCertlssuer $ x509aut horityCert Serial Nunber $
x509subj ect Keyl dentifier $ x509keyUsage $
x509pol i cylnformationldentifier $
x509subj ect Rf c822Nanme $ x509subj ect DnsNanme $
x509subj ect Di rect oryNane $ x509subjectURl $
x509subj ect | pAddress $ x509subj ect Regi steredl D $
x509i ssuer Rf c822Nane $ x509i ssuer DnsNane $
x509i ssuer Di rectoryNane $ x509i ssuer URI $
x509i ssuer | pAddress $ x509i ssuer Regi steredl D $
x509ext KeyUsage $ x509Ful | cRLDi stri butionPointURI $
x509cert Hol der $
x509i ssuer Serial $ x509basicConstraintsCa))

The attribute description of x509i ssuerSerial can be found in
[l dap-ac-schema]

5.3 X 509 user certificate object class

This object class is for storing user certificates.

Getz & Kl asen Expi res November 30, 2004 [Page 18]

44

I nternet-Draft PKI X LDAP PKC Schemn June 2004

(1.3.6.1.4.1.10126.1.5.4.2.4
NAME ' x509userCertificate'
SUP x509PKC
STRUCTURAL
MJST userCertificate
MAY x509subj ect)

The attribute description of userCertificate can be found in

[pki x-1 dap-schema]. Although this attribute type is specified as
mul ti-valued it MJUST NOT contain nore than one certificate if used
with this object class.

The attribute type x509subject is specified here as a MAY attribute.
Nevertheless if this attribute is not used at |east one of the
following attributes MJUST be filled in: x509subj ect Rf c822Nane,
x509subj ect DnsNane, x509subj ect Di rect or yName, x509subj ect URI
x509subj ect | pAddr ess, or x509subj ect Regi st er edl D

5.4 X 509 CA certificate object class
This object class is for storing CA certificates.

(1.3.6.1.4.1.10126.1.5.4.2.5
NAME ' x509caCertificate'
SUP x509PKC
STRUCTURAL
MUST (caCertificate $ x509subject))

The attribute description of caCertificate can be found in

[pki x-1 dap-schema]. Although this attribute type is specified as
mul ti-valued it MJST NOT contain nore than one certificate if used
with this object class.

5.5 X 509 certificate hol der object class

This auxiliary object class has an attribute that contains a pointer
to an entry with x509certicate objectclass. Thus it is possible to
link, e.g., an entry of a white pages directory to an entry in a
certificate store.

(1.3.6.1.4.1.10126.1.5.4.2.2
NAME ' x509certifi cat eHol der'
AUXI LI ARY
MAY (x509certLocation))

Getz & Klasen Expi res Novenber 30, 2004 [Page 19]
45

I nt ernet-Draft PKI X LDAP PKC Schemn June 2004

6. DIT structure and nani ng

If the schema presented in this docunment is used to store certificate
information in a directory that contains entries for organizations,
persons, services, etc., each certificate belonging to an entity
SHOULD be stored as a direct subordinate to the entity's entry. In
this case, these entries MJST be naned by a multi-val ued RDN forned
by the certificate issuer and serial nunber, as this is the only way
to enforce unique RDN under the siblings. This is expressed in the
foll owing two nane forns:

(1.3.6.1.4.1.10126.1.5.5.6
NAME ' x509user Certi fi cat eNanmef or n
OC x509userCeriticate
MUST (x509seri al Number $ x509i ssuer))

(1.3.6.1.4.1.10126.1.5.5.7
NAME ' x509caCerti fi cat eNanmef or n
OC x509caCertificate
MUST (x509seri al Number $ x509i ssuer))

There are sonme LDAP inplenmentations that don't support nulti-val ued
RDNs. These can use following alternative two name forns:

(1.3.6.1.4.1.10126.1.5.5.8
NAME ' x509PKCAIl t NarreFor ni
OC x509PKC
MJST x509i ssuer Seri al)

For public directories of CAs that, besides the data stored in the
certificates, do not hold any additional data about end entities the
following DIT structure m ght be preferable. Entries for
certificates are stored directly below the issuing CA's entry. In
this case these entries SHOULD be named by the certificate seria
nunber. This is expressed in the followi ng two name forns:

(1.3.6.1.4.1.10126.1.5.5.10
NAME ' x509PKCSer i al Nunber NameFor n
OC x509PKC
MUST x509seri al Nunmber)

Care must be taken when encoding DNs that contain an x509i ssuer
attribute. Such a value is a string representation according to

[RFC2253]. These strings contain RFC2253 special characters and mnust
therefore be escaped. For exanple, the issuer name in a certificate
may be:

Getz & Kl asen Expi res November 30, 2004 [Page 20]

46

I nternet-Draft PKI X LDAP PKC Schemn June 2004

x509i ssuer: OU=Veri Si gn Trust Network, OU=(c) 1998 Veri Sign\2c Inc. -
For authorized use only,Ok=Class 1 Public Primary Certification Au
thority - &, O=Veri Sign\2c Inc.,C=US

When used in a DN, this will be appear as:

dn: x509seri al Nunber =123456+x509i ssuer =OW\ 3dVeri Si gn Trust Network
\2cON 3d(c) 1998 Veri Sign\bc\2c Inc. - For authorized use only\2cON\ 3d
Class 1 Public Primary Certification Authority - G2\2cO 3dVeri Sig

n\ 5c\ 2c¢ I nc.\2cC 3dUS, cn=Joe Exanple, ..

7. Security Considerations

Attributes of directory entries are used to provide descriptive

i nfornmati on about the real-world objects they represent which can be
peopl e, organi zations, or devices. Mst countries have privacy |aws
regardi ng the publication of information about people.

Wt hout additional nmechani snms such as Qperation Signatures [RFC2649]
which allowa client to verify the origin and integrity of the data
contained in the attributes defined in this docunent, a client MJST
NOT treat this data as authentic. Clients MJST only use - after
proper validation - the data which they obtained directly fromthe
certificate. Directory adnministrators MAY deploy ACLs which limt
access to the attributes defined in this document to search filters.

Transfer of cleartext passwords is strongly discouraged where the
underlying transport service cannot guarantee confidentiality and may
result in disclosure of the password to unauthorized parties.

In order to protect the directory and its contents, strong
aut henti cati on MJUST have been used to identify the Cient when an
update operation is requested.

8. | ANA Consi der ati ons

Thi s docunment uses the O D 1.3.6.1.4.1.10126.1.5 to identify the LDAP
schema el enents described here. This O D was assigned by DAAS
International, under its | ANA-assigned private enterprise allocation
[PRI VATE], for use in this specification

9. Acknow edgnents

Thi s docunment borrows from a nunber of |IETF docunents, including
[certinfo-schems].

The aut hors wi sh to thank David Chadw ck, Russ Housl ey, M khai

Getz & Klasen Expi res Novenber 30, 2004 [Page 21]
47

I nt ernet-Draft PKI X LDAP PKC Schemn June 2004

10.

10.

Sahal ayev, M chael Stroeder, and Kurt Zeilenga for their
contributions to this docunent.

This work is part of the DFN Project "Ausbau und Weiterbetrieb eines
Directory Konpetenzzentrums" funded by the German M nistry of
Research (BMBF).

The | ast versions of this work were nade in the frame of the project
"PKI/ LDAP" funded by the Mnistry of Science, Research and The Arts
of Baden-Wierttenberg, Gernany.

Thi s docunent has been witten in XM. according to the DID specified
in RFC2629. xml 2rfc has been used to generate an RFC2033 conpli ant
plain text form The XM. source and a HTM. version are avail able on
request.

Ref er ences
1 Normmtive references

[PRIVATE] | ANA, "Private Enterprise Nunbers",
<http://ww. i ana. or g/ assi gnenent s/ ent er pri se- nunber s>.

[RFC0822] Crocker, D., "Standard for the format of ARPA Internet
text nmessages", STD 11, RFC 822, August 1982.

[RFC1035] Mockapetris, P., "Domain names - inplenentation and
specification", STD 13, RFC 1035, Novenber 1987.

[RFC2119] Bradner, S., "Key words for use in RFCs to |ndicate
Requi renent Level s", BCP 14, RFC 2119, March 1997.

[RFC2234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
Speci fications: ABNF', RFC 2234, Novenber 1997.

[RFC2252] Wahl, M, Coul beck, A, Howes, T. and S. Kille,
"Li ghtweight Directory Access Protocol (v3): Attribute
Syntax Definitions", RFC 2252, Decenber 1997.

[RFC2253] WwWahl, M, Kille, S. and T. Howes, "Lightweight Directory
Access Protocol (v3): UTF-8 String Representation of
Di sti ngui shed Names", RFC 2253, Decenber 1997.

[RFC2256] Wahl, M, "A Sunmary of the X 500(96) User Schema for use
with LDAPv3", RFC 2256, Decenber 1997.

[RFC2373] Hinden, R and S. Deering, "IP Version 6 Addressing
Architecture", RFC 2373, July 1998.

Getz & Kl asen Expi res November 30, 2004 [Page 22]

48

I nternet-Draft PKI X LDAP PKC Schemn June 2004

[RFC2396] Berners-Lee, T., Fielding, R and L. Masinter, "Uniform
Resource Identifiers (URI): Generic Syntax", RFC 2396,
August 1998.

[RFC2798] Snmith, M, "Definition of the inetO gPerson LDAP Object
Class", RFC 2798, April 2000.

[RFC3280] Housley, R, Polk, T., Ford, W and D. Solo, "Internet
X. 509 Public Key Infrastructure Certificate and CRL
Profile", RFC 3280, April 2002.

[RFC3377] Hodges, J. and RL. Morgan, "Lightweight Directory Access
Protocol (v3): Technical Specification", RFC 3377,
Sept enber 2002.

[l dap-ac-schena]
Chadwi ck, D. and M Sahal ayev, "Internet X 509 Public Key
Infrastructure - LDAP Schema for X 509 Attribute
Certificates", Internet Draft (work in progress), My
2004, <draft-ietf-pkix-Idap-ac-schema-02.txt>.

[I dap-crl-schemg]
Chadwi ck, D. and M Sahal ayev, "Internet X 509 Public Key
Infrastructure - LDAP Scherma for X 509 CRLs", |nternet
Draft (work in progress), My 2004,
<draft-ietf-pkix-Ildap-crl-schema-02.1txt>.

[pki x-1 dap- schema]
Chadwi ck, D. and S. Legg, "Internet X 509 Public Key
Infrastructure - LDAP Schena and Syntaxes for PKIs",
Internet Draft (work in progress), June 2002,
<draft-ietf-pkix-I|dap-pki-schema-00.txt>.

10.2 Non-nornmtive references

[RFC2312] Dusse, S., Hoffman, P., Ramsdell, B. and J. Winstein, "S/
M ME Version 2 Certificate Handling", RFC 2312, March
1998.

[RFC2649] G eenblatt, B. and P. Richard, "An LDAP Control and Schenma
for Hol ding Operation Signatures”, RFC 2649, August 1999.

[RFC2651] Allen, J. and M Mealling, "The Architecture of the Conmpn
I ndexi ng Protocol (CIP)", RFC 2651, August 1999.

[RFC2654] Hedberg, R, Greenblatt, B., Mats, R and M Wahl, "A
Tagged | ndex Cbject for use in the Conmon | ndexing
Protocol ", RFC 2654, August 1999.

Getz & Klasen Expi res Novenber 30, 2004 [Page 23]
49

I nt ernet-Draft PKI X LDAP PKC Schemn

June 2004

[RFC3039] Santesson, S., Polk, T., Barzin, P. and M Nystrom
"Internet X 509 Public Key Infrastructure Qualified
Certificate Profile", RFC 3039, January 2001.

[RFC3687] Legg, S., "Lightweight Directory Access Protocol and X 500
Conponent Matching Rul es", RFC 3687, February 2004.

[X. 509- 2000]

I TU, "Information Technology - Open Systens

Interconnection - The Directory: Public-key and attribute
certificate frameworks", I TUT Recomendation X. 509,

Mar ch 2000.

[certinfo-schems]

Greenblatt, B., "LDAP Object O ass for
Information", Internet Draft (expired),

Hol ding Certificate
Februar 2000,

<http://ww. wat er spri ngs. org/ pub/id/draft-greenblatt-I| dap-

certinfo-schenmn-02.txt>

[mat chedval]

Chadwi ck, D. and S. Mullan, "Returning Matched Val ues with

LDAPv3", Internet Draft (work in progress),

Sept enber

2002, <draft-ietf-I|dapext-matchedval -07.txt>.

Aut hors' Addr esses

Peter Getz

DAASI I nternational GrbH
W hel nstr. 106

Tuebi ngen 72074

DE

Phone: +49 7071 29 70336
EMai | : peter.gi etz@aasi . de
URI : http://ww. daasi . de/

Nor bert Kl asen
Avi nci

Hal skestr. 38
Rati ngen 40880
DE

EMai | : norbert. kl asen@vi nci . de

Getz & Klasen Expi res Novermber 30, 2004
50

[Page 24]

I nternet-Draft PKI X LDAP PKC Schemn June 2004

Appendi x A. Sanple directory entries

A sanpl e x509certificate directory entry for an internedi ate CA
certificate in LD F format:

dn: x509seri al Nunmber =4903272, EMAI LADDRESS=certify@ca. df n. de, CN=DFN T
opl evel Certification Authority, O=DFN PCA, OU=DFN- CERT GrbH, O=Deut sc
hes Forschungsnet z, C=DE

obj ectcl ass: x509caCertificate

x509version: 2

x509seri al Nunber: 4903272

x509i ssuer: EMAI LADDRESS=certify@oca. df n. de, CN=DFN Topl evel Certifica
tion Authority, OU=DFN- PCA, OU=DFN- CERT GrbH, O=Deut sches For schungsnet
z, C=DE

x509val i di t yNot Bef ore: 20020110170112Z

x509val i di t yNot After: 20060110170112Z

x509subj ect: EMAI LADDRESS=ca@laasi . de, OU=DAASI CA, O=DAASI Internation
al GnbH, C=DE

x509subj ect Publ i cKeyl nf oAl gorithm 1.2.840.113549.1.1.1

x509basi cConstrai nt sCa: TRUE

x509keyUsage: keyCert Sign

x509keyUsage: cRLSi gn

x509subj ect Keyl dentifier:: 5nrZFpVKARKS | gl qQ4N4IXBS4ABk=

x509cLRdi stri butionPointURI: http://ww.df n-pca.de/certification/x509
/gl/datal/crls/root-ca-crl.crx

x509cLRdi stri butionPointURI: http://ww.df n-pca.de/certification/x509
/gl/datal/crls/root-ca-crl.crl

x509pol i cyl nformationldentifier: 1.3.6.1.4.1.11418.300.1.1

x509caCert:: M| HTTCCB] WAW BAgl DSt FOMAOGCSqGSI b3 DQEBBQUAM
Gs M WCQYDVQQGEWI ERTENMB8 GALUEChMYRGV1dHN aGvzIl EZvenN aHVUZ3NuZXR6 VR
YWFAYD VQQLEWLERK4t QOVSVCBHbW I MRAWDg YDVQQL Ewd ERk 4t UENBMSOWKWY DVQQDE
YRERK4gV® whGV2ZWwyQ@Vydd maVWhdd vbi BBdXRob3JpdHkx | TAf Bgkghki GOwOB
CQEVEEMNI cnRpZnl AcGNhLRnbi 5kZTAe FwOwM Ax MTAX Nz Ax MTJaFwOwlN) Ax MTAx Nz Ax
MTI'JaMF8x Cz AJ BgNVBAYTAk RFMSEWHWY DVQRKEXhEQUFTSSBJbnR cnbhdd@ vbnfs| Edt
Ykgx ETAPBgNVBAS TCERB QVNJ| ENBMROWGAYJKoZI hve NAQKBFgt j YUBKYWFzaS5kZTC
CASI wDQYJKoZl hvc NAQEBBQA DggEPADCCAQoCggEBAKNBp+Gr 28/ ql EW nJoi H3AwWmM
hNEYNMRWI XMXMV] MBSAnBSmXZ8FZf TSPhi 501zx5nyHecf | 01f AO79Kpc6XkOTA 4i KBwu
7+DVBy 9l i zp2puhOQ6i uuchAl yJQPROI f WAVvWHANT7Nf 13Js5qFHv XBDgvgt 6f udl1l 8
XZAnPWBSbhs60nB4EUDI RLx5f dCX2sEPQ NKeuOl NM j HI 6eGospmahupOAr PAORYZV] V
g6ZHkh4205/ JAhj i 9Kt Fi f KCzt XNTRVba7AHd2uS6GhF9+chGLPWENZKt Mhad1SvU7Zl
w' y SHk FbBFZMu6x 3k AVgWMB gKQa5qSFnMwv/ WIKATJ RPek CAWEAAa OCA8I wgg O+ MASBGAL
UdEWEB/ WQFMANVBAF 8wOwYDVROPBAQDAGEGVBOGALUd DgQABBTret kW Ur hEp8i CWDg3
gl cFLgGTCB2wYDVROj Bl HTM HQgBQGC/ ql+Eh40yCxCz 7PoNDEOX990KGBs qSBr zCBr D
EL MAK GA1LUEBhMCREUxX | TAf BgNVBAOTGER dXRzY2hl cyB&Gh3JzY2h1bndzbnV0ej EVWB
QGALUECX MNREZOLUNFUI QgR21i SDEQVA4 GALUECX MHREZOL VBDQTEt MCs GALUEAX Mk RE
ZO FRvcG&xIl dnvsl ENl cnRpZm j YXRpb24gQXV0a®@yaXR5 MSEwHWYJKoZIl hvc NAQKBFh
Jj ZXJ0aWZ5QHB] YS5kZmiuZGWNCAX XP/ TCBpQYDVROf Bl GAM GaMEugSaBHhk VodHRWO
8vd3d3LnRnbi 1wy2EUZGW Y2VWdd maVWhdd vbi 94NTASL2cxL2RhdCGEVY3Jscy9yb2

Getz & Klasen Expi res Novenber 30, 2004 [Page 25]
51

I nt ernet-Draft PKI X LDAP PKC Schemn June 2004

90LWNhLWNy bC5j] cngwS6BJoEe GRWIOdHAGLY 93d3cuZGZuLXBj YS5kZS9j ZXJ0aWzZpY2
FOaVWuL3g1MDkvZzEvZGF0YS9j cnxzL3Jvb3Q Y2Et Y3JsLnNybDARBgl ghkgBhvhCAQ
EEBAMCAQYWSWYJ YI ZI AYb4(QyEl BDAWPChOdHAG6LY93d3cuZGZuL XBj YS5kZS9j ZXJ0aW
ZpY2F0aWpuL3BvbG j aWzL3g1 VDl wh2xpY3kuaHRt bDCB+QYJYI ZI AYb4QENBI Hr Fo

HoVGhpcyBj ZXJ0aWzZpY2F0ZSB3YXMyaXNz dWk| Q51 HRoZSBERk 4t UENBLCB0aGUgVG
9wCkx| dmVs| ENl cnRpZn j YXRpb24gQXV0a@yaXR5! GOm HRoZSBHZXJt YWigUnz ZW
FyY2gKTmv0d29yay AoRGV1dHN aGVvzIl EZvenN aHVUZ3NuZXR6LCBERKk4pLgpUaGUga?2

V51 GA3bnmvyJ3MgaWRl bnRpdHkgd2Fz1 GF1dCGhl bnRpY2F0ZWQaWIKYWN) b3Jk YW6j ZS
B3aXRol HRoZSBERKk4t UENBI Hg1MDk gU®saVWN5Lj A3Bgl ghkgBhvhCAQVEKhYoaHROCH
MBLY93d3cuZGZuLXBj YS5kZS9j Z2kvY2hl Y2st cmv2LmiNnaTBk BgNVHSAEXTBbMFk GOy

s GAQUQB2 R CLAEBVEOWSAYI| KwYBBQUHAgEWPGNOdHAGLY93d3cuZ&ZuL XBj YS5kZS9j ZX
JOaWZpY2F0aWulL3Bvbd j aWzL3g1MD wh2xpY3kuaHRt bDANBgkghki GOWOBAQUFAA
OCAQEALRGMCWSLwsy Hf C241af | dqgj / GULv8nT SKUEpK2OQt YULJAYFz mx69i we OKHbg

XZKZA2Wox +9Ay dl e98MI CSCOFKY] kzgXU4f EZbEgnZBo+/ 1+WW2BoB6gFAW 77KVHgi mA
7AqCcf bCbeyCrryf Lglr 08/ KpEO1QG Nr 0S+Ef Z3gX9sezj VKCy12HBNQknz/ hT2af 25UU
hy FTcvUY4xvl KAQpl a29qy O28sf O93ChkunbSU2XPI sKU+31 yqF33Xy84Y2z8ScVI sMu

VWHUG miVshnpT5K91n42pu/ f Or Lt kKZDssEDbcLnQDLWEz 1aUDKLC++4CeFJIxC/ Dd/ SO

EOy ROhNQ=

A sampl e x509certificate directory entry for an end identity
certificate in LD F format:

Getz & Kl asen Expi res November 30, 2004 [Page 26]

52

I nt ernet-Draft PKI X LDAP PKC Schemn June 2004

dn: x509seri al Nunmber=1581631808272310054353257112721713, EMAI LADDRESS=
certificate@rustcenter.de, OU=TC TrustCenter Class 1 CA O=TC TrustCe
nter for Security in Data Networks GrbH, L=Hanbur g, ST=Hanbur g, C=DE

obj ectcl ass: x509userCertificate

x509version: 2

x509seri al Nunber: 1581631808272310054353257112721713

x509i ssuer: EMAI LADDRESS=certificate@rustcenter.de, OETC Trust Cente
r Cass 1 CA O=TC TrustCenter for Security in Data Networks GrbH, L=
Hanmbur g, ST=Hambur g, C=DE

x509val i di t yNot Bef ore: 20011030180757Z

x509val i di t yNot After: 20021030180757Z

x509subj ect: EMAI LADDRESS=nor bert. kl asen@laasi . de, CN=Nor bert Kl asen, C
=DE

x509subj ect Publ i cKeyl nf oAl gorithm 1.2.840.113549.1.1.1

x509user Cert:: M | DOTCCAqKgAWM BAgl OTf SAAAACXOst M Qu2 TEWDQYJ

KoZI hvc NAQEEBQAWG bwx Cz AJBgNVBAYTAK RFVRAWDG YDVQQ Ewdl YWLi dXJnMRAWDg YD
VQRHEWd | YWLi dXJ nMTowQAYDVQKEz FUQyBUcnVzdEN bnRI ci Bb31 gU2Vj dXJpdHkg
aWIgRGFOYSBOZXR3b3Jr cyBHoW | MSI wi AYDVQQLEXI UQyBUcnVzdEN bnRI ci BDbGFz
cy Axl ENBMSKwIwWYJKoZl hvecNAQKBFhpj ZXJ0aWzpY2F0ZUBOcnVzdGN bnRI ci 5kZTAe
FWOWMT EwiVe Ax ODA3NTdaFwowl Ewivie Ax ODA3NTdaME4x Cz AJBgNVBAYTAK RFVMRecwWFQYD
VQQDEW5h3Ji ZXJO0I Et sYXN bj EmMMCQGCSqGSI b3DQEJARYXbnmDy YnydCor bGFzZWb A
ZGFhc2kuZGUwg Z8wDQYJKoZl hve NAQEBBQADg YOAM GJA0GBAL8+XK98p4Yj D7W)7Apm
hAN j 2t f VSFCSOuf y12vGpEt G4ny1t bbBORCII 8vI | Dr 2/ vVTESI 6Uj zcel oVUC b5V8
55mKUVNLL9AYy 4qQLFd4wAoRSPAU9 DK bR+ygj zaYq+MUKMvaB61sG6911xk/ e2/ 11 g8/
| HKr RoYQGHkaaJ pAgMBAAG gaowgacwMwYJ Yl ZI AYb4QgEl BCYW Gh0dHA6LY93d3cu
dHI1c3Rj ZWs0ZXI uZGlvZ3VpZGvsaWbsl cz ARBgl ghkgBhvhCAQEEBAMCBaAWXQYJYI ZI
AYb4QEDBFAWIMh0dHBz O 8vd3d3LnRydXNOY2VudGvwyLnRl L2NnaS1li aWwlvY2hl Y2st
¢ mv2 L m\ina S80 REZ CVDAWMVDAWMVDJI DNEVCIVK Q5 QT Uz QUVEOT Mk Pz ANBgk ghki GOWOBAQQF
AAOBgQCr AzuZzLzt upeqcHa80QUCcnRuTac MpBEel ChZMKv6nNIr Myk AxFKer j / yXbdCE
8/ 3X3L00eG +a8A7PumATi JSf mvYqadEMZWHC2FFqPx Yy Aj +xVuS| L5ACAHGHU4SOCp/
UJulxysoD16chQOCOLpj 7+ZWZWLHI j A3zeXwUd 4k Fvw==

Appendi x B. Sanpl e searches

This section details how clients should access the certstore. The
searches are presented in LDAP URL format.

Retrieve all certificates for an end entity froma certstore using
the first DIT structure

| dap: /// CN=Nor ber t %20Kl asen, O=DAASI %20l nt er nat i onal %20GrbH, C=de?
x509user Cert ?one?(obj ect O ass=x509user Certificate)

Find a certificate in a trustcenter's certstore suitable for sending
an encrypted S/M ME nessage to "norbert. kl asen@laasi . de"

Getz & Kl asen Expi res November 30, 2004 [Page 27]

53

I nternet-Draft PKI X LDAP PKC Schemn June 2004

| dap:/// O=TCY¥20Tr ust Cent er %20f or ¥20Securi t y¥@20i n%20Dat a%20Net wor ks
%20GmhH, L=Hanbur g, ST=Hanbur g, C=de?x509user Cert ?sub?
((&(obj ect d ass=x509userCertificate)
(x509subj ect Rf c822Nane=nor bert. kl asen@laasi . de))
(] (x509keyUsage=keyEnci pher nent) (x509keyUsage=keyAgr eenent)
(x509ext endedKeyUsage=1.3.6.1.5.5.7.3.4)))

Find a CAcertificate by its "subjectKeyldentifier"” obtained fromthe
"keyldentifier" field of the "autorityKeyldentifier" extension in an
end entity certificate:

| dap:///?caCertificate?sub?
(&(obj ect O ass=x509caCertificate)(x509subj ect Keyl denti fi er =% CE6
Y5 C7AYSCDOYH CL69HCO5%B CAAYS CELYH CL29%5 COFYH C22% CO9%H C6 AYG CA 3%
5C839%6C78%%C25%% C70%% C529%6 CE0%HC19))

Appendi x C. Changes from previous Drafts

C.1 Changes in draft-klasen-1dap-x509certificate-schena-01

0 Included new Attributes x509aut horityKeyldentifier
x509aut horityCertissuer, x509authorityCert Serial Nunber,
x509certificatelLocati on, x509certificateHol der, and new
obj ectcl ass x509certificateHol der

o Fixed bug in definition of objectclass x509certificate

o Changed references from RFC 2459 to RFC 3280 and i ncluded sone
respective | anguage in 3. 2.

0 Changed references from RFC 2251 to RFC 3377 and del eted al
references to LDAPv2.

o0 Deleted ";binary" in exanples

o Included new section: Conparision with conmponent matchi ng approach

o Sone changes in wording and section titles, and elimnation of
t ypos

o Changed order of authors, and one author's address

C.2 Changes in draft-klasen-1dap-x509certificate-schema-02
0o abstract object class x509PKC
o aligned to [|dap-ac-schema] and [l dap-crl-schema]

C.3 Changes in draft-klasen-1dap-x509certificate-schena-03

o Changed Mat ching Rules from casel gnoreMatch to casel gnorel A5SMat ch
etc.

o noved the references to RFC 3280 fromthe DESC part of the
attribute definition to the text

o added sone additional text about CIP in Introduction

o rewrded text for x509subj ect Publ i cKeyl nf oAl gorithm

o changed x509userCert and x509caCert to be inherited from
userCertificate and caCertificate respectively

Getz & Klasen Expi res Novenber 30, 2004 [Page 28]
54

I nt ernet-Draft PKI X LDAP PKC Schemn June 2004

0o added clarification about x509subj ect and subject alternative
names

o added attribute type x509i ssuerSerial to x509PKC object class

o added attribute type x509basi cConstraintsCa to x509PKC obj ect
cl ass

o renaned attributetype x509cRLDi stributionPointUR to
x509Ful | cRLDi st ri buti onPoi nt UR

o devided references in nornative and non nornative

0 deleted attributetype mail from x509PKC obj ect cl ass

0 created separate Nane Forns for x509userCertificate and
x509caCertificate object classes.

o changed attributetype x509Seri al Number to MULTI - VALUE

o adjusted exanples to new schema

o Fixed nore typos

C.4 Changes in draft-ietf-pkix-Idap-pkc-schema-00

o renaned the title and file nane

0 deleted attribute types x509userCert and x509caCert and repl aced
themwith the standard userCertificate and caCertificate attribute
types.

o included the description of x509base object class assigning a new
ODtoit.

o renaned x509i ssuer Uni f or Resourcel dentifier and
x509subj ect Uni f or Resour cel dentifier to x509i ssuer URI and
x509subj ect URI respectivly.

o replaced separate Name Fornms for x509userCertificate and
x509caCertificate object classes by a single x509PKCNanmeFor m

o included a super section x509 Schema Object C asses with
i ntroductory remarks (taken from [l dap-ac-schenn])

o added sone additional wording and some ASCII art in the
i ntroduction

o updated references

o added an | ANA considerations section

o added anot her acknow edgemnent

Getz & Kl asen Expi res November 30, 2004 [Page 29]

55

I nternet-Draft PKI X LDAP PKC Schemn June 2004

Intell ectual Property Statenent

The I ETF takes no position regarding the validity or scope of any
intell ectual property or other rights that mght be clainmed to
pertain to the inplenentation or use of the technol ogy described in
this docunment or the extent to which any |icense under such rights

m ght or might not be available; neither does it represent that it
has made any effort to identify any such rights. Information on the
| ETF's procedures with respect to rights in standards-track and
standards-rel ated docunentati on can be found in BCP-11. Copies of
clains of rights nade avail able for publication and any assurances of
licenses to be nade available, or the result of an attenpt nade to
obtain a general license or permission for the use of such
proprietary rights by inplenentors or users of this specification can
be obtained fromthe | ETF Secretariat.

The 1ETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights which may cover technol ogy that may be required to practice
this standard. Please address the information to the | ETF Executive
Director.

Ful | Copyright Statenent
Copyright (C) The Internet Society (2004). Al Rights Reserved.

Thi s docunent and translations of it may be copied and furnished to
ot hers, and derivative works that comrent on or otherw se explain it
or assist in its inmplenentation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any

ki nd, provided that the above copyright notice and this paragraph are
i ncluded on all such copies and derivative works. However, this
docurent itself may not be nodified in any way, such as by renoving
the copyright notice or references to the Internet Society or other
I nternet organi zati ons, except as needed for the purpose of
devel opi ng Internet standards in which case the procedures for
copyrights defined in the Internet Standards process nust be
followed, or as required to translate it into | anguages other than
Engl i sh.

The Iimted pernmni ssions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assignees.

Thi s docunent and the information contained herein is provided on an
"AS | S" basis and THE | NTERNET SOCI ETY AND THE | NTERNET ENGQ NEERI NG
TASK FORCE DI SCLAI M5 ALL WARRANTI ES, EXPRESS OR | MPLI ED, | NCLUDI NG
BUT NOT LI M TED TO ANY WARRANTY THAT THE USE OF THE | NFORVATI ON

G etz & Klasen Expi res Novermber 30, 2004 [Page 30]
56

I nt ernet-Draft PKI X LDAP PKC Schemn June 2004

HEREI'N W LL NOT | NFRI NGE ANY RI GATS OR ANY | MPLI ED WARRANTI ES OF
MERCHANTABI LI TY OR FI TNESS FOR A PARTI CULAR PURPCSE.

Acknow edgnent

Fundi ng for the RFC Editor function is currently provided by the
I nternet Society.

Getz & Kl asen Expi res November 30, 2004 [Page 31]

57

Appendix 6. LDAP Schema for X.509 Attribute Certificates

INTERNET-DRAFT D. W. Chadwick
PKIX WG M. V. Sahalayev
Intended Category: Informational University of Salford
Expires on 9 January 2005 10 July 2004

Internet X.509 Public Key Infrastructure
LDAP Schemafor X.509 Attribute Certificates
<draft-ietf-pkix-ldap-ac-schema-01.txt>

Copyright (C) The Internet Society (2004). All Rights Reserved.

"By submitting this Internet-Draft, we certify that any applicable patent or
other IPR claims of which we are aware have been disclosed, or will be
disclosed, and any of which we become aware will be disclosed, in accordance
with RFC 3668 [22]."

STATUSOF THISMEMO

This document is an Internet-Draft and is in full conformance with
all the provisions of Section 10 of RFC2026 [1].

Comments and suggestions on this document are encouraged. Comments on this
document should be sent to the PK1X working group discussion list
<ietf-pkix@imc.org> or directly to the authors.

Internet-Drafts are working documents of the Internet Engineering Task Force
(IETF), its areas, and its working groups. Note that other groups may aso
distribute working documents as I nternet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be
updated, replaced, or obsoleted by other documents at any time. Itis

inappropriate to use Internet-Drafts as reference material or to cite them other

than a"work in progress.”

The list of current Internet-Drafts can be accessed at
http://www.ietf.org/lid-abstracts.html

Thelist of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html”

ABSTRACT

This document describes an LDAP schemafor X.509 attribute certificates (ACs).
Each AC isbroken down into a set of attribute types. These attributes can then
be stored in an AC entry. An object classis defined for this AC entry. Each
attribute type uses an existing LDAP syntax, so that no new matching rules need
to be defined.

58

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [2].

TABLE OF CONTENTS

1. Introduction.........ccccceevereeriennnnne 2

2. DIT Structure and Namingcceue.... 3
3. X.509 Schema Object Classes................... 4
3.1 X509 AC object classcccevvvrvereenne. 4
3.2 X.509 attribute certificate object class....5
3.3 X.509 AA certificate object class........... 5

3.4 Embedded attributes ... 5
3.5 X.509 AC extensions auxiliary object class...5
4. Common X.509 Attribute Types.................. 6
5. Attribute Types for AC Specific Fields........ 7
5.1 AC holder PKC......ccoovvvvnirenenee, 7

5.3 AC object digest.........cccvererennnnne 9

6. Attributes for Selected AC Extensions........ 10
6.1 Audit identity........cceoevvecrneenne. 10

6.2 ACtargets......ccccecveevcreenvieensnnn, 11

6.3 NO revocation...........cccceeevevvvreeenne. 14

6.4 CRL distribution points..................... 14

7. Security Considerations..............cc...... 18

8. IANA Considerations.............cccveenee. 18

9. References........ccccevvevveeerieeennne 18

10. Intellectual Property Notice................ 20

11. Acknowledgments...........ccocererernenne. 20

12. Copyright.......cccovveeeiieiiniieeiienns 20

13. Authors Addresses.........ccceeeereeennnne 21

14. Changes........cccvveveeeieesiecnenn, 21

1. Introduction

It currently isn't possible to search LDAP servers for X.509 [6] attributes

(public key certificates, CRLs etc.) as no matching rules have been defined for
them. A couple of Internet Drafts [9,10] have been specified, but implementation
of them is complex. Component matching [19] defines a mechanism for matching
against complex syntaxes, by defining generic matching rules that can match
against any user selected component partsin an attribute value of any

arbitrarily complex attribute syntax. This might prove to be the proper way to
solve LDAP search problemsin the longer term, but it will take along time

until such ASN.1 based mechanisms are implemented in al LDAP servers and
clients. Even when this has happened the mechanism proposed in this document
will still be useful to some applications such as CIP [20].

A simple and easy to implement mechanism is needed today to search for X.509
attributes. Rather than search for an X.509 attribute in an entry, it suggests

59

the directory administrative user creates an entry (in the case of pubic key and
attribute certificates) or a subtree (in the case of CRLS) from the X.509
attribute. The attributes of these new entries will be created from fields of

the X.5009 attribute (e.g. the issuer field), and if these new attributes are
defined using existing LDAP syntaxes and matching rules, then it will be
possible to use existing LDAP server technology to search for fieldsin X.509
attributes.

This document is one of a set comprising:

)] the LDAP schemafor X.509 public key certificates[7]

i) the LDAP schema for X.509 attribute certificates (this document)
iii) the LDAP schemafor X.509 CRLs[8]

Schema definitions are provided using LDAPv3 description formats from RFC2252
[3]. Definitions provided here are formatted (line wrapped) for readability.

The specifications use the augmented Backus-Naur Form (ABNF) as described in
RFC2234 [4].

2. DIT Structure and Naming

If the schema presented in this document is used to store information about ACs

in an LDAP directory, each AC SHOULD be stored as a direct subordinate of the AC
holder's entry. These entries SHOULD be named using either the xX509A CNameForm
i.e. by amulti-valued RDN formed by the AC issuer and serial number, or by the

x509A CAltNameFormi.e. by asingle valued RDN formed by concatenating the AC
issuer and serial number, as these are the only ways to enforce unique RDNs

under the holder's entry. Exceptionally, if it can be guaranteed that only ACs

from asingle issuer will be stored under the holder's entry, the

X509A CserialNumberNameForm MAY be used, i.e. the single valued RDN formed from
the AC serial number.

(1.2.826.0.1.3344810.1.3.3
NAME 'X509A CNameForm'
OC x509AC
MUST (x509serialNumber $ x509issuer))

(1.2.826.0.1.3344810.1.3.4
NAME 'x509A CAltNameForm'
OC x509AC
MUST (x509issuerSeria))

(1.2.826.0.1.3344810.1.3.5
NAME 'x509A Cserial NumberNameForm'

OC x509AC
MUST (x509serialNumber))

The following attribute description describes the attribute used to hold the
alternative RDN name form.

(1.2.826.0.1.3344810.1.1.60

60

NAME "x509issuerSerial’

DESC 'Used to hold the RDN of a certificate entry, formed by
concatenating the AC serial number and issuer fields'

EQUALITY distinguishedNameMatch

SYNTAX 1.3.6.1.4.1.1466.115.121.1.12

SINGLE-VALUE)

When encoding DNs that contain an x509issuer field, the string representation
must be made according to [13]. These strings contain RFC2253 special
characters and must therefore be escaped. For example, theissuer namein a
certificate may be:

x509issuer: OU=VeriSign Trust Network,OU=(c) 1998 VeriSign Inc. -
For authorized use only,OU=Class 1 Public Primary Certification Au
thority - G2,0=VeriSign Inc.,C=US

When used in the x509issuerSerial attribute of a DN, this may appear as.

dn: x509i ssuerSerial =123456\,0U\=VeriSign Trust Network \,OU
\=(c) 1998 VeriSign Inc. - For authorized use only\,OU\=Class 1 Public
Primary Certification Authority - G2\,0\=VeriSign Inc.\2cC\3dUS

3. X.509 Schema Object Classes

The object classes have been designed to form alogical set and be extensiblein
an orderly way as new PKC/CRL/AC extensions are defined. The methodology is as
follows. Every X.509 entry (for aPKC, CRL or AC) is of the x509base abstract
object class. There isthen an additional abstract object class for each,

derived from x509base, which holds the attributes extracted from the basic
PKC/AC/ICRL ASN.1 structure (excluding all extensions). Further, thereisan
auxiliary object class for the extensions defined in X.509 [6], and an

additional auxiliary object class (if needed) for extensions defined in existing
Internet RFCs. As new extensions are defined, then new auxiliary object classes
and attributes will need to be defined to cater for the attributes to be

extracted from these. Finally there are several structural object classes for

each, which alow the X.509 DER encoded attribute to be stored in the entry.

The X.509 base object classisdefined in [8].
3.1 X509 AC object class

The X.509AC abstract object classis used to hold the attributes extracted from
the basic fields of an attribute certificate. The X.509 AC object classisthe
abstract object class from which the structural object classes for
attributeCertificate entries and AA certificate entries are derived.

(1.2.826.0.1.3344810.1.0.16
NAME 'X509AC'
SUP x509base
ABSTRACT

61

MUST (x509version $
x509seria Number $
x509signatureAlgorithm $
x509issuer $
x509validityNotBefore $
x509validityNotAfter)

MAY (x509ACHolderPK CSerialNumber $
x509ACHolderPK CissuerDN $
X509A CHolderRfc822Name $
Xx509A CHolderDNSName $
X509ACHolderDN $
x509ACHolderURI $
X509A CHolderlPAddress $
x509A CHolderRegisteredIiD $
x509authorityCertlssuer $
x509authorityCertSerial Number $
x509authorityKeyldentifier $
x509A CObjectDigest $
X509A CDigestAlgorithm $
x509A CDigestedObjectType $
x509issuerSerial))

The definition of x509base can be found in [7].
3.2 X.509 attribute certificate object class

This structural object classisfor entries of attribute certificates belonging
to holders.

(1.2.826.0.1.3344810.1.0.17
NAME 'x509attributeCertificate'
SUP x509AC
MUST attributeCertificateAttribute)
The attributeCertificateAttribute is defined in [10].
3.3 X.509 AA certificate object class

This structural object classisfor entries of attribute certificates belonging
to Attribute Authorities.

(1.2.826.0.1.3344810.1.0.18
NAME 'x509aA Certificate'
SUP x509AC
MUST aACertificate)
The aACertificate attribute is defined in [10].

3.4 Embedded attributes

62

The x509AC object class does not contain the attributes embedded in the
attribute certificate, since these can be attributes of any type. Therefore the
LDAP entry created to hold the AC should also be of the auxiliary object classes
appropriate for the attributes embedded in the AC. One pragmatic solution to
thisisto make the entry of object class extensibleObject [3].

3.5 X.509 AC extensions auxiliary object class

The x509A Cext auxiliary object classis used to hold the attributes extracted
from the AC extensions defined in the X.509 standard [6] and profiled in [5].

Note. If an AC holds additional extensions to these, then another auxiliary
object class and supporting attributes will need to be defined.

(1.2.826.0.1.3344810.1.0.22

NAME 'x509A Cext'

AUXILIARY

MAY (x509issuerRfc822Name $
x509issuerDNSName $
x509issuerURI $
x509issuerl PAddress $
x509issuerRegisterediD $
x509authorityCertl ssuer $
x509authorityCertSerial Number $
x509authorityK eyldentifier $
X509A CAuditiD $
x509ACTargetRfc822Name $
X509ACTargetDNSName $
X509ACTargetDN $
X509ACTargetURI $
Xx509ACTargetIPAddress $
X509ACTargetRegisterediD $
x509A CTargetGroupRfc822Name $
X509ACTargetGroupDNSName $
X509ACTargetGroupDN $
X509ACTargetGroupURI $
Xx509A CTargetGroupl PAddress $
X509A CTargetGroupRegisterediD $
x509DPRfc822Name $
x509DPDNSName $
Xx509DPDN $
x509DPURI $
x509DPIPAddress $
x509DPRegisteredID $
x509DPrelativeTol ssuer $
Xx509DPissuerRfc822Name $
x509DPissuerDNSName $
x509DPissuerDN $
x509DPissuerURI $
Xx509DPissuerl PAddress $
x509DPissuerRegisterediD $

63

x509DPReasonCodes $
x509A CNoRevocation))

4. Common X.509 Attribute Types

The following attribute types defined in [7] are used to hold the corresponding
fieldsof ACs:

- X509serialNumber - used to hold the serial number of the AC

- x509version - used to hold the version of the AC

- x509signatureAlgorithm - used to hold the OID of the algorithm used to
sign the CRL

- X509issuer - used to hold the DN of the AC issuer

- x509validityNotBefore - used to hold the not before validity time of the
AC (note that only the Generalized Time format is permitted)

- x509validityNotAfter - used to hold the not after validity time of the
AC (note that only the Generalized Time format is permitted)

- x509authorityCertlssuer - used in conjunction with
x509authorityCertSerial Number to identify the public key certificate of
the AC issuer

- x509authority CertSerial Number - used in conjunction with
x509authorityCertlssuer to identify the public key certificate of the AC
issuer

- x509issuerRfc822Name - used to hold the email address of the AC issuer

- X509issuerDNSName - used to hold the DNS name of the AC issuer

- Xx509issuerURI - used to hold a URI for the AC issuer

- x509i ssuerl PAddress - used to hold the IP address of the AC issuer

- x509issuerRegisteredID - used to hold aregistered OID of the AC issuer

- x509authorityK eyl dentifier - used to hold the identifier of the public
key used to sign the AC, taken from the attribute cert issuer object
digest field

5. Attribute Types for AC Specific Fields

The following attribute types may be used to store basic fields of an AC. The
following basic fields are supported:
- X509A CHolderPK CSerial Number and X509A CHolderPK CissuerDN - used to identify
the holder viatheir public key certificate
- X509A CHolderRfc822Name - identifies the holder viatheir email address
- X509A CHolderDNSName - identifies the holder viatheir DNS name
- X509ACHolderDN - identifies the holder viatheir DN
- X509A CHolderURI - identifies the holder viatheir URI
- X509A CHolderl PAddress - identifies the holder viatheir IP address
- X509A CHolderRegisteredI D - identifies the holder viaaregistered OID
- X509A CODbjectDigest, x509A CDigestAlgorithm and x509A CDigestedObjectType -
identifies the holder via a hash of information directly associated with
the holder

5.1 AC holder PKC

The x509A CHolderPK CSerial Number and x509A CHolderPK CissuerDN attributes are to

hold the contents of the holder base certificate ID fields, in order to identify
the holder viatheir public key certificate

5.1.1 AC holder PKC seriad number

(1.2.826.0.1.3344810.1.1.61

NAME 'X509A CHolderPK CSerial Number'
DESC 'The serial number of the PKC of the AC holder,
see RFC3281 4.2.2'

EQUALITY integerMatch

ORDERING integerOrderingMatch

SYNTAX 1.3.6.1.4.1.1466.115.121.1.27

SINGLE-VALUE)

5.1.2 AC holder PKC issuer DN

(1.2.826.0.1.3344810.1.1.62
NAME 'x509A CHolderPK CissuerDN'
DESC 'Distinguished name of the issuer of the PKC belonging to the
AC holder, see RFC3281 4.2.2'
EQUALITY distinguishedNameMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.12)

5.2 AC Holder general names

The following attributes are used to hold the alternative forms of the general
name of the holder. Separate attribute types are defined for all choices of the
ASN.1 type "GeneralName" except for "otherName", "x400Address" and
"ediPartyName".

5.2.1 Holder RFC 822 name

(1.2.826.0.1.3344810.1.1.63
NAME 'x509A CHolderRfc822Name'
DESC 'Internet electronic mail address of the AC holder,
see RFC3281 4.2.2'
EQUALITY caselgnorel ASMatch
SUBSTR caselgnorel A5SubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

Values of this attribute must be encoded according to the syntax given in RFC
822 [11].

5.2.2 Holder DNS name

(1.2.826.0.1.3344810.1.1.64
NAME 'x509A CHolderDNSName'
DESC 'Internet domain name of the AC Holder, see
RFC3281 4.2.2'
EQUALITY caselgnorel ASMatch
SUBSTR caselgnorel A5SubstringsMatch

65

SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

Values of this attribute must be encoded as Internet domain names in accordance
with RFC1035 [12].

5.2.3 Holder directory name

(1.2.826.0.1.3344810.1.1.65
NAME 'x509A CHolderDN'
DESC 'Distinguished name of the AC Holder, see
RFC3281 4.2.2'
EQUALITY distinguishedNameMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.12)

Values of this attribute type must be encoded according to the syntax givenin
RFC2253[13].

5.2.4 Holder uniform resource identifier

(1.2.826.0.1.3344810.1.1.66
NAME 'x509ACHolderURI'
DESC 'Uniform Resource Identifier of the AC Holder,
see RFC3281 4.2.2'
EQUALITY caseExactlA5Match
SUBSTR caseExactl A5SubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

Values of this attribute must be encoded according to the syntax givenin
RFC2396 [14].

5.2.5 Holder IP address

(1.2.826.0.1.3344810.1.1.67
NAME 'x509A CHolderl PAddress
DESC 'Internet Protocol address of the AC Holder, see
RFC3281 4.2.2'
EQUALITY caselgnorel ASMatch
SUBSTR caselgnorel A5SubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

Values of this attribute type must be stored in the syntax given in Appendix B
of RFC2373 [16].

5.2.6 Holder registered ID

(1.2.826.0.1.3344810.1.1.68
NAME 'x509A CHolderRegisteredI D'
DESC 'Any registered OID of the AC holder, see
RFC3281 4.2.2'
EQUALITY objectldentifierMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.38)

66

registerediD is an identifier of any registered object assigned in accordance
with ITU-T Rec. X.660. [17]

5.3 AC object digest

X509A CODbjectDigest, x509A CDigestAlgorithm and x509A CDigestedObjectType are used
to hold the contents of the holder object digest info fields. They are used to

identify the holder via a hash of information directly associated with the

holder.

5.3.1 Object digest

(1.2.826.0.1.3344810.1.1.69
NAME 'x509A CObjectDigest'
DESC 'Holds the hash value of the object identified by
Xx509A CDigestedObjectType, see RFC 3281, section 7.3’
EQUALITY bitStringMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.6
SINGLE-VALUE)

5.3.2 Object digest algorithm

(1.2.826.0.1.3344810.1.1.70
NAME 'x509A CDigestAlgorithm'
DESC 'OID of the hashing algorithm used to create the
Object digest, see RFC3281, section 7.3'
EQUALITY objectldentifierMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.38
SINGLE-VALUE)

5.3.3 Object type

(1.2.826.0.1.3344810.1.1.71
NAME 'x509A CDigestedObjectType'
DESC 'Type of object being digested, see RFC3281, section 7.3'
EQUALITY integerMatch
ORDERING integerOrderingMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
SINGLE-VALUE)

6. Attributes for Selected AC Extensions

In line with the AC profile RFC 3281 [5], the following AC extensions are
supported:

- Audit Identity (defined here)

- AC targets (defined here)

- Authority Key Identifier (defined in [7])

- Authority Information Access (defined in [7])

- CRL distribution points (defined here)

67

- No revocation (defined here)

(Note. The CRL distribution point attributes defined in [7] were inadequate for
our needs)

6.1 Audit identity
This attribute may be used to store the sequence number of the CRL.

(1.2.826.0.1.3344810.1.1.72
NAME 'x509A CAuditI D’
DESC 'ldentity of holder used in audit trails, see RFC3281 4.3.1'
EQUALITY octetStringMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.40
SINGLE-VALUE)

6.2 ACtargets

ACs can be targeted at specific objects, or groups of objects. Objects and
groups of objects are identified by their general names. Separate sets of
attributes are specified for individual targets and groups of targets. Attribute
types are defined for al choices of the ASN.1 type "GeneralName" except for
"otherName", "x400Address" and "ediPartyName".

6.2.1 Target RFC 822 name

(1.2.826.0.1.3344810.1.1.73
NAME 'x509A CTargetRfc822Name'
DESC 'Internet electronic mail address of the ACs Target,
see RFC3281 4.3.2'
EQUALITY caselgnorel ASMatch
SUBSTR caselgnorel A5SubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

Values of this attribute must be encoded according to the syntax given in RFC
822 [11].

6.2.2 Target DNS name

(1.2.826.0.1.3344810.1.1.74
NAME 'X509A CTargetDNSName'
DESC 'Internet domain name of the ACs Target, see
RFC3281 4.3.2'
EQUALITY caselgnorel ASMatch
SUBSTR casel gnorel A5SubstringsM atch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

Values of this attribute must be encoded as Internet domain names in accordance
with RFC1035 [12].

6.2.3 Target directory name

68

(1.2.826.0.1.3344810.1.1.75
NAME 'x509ACTargetDN'
DESC 'Distinguished name of the ACs Target, see
RFC3281 4.3.2'
EQUALITY distinguishedNameMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.12)

Values of this attribute type must be encoded according to the syntax givenin
RFC2253[13].

6.2.4 Target uniform resource identifier

(1.2.826.0.1.3344810.1.1.76
NAME 'x509ACTargetURI'
DESC 'Uniform Resource Identifier of the ACs Target,
see RFC3281 4.3.2'
EQUALITY caseExactlASMatch
SUBSTR caseExact| A5SubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

Values of this attribute must be encoded according to the syntax givenin
RFC2396 [14].

6.2.5 Target |P address

(1.2.826.0.1.3344810.1.1.77
NAME 'x509A CTarget| PAddress
DESC 'Internet Protocol address of the ACs Target, see
RFC3281 4.3.2'
EQUALITY caselgnorel ASMatch
SUBSTR caselgnorel A5SubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

Values of this attribute type must be stored in the syntax given in Appendix B
of RFC2373 [16].

6.2.6 Target registered ID

(1.2.826.0.1.3344810.1.1.78
NAME 'x509A CTargetRegisteredI D'
DESC 'Any registered OID of the ACs Target, see
RFC3281 4.3.2'
EQUALITY objectldentifierMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.38)

registeredID isan identifier of any registered object assigned in accordance
with ITU-T Rec. X.660. [17]

6.2.7 Target group RFC 822 name

69

(1.2.826.0.1.3344810.1.1.79
NAME 'x509A CTargetGroupRfc822Name'
DESC 'Internet electronic mail address of the ACs Target group
see RFC3281 4.3.2
EQUALITY caselgnorel ASMatch
SUBSTR caselgnorel A5SubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

Values of this attribute must be encoded according to the syntax given in RFC

822 [11].
6.2.8 Target group DNS name

(1.2.826.0.1.3344810.1.1.80
NAME 'X509A CTargetGroupDNSName'
DESC 'Internet domain name of the ACs Target group, see
RFC3281 4.3.2'
EQUALITY caselgnorel ASMatch
SUBSTR caselgnorel A5SubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

Values of this attribute must be encoded as Internet domain names in accordance

with RFC1035[12].
6.2.9 Target group directory name

(1.2.826.0.1.3344810.1.1.81
NAME 'X509A CTargetGroupDN'
DESC 'Distinguished name of the AC's Target group, see
RFC3281 4.3.2'
EQUALITY distinguishedNameMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.12)

Values of this attribute type must be encoded according to the syntax givenin

RFC2253[13].
6.2.10 Target group uniform resource identifier

(1.2.826.0.1.3344810.1.1.82
NAME 'x509ACTargetGroupURI'
DESC 'Uniform Resource Identifier of the AC's Target group
see RFC3281 4.3.2'
EQUALITY caseExactlASMatch
SUBSTR caseExactl A5SubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

Values of this attribute must be encoded according to the syntax given in
RFC2396 [14].

6.2.11 Target group IP address

70

(1.2.826.0.1.3344810.1.1.83
NAME 'Xx509A CTargetGroupl PAddress
DESC 'Internet Protocol address of the ACs Target group, see
RFC3281 4.3.2'
EQUALITY caselgnorel ASMatch
SUBSTR caselgnorel A5SubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

Values of this attribute type must be stored in the syntax given in Appendix B
of RFC2373 [16].

6.2.12 Target group registered ID

(1.2.826.0.1.3344810.1.1.84
NAME 'x509A CTargetGroupRegisteredI D'
DESC 'Any registered OID of the ACs Target group, see
RFC3281 4.3.2'
EQUALITY objectldentifierMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.38)

registerediD is an identifier of any registered object assigned in accordance
with ITU-T Rec. X.660. [17]

6.3 No revocation

(1.2.826.0.1.3344810.1.1.85
NAME 'x509A CNoRevocation'
DESC 'If true, the AC will never be revoked, see
RFC3281 section 4.3.6'
EQUALITY booleanMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.7)

6.4 CRL distribution points

The CRL distribution point extension indicates the locations where CRLs will be
published for this AC. It comprises the general name of the DP, plus optionally
the general name of the CRL issuer (if different from the AC issuer) plusthe
reason codes that will be published at this DP. Separate attribute types are

defined for all choices of the ASN.1 type "GeneralName" except for "otherName”,
"x400Address" and "ediPartyName". Note that because there can be multiple
distribution points, the multi-valued attributes defined here will not be able

to link each DP with its corresponding reasons and issuer.

If
6.4.1 Distribution point RFC 822 name
(1.2.826.0.1.3344810.1.1.86

NAME 'x509DPRfc822Name'
DESC 'Internet electronic mail address of the

71

distribution point, see RFC3280 section 4.2.1.14'
EQUALITY caselgnorel ASMatch

SUBSTR caselgnorel A5SubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

Values of this attribute must be encoded according to the syntax given in RFC
822 [11].

6.4.2 Distribution point DNS name

(1.2.826.0.1.3344810.1.1.87
NAME 'x509DPDNSName'
DESC 'Internet domain name of the distribution point, see
RFC3280 section 4.2.1.14'
EQUALITY caselgnorel ASMatch
SUBSTR caselgnorel A5SubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

Values of this attribute must be encoded as Internet domain names in accordance
with RFC1035 [12].

6.4.3 Distribution point directory name

(1.2.826.0.1.3344810.1.1.88
NAME 'x509DPDN'
DESC 'Distinguished name of the distribution point, see
RFC3280 section 4.2.1.14'
EQUALITY distinguishedNameMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.12)

Values of this attribute type must be encoded according to the syntax givenin
RFC2253[13].

6.4.4 Distribution point uniform resource identifier

(1.2.826.0.1.3344810.1.1.89
NAME 'x509DPURI'
DESC 'Uniform Resource Identifier of the distribution
point, see RFC3280 section 4.2.1.14'
EQUALITY caseExactlA5Match
SUBSTR caseExact| A5SubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

Values of this attribute must be encoded according to the syntax givenin
RFC2396 [14].

6.4.5 Distribution point 1P address
(1.2.826.0.1.3344810.1.1.90

NAME 'x509DPIPAddress
DESC 'Internet Protocol address of the distribution point, see

72

RFC3280 section 4.2.1.14'
EQUALITY caselgnorel ASMatch
SUBSTR casel gnorel A5SubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

Values of this attribute type must be stored in the syntax given in Appendix B
of RFC2373 [16].

6.4.6 Distribution point registered ID

(1.2.826.0.1.3344810.1.1.91
NAME 'x509DPRegistered| D'
DESC 'Any registered OID of the distribution point, see
RFC3280 section 4.2.1.14'
EQUALITY objectidentifierMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.38)

registerediD is an identifier of any registered object assigned in accordance
with ITU-T Rec. X.660. [17]

6.4.7 Distribution point name relative to CRL issuer

(1.2.826.0.1.3344810.1.1.92
NAME 'x509DPrelativeT ol ssuer'
DESC 'RDN of the distribution point, relative to the issuer, see
RFC3280 section 4.2.1.14'
EQUALITY distinguishedNameMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.12)

Values of this attribute type must be encoded according to the syntax givenin
RFC2253 [13].

6.4.8 Distribution point CRL issuer RFC 822 name

(1.2.826.0.1.3344810.1.1.93
NAME 'x509DPissuerRfc822Name’
DESC 'Internet electronic mail address of the
distribution point CRL issuer, see RFC3280 section 4.2.1.14'
EQUALITY caselgnorel ASMatch
SUBSTR caselgnorel A5SubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

Values of this attribute must be encoded according to the syntax given in RFC
822 [11].

6.4.9 Distribution point CRL issuer DNS name
(1.2.826.0.1.3344810.1.1.94
NAME 'x509DPissuerDNSName'

DESC 'Internet domain name of the distribution point CRL issuer,
see RFC3280 section 4.2.1.14°

73

EQUALITY caselgnorel ASMatch
SUBSTR caselgnorel A5SubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

Values of this attribute must be encoded as Internet domain names in accordance
with RFC1035 [12].

6.4.10 Distribution point CRL issuer directory name

(1.2.826.0.1.3344810.1.1.95
NAME 'x509DPissuerDN'
DESC 'Distinguished name of the distribution point CRL issuer,
see RFC3280 section 4.2.1.14'
EQUALITY distinguishedNameMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.12)

Values of this attribute type must be encoded according to the syntax givenin
RFC2253[13].

6.4.11 Distribution point CRL issuer uniform resource identifier

(1.2.826.0.1.3344810.1.1.96
NAME 'x509DPissuerURI'
DESC 'Uniform Resource Identifier of the distribution
point CRL issuer, see RFC3280 section 4.2.1.14'
EQUALITY caseExactlA5Match
SUBSTR caseExact| A5SubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

Values of this attribute must be encoded according to the syntax givenin
RFC2396 [14].

6.4.12 Distribution point CRL issuer IP address

(1.2.826.0.1.3344810.1.1.97
NAME 'x509DPissuerl PAddress
DESC 'Internet Protocol address of the distribution point CRL
issuer, see RFC3280 section 4.2.1.14'
EQUALITY caselgnorel ASMatch
SUBSTR caselgnorel A5SubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

Values of this attribute type must be stored in the syntax given in Appendix B
of RFC2373 [16].

6.4.13 Distribution point CRL issuer registered ID
(1.2.826.0.1.3344810.1.1.98
NAME 'x509DPissuerRegisteredI D'

DESC 'Any registered OID of the distribution point CRL issuer,
see RFC3280 section 4.2.1.14'

74

EQUALITY objectldentifierMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.38)

registerediD is an identifier of any registered object assigned in accordance
with ITU-T Rec. X.660. [17]

6.4.14 Distribution point reason codes

This attribute is used to indicate the reason codes associated with the various
DPs.

(1.2.826.0.1.3344810.1.1.99
NAME 'x509DPReasonCodes
DESC 'The reason codes used by aDP, see
RFC3280 section 4.2.1.14'
EQUALITY bitStringMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.6)

7. Security Considerations

This [Internet Draft/Standard] describes the subschema for the storage

and matching of PKI attributes derived from CRLSs. It does not address the

protocol for the storage and retrieval of this information.

LDAP servers SHOULD use authentication and access control mechanisms to protect
the information during its storage and retrieval.

8. IANA Considerations

This document uses the OID node 1.2.826.0.1.3344810 to identify the LDAP schema
elements described here. This OID is assigned to TrueTrust Ltd, under its BSI
assigned English/Welsh Registered Company number [18].

9. References

Normative

[1] Bradner, S. The Internet Standards Process -- Revision 3. RFC 2026 October
1996.

[2] S.Bradner. "Key words for use in RFCs to Indicate Requirement Levels', RFC
2119, March 1997.

[3] Wahl, M., Coulbeck, A., Howes, T. and S. Kille, "Lightweight Directory
Access Protocol (v3): Attribute Syntax Definitions', RFC 2252, December 1997.

[4] Crocker, D. and P. Overdl, "Augmented BNF for Syntax Specifications: ABNF",
RFC 2234, November 1997.

75

[5] Farrell, S., Housley, R. "An Internet Attribute Certificate Profile for
Authorization", RFC 3281, April 2002.

[6] ITU, "Information Technology - Open Systems Interconnection - The
Directory: Public-key and attribute certificate frameworks', ITU-T
Recommendation X.509, March 2000.

[7] Gietz, P., Klasen, N. "Internet X.509 Public Key Infrastructure Lightweight
Directory Access Protocol Schemafor X.509 Certificates",
<draft-ietf-pkix-ldap-pkc-schema-00.txt>, June 2004

[8] Chadwick, D.W., Sahalayev, M. V. "Internet X.509 Public Key Infrastructure
LDAP Schemafor X.509 CRLS', <draft-ietf-pkix-ldap-crl-schema-01.txt>, June 2003

[10] Chadwick, D.W., Legg, S. "Internet X.509 Public Key Infrastructure - LDAP
Schemafor PMIs" <draft-ietf-pkix-ldap-pmi-schema-00.txt>, July 2002

[11] Crocker, D., "Standard for the format of ARPA Internet text messages', STD
11, RFC 822, August 1982.

[12] Mockapetris, P., "Domain names - implementation and specification”, STD 13,
RFC 1035, November 1987.

[13] Wahl, M., Kille, S. and T. Howes, "Lightweight Directory Access Protocol
(v3): UTF-8 String Representation of Distinguished Names', RFC 2253, December
1997.

[14] Berners-Lee, T., Fielding, R. and L. Masinter, "Uniform Resource
Identifiers (URI): Generic Syntax", RFC 2396, August 1998.

[15] Hodges, J. and RL. Morgan, "Lightweight Directory Access Protocol (v3):
Technical Specification”, RFC 3377, September 2002.

[16] Hinden, R. and S. Deering, "IP Version 6 Addressing Architecture”, RFC
2373, July 1998.

[17] CCITT Recommendation X.660 (1992) | ISO/IEC 9834-1:1993, Information
technology - Open Systems Interconnection - Procedures for the operation of OSI
Registration Authorities. General procedures.

[18] BRITISH STANDARD BS 7453 Part 1. Procedures for UK Registration for Open
System Standards Part 1: Procedures for the UK Name Registration Authority.

[21] Bradner, S., "IETF Rightsin Contributions®, BCP 78, RFC3667, February
2004.

[22] Bradner, S., Ed., "Intellectual Property Rightsin IETF Technology", BCP
79, RFC 3668, February 2004.

76

Informative

[9] Chadwick, D.W., Legg, S. "Internet X.509 Public Key Infrastructure - LDAP
Schemafor PKIs" <draft-ietf-pkix-1dap-pki-schema-00.txt>, July 2002

[19] S. Legg. "Lightweight Directory Access Protocol (LDAP) and X.500 Component
Matching Rules' RFC 3687, February 2004

[20] J. Allen, M. Mealling. "The Architecture of the Common Indexing Protocol
(CIP)". RFC 2651. August 1999.

10. Intellectual Property Notice

The IETF takes no position regarding the validity or scope of any Intellectual
Property Rights or other rights that might be claimed to pertain to the
implementation or use of the technology described in this document or the extent
to which any license under such rights might or might not be available; nor does
it represent that it has made any independent effort to identify any such

rights. Information on the procedures with respect to rights in RFC documents
can befound in BCP 78 [21] and BCP 79 [22].

Copies of IPR disclosures made to the IETF Secretariat and any assurances of
licenses to be made available, or the result of an attempt made to obtain a
general license or permission for the use of such proprietary rights by
implementers or users of this specification can be obtained from the IETF on-
line IPR repository at http://www.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any copyrights,
patents or patent applications, or other proprietary rights that may cover
technology that may be required to implement this standard. Please address the
information to the IETF at ietf-ipr@ietf.org.

11. Acknowledgments

The authors would like to thank Peter Gietz for his help and co-operation, and
in particular hiswillingness to align [7] with this document.

The authors would also like to thank TERENA, CESNET, SURFnet, UNINETT, RedIRIS
and SWITCH, who jointly partially funded this work, and without whose support
this work would not have been possible.

12. Copyright

Copyright (C) The Internet Society (2004). This document is subject
to the rights, licenses and restrictions contained in BCP 78, and
except as set forth therein, the authors retain al their rights.

This document and trandlations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it

77

or assist in itsimplementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any

kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing
the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of
developing Internet standards in which case the procedures for
copyrights defined in the Internet Standards process must be
followed, or as required to trandate it into languages other than
English.

The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.

"This document and the information contained herein are provided on an

"ASIS' basisand THE CONTRIBUTORS, THE ORGANIZATION THEY REPRESENT

OR ARE SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTSOR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE."
"Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF), its areas, and its working groups. Note that other

groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. Itisinappropriate to use Internet-Drafts as reference

material or to cite them other than a"work in progress.”

Thelist of current Internet-Drafts can be accessed at
http://www.ietf.org/lid-abstracts.html

Thellist of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html"

13. Authors Addresses

David Chadwick, Mikhail Sahalayev
IS Institute

University of Salford

Salford

England

M5 AWT

Email: d.w.chadwick@salford.ac.uk
M.Sahalayev@pgr.salford.ac.uk

14. Changes

78

Changes from <draft-ietf-pkix-ldap-ac-schema-00.txt>

1. Have added a section about attributes embedded in ACs.

2. Have aligned schema with <draft-klasen-ldap-x509certifi cate-schema-02.txt>
3. Have altered object class structure to introduce auxiliary object classes for
certificate extensions

4. Have adjusted upper/lower case of components of attribute type names to be
consistent

5. Have changed matching rules of xX509ACTargetGroupDNSName to be A5 matching
rules

6. Minor editorial corrections

7. Changed from Standards Track to Informational after discussions with area and
WG leaders.

8. Have added an IANA considerations section and Acknowledgment section

79

Appendix 7. LDAP Schema for X.509 CRLs

INTERNET-DRAFT D. W. Chadwick
PKIX WG M. V. Sahalayev
Intended Category: Informational University of Salford
Expires on 28 December 2004 28 June 2004

Internet X.509 Public Key Infrastructure
LDAP Schemafor X.509 CRLs
<draft-ietf-pkix-ldap-crl-schema-02.txt>

Copyright (C) The Internet Society (2003). All Rights Reserved.
STATUS OF THISMEMO

This document is an Internet-Draft and isin full conformance with
al the provisions of Section 10 of RFC2026 [1].

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that other
groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It isinappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress.”

The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

Thelist of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Comments and suggestions on this document are encouraged. Comments on this
document should be sent to the PK1X working group discussion list
<ietf-pkix@imc.org> or directly to the authors.

ABSTRACT

This document describes an LDAP schemafor X.509 CRLs. Each CRL is broken down
into a set of attribute types. These attributes can then be stored in a CRL

entry, or set of entries. Object classes are defined for these CRL entries. Each

attribute type uses an existing LDAP syntax, so that no new matching rules need

to be defined.

The key words"MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [2].

80

1. Introduction

It currently isn't possible to search LDAP servers for X.509 [6] attributes

(public key certificates, CRLs etc.) as no matching rules have been defined for
them. A couple of Internet Drafts [9,10] have been specified, but implementation
of them is complex. Component matching [19] defines a mechanism for matching
against complex syntaxes, by defining generic matching rules that can match
against any user selected component partsin an attribute value of any

arbitrarily complex attribute syntax. This might prove to be the proper way to
solve LDAP search problemsin the longer term, but it will take along time

until such ASN.1 based mechanisms are implemented in al LDAP servers and
clients. Even when this has happened the mechanism proposed in this document
will still be useful to some applications such as CIP [20].

A simple and easy to implement mechanism is needed today to search for X.509
attributes.

Rather than search for an X.509 attribute in an entry, it suggests the directory
administrative user creates an entry (in the case of pubic key and attribute
certificates) or asubtree (in the case of CRLSs) from the X.509 attribute. The
attributes of these new entries will be created from fields of the X.509
attribute (e.g. the issuer field), and if these new attributes are defined using
existing LDAP syntaxes and matching rules, then it will be possible to use
existing LDAP server technology to search for fields in X.509 attributes.

This document is one of a set comprising:

)] the LDAP schemafor X.509 public key certificates [7]
i) the LDAP schema for X.509 attribute certificates [8]
i) the LDAP schemafor X.509 CRLs (this document)

Schema definitions are provided using LDAPv3 description formats from RFC2252
[3]. Definitions provided here are formatted (line wrapped) for readability.

The specifications use the augmented Backus-Naur Form (ABNF) as described in
RFC2234 [4].

2. DIT Structure and Naming

If the schema presented in this document is used to store information about CRLS
in adirectory, each CRL entry SHOULD be stored as a direct subordinate of the
CRL issuer's entry, unless a crl Scope Extension or issuingDistributionPoint
Extension is present in the CRL. In the latter cases the CRL MUST be stored as
indicated in those extensions. The CRL entry is named using the

x509CRL ThisUpdate attribute, using one of the following name forms:

(1.2.826.0.1.3344810.1.3.0
NAME 'x509CRLNameForm'
OC x509CRL
MUST x509CRL ThisUpdate)

(1.2.826.0.1.3344810.1.3.7

81

NAME 'x509A RLNameForm'
OC x509CRL
MUST x509CRL ThisUpdate)

(1.2.826.0.1.3344810.1.3.8
NAME 'x509deltaRL NameForm'
OC x509CRL
MUST x509CRL ThisUpdate)

x509CRLNameForm is used to name CRL entries.
x509ARLNameForm is used to name Authority Revocation List entries.
x509deltaRL NameForm is used to name delta CRL entries.

Subordinate to the entry for the CRL, the user MAY create an entry for each
revoked certificate. Each revoked certificate entry is named with the seria

number of the revoked certificate, unless the CRL isan indirect CRL, in which
caseit is named with a combination of the serial number and issuer'sDN i.e. a
multi-valued RDN. For those LDAP servers that do not support multi-valued RDNS,
an alternative name form is defined in which the serial number and issuer DN are
concatenated together into one attribute value. Thisis expressed in the

following name forms:

(1.2.826.0.1.3344810.1.3.1
NAME 'X509CRL entryNameForm'
OC x509CRLentry
MUST x509serial)

(1.2.826.0.1.3344810.1.3.2
NAME 'x509CRL indirectEntryNameForm'
OC x509CRL entry
MUST (x509serialNumber $ x509issuer))

(1.2.826.0.1.3344810.1.3.6
NAME 'x509CRL indirectEntryAltNameForm'’
OC x509AC
MUST (x509issuerSerial))

When encoding DNs that contain an x509issuer field, the string representation
must be made according to [13]. These strings contain RFC2253 special
characters and must therefore be escaped. For example, the issuer namein a
certificate may be:

x509issuer: OU=VeriSign Trust Network,OU=(c) 1998 VeriSign Inc. -
For authorized use only,OU=Class 1 Public Primary Certification Au
thority - G2,0=VeriSign Inc.,C=US
When used in the x509issuerSerial attribute of a DN, this may appear as.
dn: x509issuerSerial=123456\,0U\=VeriSign Trust Network \,OU

\=(c) 1998 VeriSign Inc. - For authorized use only\,OU\=Class 1 Public
Primary Certification Authority - G2\,0\=VeriSign Inc.\2cC\3dUS

82

3. X.509 Schema Object Classes

The object classes have been designed to form alogical set and be extensiblein
an orderly way as new PKC/CRL/AC extensions are defined. The methodology is as
follows. Every X.509 entry (for aPKC, CRL or AC) is of the x509base abstract
object class. Thereisthen an additional abstract object class for each,

derived from x509base, which holds the attributes extracted from the basic
PKC/AC/CRL ASN.1 structure (excluding al extensions). Further, thereis an
auxiliary object class for the extensions defined in X.509 [6], and an

additional auxiliary object class (if needed) for extensions defined in existing
Internet RFCs. As new extensions are defined, then new auxiliary object classes
and attributes will need to be defined to cater for the attributes to be

extracted from these. Finally there are severa structural object classes for

each, which allow the X.509 DER encoded attribute to be stored in the entry.

3.1 X509 base object class
The x509base object classisdefined in [7].
3.2 X.509 CRL object class

The x509CRL object class is the abstract object class used for storing the
searchabl e attributes extracted from the basic fields of a CRL (excluding
extensions). It isthe superior of the revocation list structural object
classes.

(1.2.826.0.1.3344810.1.0.14

NAME 'x509CRL"'

SUP x509base

ABSTRACT

MUST (x509CRL ThisUpdate $
x509signatureAlgorithm $
x509issuer)

MAY (xX509CRLNextUpdate))

3.3 X509 CRL extensions object class

The x509CRL ext auxiliary object classis used to hold the attributes extracted
from the extensions defined in the X.509 standard [6] and profiled in [5]. Note
that the freshest CRL extension is not included since thiswas originally
forbidden from appearing in CRLs by X.509.

Note. If aCRL holds additional extensions to these, then another auxiliary
object class and supporting attributes will need to be defined.

(1.2.826.0.1.3344810.1.0.23

NAME 'x509CRL ext'
AUXILIARY

83

MAY (x509authorityKeyldentifier $
x509authorityCertlssuer $
x509authorityCertSerialNumber $
x509issuerRfc822Name $
x509issuerDNSName $
x509issuerDirectoryName $
x509issuerUniformResourcel dentifier $
x509issuerl PAddress $
x509issuerRegisterediD $
X509CRLNumber $
X509CRL DPRfc822Name $
X509CRLDPDNSName $
X509CRLDPDN $
X509CRLDPURI $
X509CRLDPIPAddress $
X509CRLDPRegisteredIiD $
X509CRLDPONlyUserCerts $
X509CRLDPOnNlyCACerts $
x509CRL DPOnlySomeReasons $
X509CRLDPOnlyAttCerts $
X509CRLDPindirect $
x509CRL Deltalndicator))

3.4 X.509 certificate revocation list object class

This object class is the structural object class used to hold certificate
revocation list entries.

(1.2.826.0.1.3344810.1.0.19
NAME 'x509certificateRevocationList'
SUP x509CRL
MUST certificateRevocationList)

3.4 X.509 authority revocation list object class

This object classis the structural object class used to hold authority
revocation list entries.

(1.2.826.0.1.3344810.1.0.20
NAME 'x509authorityRevocationList'
SUP x509CRL
MUST authorityRevocationList)

3.5 X.509 deltarevocation list object class

This object classis the structural object class used to hold delta revocation
list entries.

(1.2.826.0.1.3344810.1.0.21

NAME 'x509deltaRevocationList'
SUP x509CRL
MUST deltaRevocationList)

3.6 X.509 revoked certificate object class

The xX509CRL entry object classis the structural object class used for storing
revoked certificate entries.

(1.2.826.0.1.3344810.1.0.15
NAME 'x509CRLentry’
SUP x509base
MUST (x509serial Number $
X509CRL CertRevocationDate)
MAY (X509CRL CertinvalidityDate $
X509CRL CertReasonCode $
X509CRL CertHoldInstructionCode $
x509CRL CertlssuerRfc822Name $
X509CRL CertlssuerDnsName $
X509CRL CertlssuerDN $
X509CRL CertlssuerURI $
X509CRL CertlssuerlpAddress $
X509CRL CertlssuerRegisteredIiD))

4. Common X.509 Attribute Types

The following attribute types defined in [7] are used to hold the corresponding
fields of CRLs:

- x509serialNumber - used to hold the serial number(s) of the revoked
certifictate(s)
- x509version - used to hold the version of the CRL
- x509signatureAlgorithm - used to hold the OID of the algorithm used to
sign the CRL
- x509issuer - used to hold the DN of the CRL issuer
- x509issuerRfc822Name - used to hold the email address of the CRL issuer
- x509issuerDnsName - used to hold the DNS name of the CRL issuer
- x509issuerDirectoryName - used to hold an alternative DN for the
CRL issuer
- x509issuerUniformResourcel dentifier - used to hold a URI for the
CRL issuer
- x509issuerl pAddress - used to hold the | P address of the CRL issuer
- X509issuerRegisteredI D - used to hold aregistered OID of the CRL issuer
- x509authorityKeyldentifier - used to hold the identifier of the key used
to sign the CRL
- x509authorityCertlssuer - used in conjunction with
x509authority CertSerial Number to identify the certificate of the issuer
- x509authorityCertSerialNumber - used in conjunction with
x509authorityCertl ssuer to identify the certificate of the issuer

5. Attribute Types for CRL Specific Fields

85

The following attribute types may be used to store basic fields of aCRL. The
following basic fields are supported:

- this update

- next update

5.1 This update
This attribute may be used to hold the thisUpdate field of the CRL.

(1.2.826.0.1.3344810.1.1.37
NAME 'x509CRL ThisUpdate
DESC 'Date at which thisrevocation list was issued - see RFC3280 5.1.2.4'
EQUALITY generalizedTimeMatch
ORDERING generalizedTimeOrderingMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.24
SINGLE-VALUE)

Note that the field in the CRL may bein UTC or GeneralizedTime format. If in
UTC format, the creator of this attribute MUST convert the UTC timeinto
GeneralisedTime format when creating the attribute value.

5.2 Next update
This attribute may be used to hold the nextUpdate field of the CRL.

(1.2.826.0.1.3344810.1.1.38

NAME 'x509CRL NextUpdate'

DESC 'Date by which the next revocation list in this series
will beissued, see- RFC32805.1.2.5

EQUALITY generalizedTimeMatch

ORDERING generalizedTimeOrderingMatch

SYNTAX 1.3.6.1.4.1.1466.115.121.1.24

SINGLE-VALUE)

Note that the field in the CRL may bein UTC or GeneralizedTime format. If in
UTC format, the creator of this attribute MUST convert the UTC time into
GeneralisedTime format when creating the attribute value.

6. Attributes for Selected CRL Extensions

In line with the CRL profile RFC 3280 [5], the following CRL extensions are
supported:

- CRL Number (defined here)

- Issuing Distribution Point (defined here)

- Authority Key Identifier (defined in [7])

- Issuer Alternative Name (defined in [7])

- Delta CRL Indicator (defined here)

The following extension is not included:
- freshest CRL (see 5.2.6 of RFC 3280 [5])

86

6.1

CRL number extension

This attribute may be used to store the sequence number of the CRL.

(1.2.826.0.1.3344810.1.1.102

6.2

NAME 'x509CRL Number’

DESC 'sequence number of issued CRL - see RFC32805.2.3
EQUALITY integerMatch

ORDERING integerOrderingMatch

SYNTAX 1.3.6.1.4.1.1466.115.121.1.27

SINGLE-VALUE)

| ssuing distribution point

The issuing distribution point comprises the general name of the issuing CA,
plus some codes that indicate the contents of this CRL. Separate attribute types
are defined for all choices of the ASN.1 type "GeneralName" except for
"otherName", "x400Address" and "ediPartyName".

6.2.1 Issuing distribution point RFC 822 name

(1.2.826.0.1.3344810.1.1.48

NAME 'x509CRLDPRfc822Name'

DESC 'Internet electronic mail address of the issuing
distribution point, see RFC3280 5.2.5'

EQUALITY caselgnorel ASMatch

SUBSTR caselgnorel A5SubstringsMatch

SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

Values of this attribute must be encoded according to the syntax given in RFC
822 [11].

6.2.2 Issuing distribution point DNS name

(1.2.826.0.1.3344810.1.1.49

NAME 'x509CRL DPDnsName'

DESC 'Internet domain name of the issuing distribution point, see
RFC32805.2.5'

EQUALITY caselgnorel ASMatch

SUBSTR caselgnorel A5SubstringsM atch

SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

Values of this attribute must be encoded as Internet domain names in accordance
with RFC1035 [12].

6.2.3 Issuing distribution point directory name

(1.2.826.0.1.3344810.1.1.50

NAME 'xX509CRLDPDN'
DESC 'Distinguished name of the issuing distribution point, see

87

RFC32805.2.5'
EQUALITY distinguishedNameMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.12)

Values of this attribute type must be encoded according to the syntax givenin
RFC2253[13].

6.2.4 Issuing distribution point uniform resource identifier

(1.2.826.0.1.3344810.1.1.51
NAME 'x509CRLDPURI'
DESC 'Uniform Resource Identifier of the issuing distribution
point, see RFC3280 5.2.5'
EQUALITY caseExactlASMatch
SUBSTR caseExact| A5SubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

Values of this attribute must be encoded according to the syntax givenin
RFC2396 [14].

6.2.5 Issuing distribution point | P address

(1.2.826.0.1.3344810.1.1.52
NAME 'x509CRL DPIpAddress
DESC 'Internet Protocol address, of the issuing distribution point, see
RFC32805.2.5'
EQUALITY caselgnorel ASMatch
SUBSTR caselgnorel A5SubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

Values of this attribute type must be stored in the syntax given in Appendix B
of RFC2373 [16].

6.2.6 Issuing distribution point registered 1D

(1.2.826.0.1.3344810.1.1.53
NAME 'x509CRL DPRegisteredI D'
DESC 'Any registered OID of the certificate issuer, see
RFC32805.2.5'
EQUALITY objectldentifierMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.38)

registerediD isan identifier of any registered object assigned in accordance
with ITU-T Rec. X.660. [17]

6.2.7 Issuing distribution point only contains user certs

This attribute may be used to indicate if the CRL only contains revocations for
end-entity certificates.

(1.2.826.0.1.3344810.1.1.54

88

NAME 'x509CRLDPOnlyUserCerts

DESC 'If true, the CRL only contains revocations for end-entity certs, see
RFC32805.2.5'

EQUALITY booleanMatch

SYNTAX 1.3.6.1.4.1.1466.115.121.1.7)

6.2.8 Issuing distribution point only contains CA certs

This attribute may be used to indicate if the CRL only contains revocations for
CA certificates.

(1.2.826.0.1.3344810.1.1.55
NAME 'x509CRLDPOnlyCACerts
DESC 'If true, the CRL only contains revocations for CA certs, see
RFC32805.2.5'
EQUALITY booleanMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.7)

6.2.9 Issuing distribution point only contains some reasons

This attribute may be used to indicate if the CRL only contains some revocation
reason codes.

(1.2.826.0.1.3344810.1.1.56
NAME 'x509CRL DPOnlySomeReasons
DESC 'If true, the CRL only contains some revocation reason codes, see
RFC32805.2.5'
EQUALITY bitStringMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.6)

6.2.10 Issuing distribution point only contains attribute certs

This attribute may be used to indicate if the CRL only contains revocations for
attribute certificates.

(1.2.826.0.1.3344810.1.1.57
NAME 'x509CRLDPOnlyAttCerts
DESC 'If true, the CRL only contains revocations for attribute certs, see
RFC32805.2.5'
EQUALITY booleanMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.7)

6.2.11 Issuing distribution point is indirect

This attribute may be used to indicate if the CRL isan indirect CRL and holds
revocations of certificates issued by authorities other than the CRL issuer.

(1.2.826.0.1.3344810.1.1.58
NAME 'x509CRLDPindirect’
DESC 'If true, the CRL isanindirect CRL, see
RFC32805.2.5'

89

EQUALITY booleanMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.7)

6.3 DeltaCRL Indicator
This attribute may be used to indicate if the CRL isadelta CRL.

(1.2.826.0.1.3344810.1.1.59

NAME 'x509CRL Deltal ndicator'
DESC 'Indicates thisis adelta CRL, and the value points to the
sequence number of the issued base CRL to which thisisa delta
- see RFC3280 5.2.4'

EQUALITY integerMatch

ORDERING integerOrderingMatch

SYNTAX 1.3.6.1.4.1.1466.115.121.1.27

SINGLE-VALUE)

7. Attributes for CRL Revoked Certificate Fields
The serial number attributeisasdefined in [7].
7.1 Revocation date
This attribute may be used to hold the revocationDate field of a CRL entry.

(1.2.826.0.1.3344810.1.1.39
NAME 'x509CRL CertRevocationDate'
DESC 'Date/time the CA actually revoked the certificate,
see - RFC32805.1.2.6'
EQUALITY generalizedTimeMatch
ORDERING generalizedTimeOrderingMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.24
SINGLE-VALUE)

Note that the field in the CRL may be in UTC or GeneralizedTime format. If in
UTC format, the creator of this attribute MUST convert the UTC timeinto
GeneralisedTime format when creating the attribute value.

8. Attributes for Selected CRL Entry Extensions
In line with the CRL profile RFC 3280 [5], the following CRL entry extensions
are supported:
- Invalidity date (defined here)
- Certificate issuer (defined here)
- Reason code (defined here)
- Hold instruction code (defined here)
8.1 Invalidity date extension

This attribute may be used to hold the invalidity date of a certificate.

90

(1.2.826.0.1.3344810.1.1.40
NAME 'X509CRL CertInvalidityDate'
DESC 'date at which it is known or suspected that the private
key was compromised, see RFC3280 5.3.3
EQUALITY generaizedTimeMatch
ORDERING generalizedTimeOrderingMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.24
SINGLE-VALUE)

8.2 Certificate issuer extension

The certificate issuer extension is used in indirect CRLs to identify the issuer

of the certificate that is revoked. Separate attribute types are defined for all

choices of the ASN.1 type "GeneralName" except for "otherName", "x400Address"
and "ediPartyName".

8.2.1 Certificate issuer RFC 822 name

(1.2.826.0.1.3344810.1.1.41
NAME 'x509CRL CertlssuerRfc822Name'
DESC 'Internet electronic mail address of the certificate issuer, see
RFC32805.3.4'
EQUALITY caselgnorel ASMatch
SUBSTR caselgnorel A5SubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

Values of this attribute must be encoded according to the syntax given in RFC
822 [11].

8.2.2 Certificate issuer DNS name

(1.2.826.0.1.3344810.1.1.42
NAME 'x509CRL CertlssuerDnsName'
DESC 'Internet domain name of the certificate issuer, see
RFC32805.3.4'
EQUALITY caselgnorel ASMatch
SUBSTR casel gnorel A5SubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

Values of this attribute must be encoded as Internet domain names in accordance
with RFC1035 [12].

8.2.3 Certificate issuer directory name

(1.2.826.0.1.3344810.1.1.43
NAME 'x509CRL CertlssuerDN'
DESC 'Distinguished name of the certificate issuer, see
RFC3280 5.3.4'
EQUALITY distinguishedNameMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.12)

91

Values of this attribute type must be encoded according to the syntax givenin
RFC2253[13].

8.2.4 Certificate issuer uniform resource identifier

(1.2.826.0.1.3344810.1.1.44
NAME 'X509CRL CertlssuerURI'
DESC 'Uniform Resource Identifier of the certificate issuer, see
RFC32805.3.4'
EQUALITY caseExactlA5Match
SUBSTR caseExact| A5SubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

Values of this attribute must be encoded according to the syntax givenin
RFC2396 [14].

8.2.5 Certificate issuer |P address

(1.2.826.0.1.3344810.1.1.45
NAME 'x509CRL CertlssuerlpAddress
DESC 'Internet Protocol address, of the certificate issuer, see
RFC32805.3.4'
EQUALITY caselgnorel ASMatch
SUBSTR caselgnorel A5SubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

Values of this attribute type must be stored in the syntax given in Appendix B
of RFC2373 [16].

8.2.6 Certificate issuer registered ID

(1.2.826.0.1.3344810.1.1.46
NAME 'x509CRL CertlssuerRegisteredI D'
DESC 'Any registered OID of the certificate issuer, see
RFC3280 5.3.4'
EQUALITY objectldentifierMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.38)

registerediD is an identifier of any registered object assigned in accordance
with ITU-T Rec. X.660. [17]

8.3 Revocation reason code
Thisfield may be used to hold the coded reason for the revocation

(1.2.826.0.1.3344810.1.1.47
NAME 'x509CRL CertReasonCode'
DESC 'An integer code indicating the reason for the revocation, see
RFC32805.3.1'
EQUALITY integerMatch
ORDERING integerOrderingMatch

92

SYNTAX 1.3.6.1.4.1.1466.115.121.1.27)
8.4 Hold instruction code

This attribute may be used to store the hold instruction code for the
certificate on the CRL.

(1.2.826.0.1.3344810.1.1.103
NAME 'x509CRL CertHoldI nstructionCode'
DESC 'Any registered OID indicating a hold instruction, see
RFC32805.3.2'
EQUALITY objectldentifierMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.38)

9. Security Considerations
This[Internet Draft/Standard] describes the subschema for the storage
and matching of PKI attributes derived from CRLSs. It does not address the
protocol for the storage and retrieval of thisinformation.

LDAP servers SHOULD use authentication and access control mechanisms to protect
the information during its storage and retrieval.

10. IANA Considerations
This document uses the OID branch 1.2.826.0.1.3344810 to identify new LDAP
attribute types and object classes. A register of all OIDs allocated under this
branch is kept by the registered holder. This branch has been assigned to
TrueTrust Ltd, under its BS| assigned English/Welsh Registered Company number
[18].

11. References

Normative

[1] Bradner, S. The Internet Standards Process -- Revision 3. RFC
2026 October 1996.

[2] S.Bradner. "Key words for use in RFCs to I ndicate Requirement
Levels', RFC 2119, March 1997.

[3] Wahl, M., Coulbeck, A., Howes, T. and S. Kille, "Lightweight Directory
Access Protocol (v3): Attribute Syntax Definitions®, RFC 2252, December 1997.

[4] Crocker, D. and P. Overell, "Augmented BNF for Syntax Specifications: ABNF",
RFC 2234, November 1997.

[5] Housley, R., Polk, T., Ford, W. and D. Solo, "Internet X.509 Public Key
Infrastructure Certificate and CRL Profile", RFC 3280, April 2002.

[6] ITU, "Information Technology - Open Systems Interconnection - The

93

Directory: Public-key and attribute certificate frameworks', ITU-T
Recommendation X.509, March 2000.

[7] Gietz, P., Klasen, N. "Internet X.509 Public Key Infrastructure Lightweight
Directory Access Protocol Schemafor X.509 Certificates’,
<draft-ietf-pkix-ldap-pkc-schema-00.txt>, June 2004

[11] Crocker, D., "Standard for the format of ARPA Internet text messages', STD
11, RFC 822, August 1982.

[12] Mockapetris, P., "Domain names - implementation and specification”, STD 13,
RFC 1035, November 1987.

[13] Wahl, M., Kille, S. and T. Howes, "Lightweight Directory Access Protocol
(v3): UTF-8 String Representation of Distinguished Names', RFC 2253, December
1997.

[14] Berners-Lee, T., Fielding, R. and L. Masinter, "Uniform Resource
Identifiers (URI): Generic Syntax”, RFC 2396, August 1998.

[15] Hodges, J. and RL. Morgan, "Lightweight Directory Access Protocol (v3):
Technical Specification”, RFC 3377, September 2002.

[16] Hinden, R. and S. Deering, "IP Version 6 Addressing Architecture”, RFC
2373, July 1998.

[17] CCITT Recommendation X.660 (1992) | ISO/IEC 9834-1:1993, Information
technology - Open Systems I nterconnection - Procedures for the operation of OS|
Registration Authorities: General procedures.

[18] BRITISH STANDARD BS 7453 Part 1. Procedures for UK Registration for Open
System Standards Part 1: Procedures for the UK Name Registration Authority.

Informative

[8] Chadwick, D.W., Sahalayev, M. V. "Internet X.509 Public Key Infrastructure
LDAP Schemafor X.509 Attribute Certificates’, <draft-ietf-pkix-ldap-ac-schema
02.txt>, June 2004

[9] Chadwick, D.W., Legg, S. "Internet X.509 Public Key Infrastructure - LDAP
Schemafor PKIs" <draft-ietf-pkix-ldap-pki-schema-00.txt>, July 2002

[10] Chadwick, D.W., Legg, S. "Internet X.509 Public Key Infrastructure - LDAP
Schemafor PMIs' <draft-ietf-pkix-ldap-pmi-schema-00.txt>, July 2002

[19] S. Legg. "Lightweight Directory Access Protocol (LDAP) and X.500 Component
Matching Rules' RFC 3687, February 2004

[20] J. Allen, M. Mealling. "The Architecture of the Common Indexing Protocol

(CIP)". RFC 2651. August 1999.
12. Intellectual Property Notice

94

The IETF takes no position regarding the validity or scope of any
intellectual property or other rights that might be claimed to

pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; neither does it represent that it has
made any effort to identify any such rights.

Information on the

|ETF's procedures with respect to rights in standards-track and
standards-related documentation can be found in BCP-11. [BCP-11]
Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementors or users of this specification
can be obtained from the IETF Secretariat.

The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights which may cover technology that may be required to practice
this standard.

Please address the information to the IETF Executive

Director.

13. Acknowledgments

The authors would like to thank Peter Gietz for his help and co-operation, and
in particular hiswillingness to align [7] with this document.

The authors would also like to thank TERENA, CESNET, SURFnet, UNINETT, RedIRIS
and SWITCH, who jointly partially funded this work, and without whose support
thiswork would not have been possible.

14. Copyright
Copyright (C) The Internet Society (2001). All Rights Reserved.

This document and trandlations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it
or assist in itsimplementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any

kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing
the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of
developing Internet standards in which case the procedures for
copyrights defined in the Internet Standards process must be
followed, or as required to transate it into languages other than
English.

The limited permissions granted above are perpetual and will not be

95

revoked by the Internet Society or its successors or assigns.

This document and the information contained herein is provided on an

"ASI|S" basisand THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTSOR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

15. Authors Addresses

David Chadwick, Mikhail Sahalayev
IS Ingtitute

University of Salford

Salford

England

M5 4WT

Email: d.w.chadwick@salford.ac.uk
M.Sahalayev@pgr.salford.ac.uk

16. Changes
Changes since version 00.

1. An aternative name form for revoked certificate entries has been added for

those LDAP serversthat don't support multiple valued RDNSs.

2. Name forms for delta CRL entries and authority revocation list entries have

been added

3. X509CRL aobject class has been changed to ABSTRACT and three new STRUCTURAL
object classes have been added for CRLs, ARLs and delta CRLSs.

4. Corrected some OID assignments

5. Minor editorial corrections

Changes since version 01

1. The object class structure has been re-vamped and x509base has been
transferred to the certificate schemalD [7]

2. Minor editorial corrections

3. Changed from Standards Track to Informational after discussions with area and
WP |eaders.

4. Inserted IANA considerations section and Acknowledgement section

96

Appendix 8. Final Detailed Design of an LDAP X.509 Parsing Server
M. Sahalayev, D. W. Chadwick

Release Number Release Date Comments
Version 1.0 15 November 2002 For public comment
Version 1.1 28 November 2002 Added Critical extensions on Modifies causes

rejection. Added if HasSubordinatesis
missing. Removed storing to-be-del eted parent
entry in WAL. Minor editorias

Version 1.2 3 February 2003 Changed design for CRLs. Now a CRL creates
a subtree of entries rather than a single one.

Version 1.3 12 February 2003 Correcting bugs in the Name Form section for
revoked certificate entries.

Version 1.4 13 February 2003 Added areferences for detailed design of the
parsing functions. Misc cleanup

Version 1.5 20 February 2003 /Added new cofig option x509attrtypespath

Version 1.6 20 March 2003 /Added new config option for attribute types

Version 1.7 12 May 2003 /Added new option for ASN.1 ->X.509

attribute types mapping

Renamed several internal functions
Removed "Specifics of the *** operation for
external server. Its functionality will be
provided by back-ldap backend

Removed LDAP API functions (they will not
be used, back-ldap will be used instead)

Version 1.8 8 August 2003 Redesign of Delete operationto do 1 level
search instead of full subtree search

Version 1.9 20 April 2004 Changed matching rule for Modify Delete
value to exact matching rule from binary
match

Pur pose

The X.509 Certificate Parsing Server (XPS) isan intermediary server that sits between an LDAP
administrative client and LDAP server. It does not sit between an LDAP retrieval client and LDAP server. Its
purpose is to extract certificate and CRL attributes from Add and Modify commands and to create
subordinate certificate and CRL entries beneath the target entry that was destined to hold the certificate or
CRL. The certificates and CRLs are broken up into their component data fields and attributes are created
from each of them and placed in the certificate entry or CRL subtree of entries. For a CRL, a subtree of
entriesis created, consisting of aroot CRL entry (mandatory - holding the CRL fields, CRL extensions and
set of revoked certificate serial numbers) and a set of subordinate CRL entry entries (optional - holding the
serial number, revocation date and CRL entry extensions). In thisway LDAP clients can Search for
certificates, CRLs and CRL entries that contain certain fields, without LDAP servers needing to be modified.
Note. Thisimplementation of the XPSwill be embedded inside an OpenLDAP server, so that XPSintercepts
the LDAP operations before passing them to the OpenLDAP server.

Limitations

There are anumber of limitations with this approach, as follows.

Administrative clients and retrieval clients will have different views of the DIT. An administrative client
thinks that a certificate or CRL isheld in the entry that it was destined for, whereasin fact it is actually held
in (a) subordinate(s) of the entry. (A configuration parameter will say if the attribute is held in the entry as
well, but this will increase the storage requirements even more - see next point) LDAP clients will only find
the subordinate entries in a Search operation and wont be able to retrieve the parent entry (where al the other
attributes of the object are held) along with the certificate, CRL or CRL entry.

The storage space in the LDAP server is considerably increased as the subordinate entries will hold the
original certificate or CRL as well as the extracted attributes (the storage will most likely be more than
doubled, although actual valueswill have to be determined after implementation).

97

LDAP clientswill not be able to perform Search operations that are looking for an entry containing more
than one certificate, or an entry containing a certificate and other user attributes, or a CRL containing a
particular CRL entry extension and CRL extension (although they cannot do this today anyway, except
perhaps for Searches that contain a certificate exact match).

Detailed Design

In this design we differentiate between LDAP X.509 administrative operations and all other LDAP
operations. The former are defined as:

An AddRequest for an entry holding an X.509 attribute in its AttributeList

A ModifyReguest with an X.509 attribute in any of its modification parameters

Any Delete Request

For the purpose of this design, X.509 attributes will be assumed to be any attribute in the X.509 specification
[X509].

XPSwill be based on OpenLDAP and implemented as a part of it. The configuration file (slapd.conf) will be
extended in order to support XPS and configure it according to the administrators' needs.

OpenLDAP has the ability to support an internal database or a back-end LDAP server. This feature remains
unaltered with the X PS modifications, so that administrators can use OpenL DAP-XPS to front end their
existing LDAP server.

The WAL

The XPS server is quite complex, asit hasto be able treat a set of LDAP operations emanating from asingle
administrative operation as asingle transaction. This is made more difficult in that LDAP does not support
transactions. Clearly one could build a simpler XPS implementation that only kept state information in
memory, but then if the XPS server crashed the LDAP server would be left in an indeterminate state with
respect to its X.509 attributes. Thisisclearly very undesirable given the importance of CRLs and certificates.
To avoid these problems we will use a Write Ahead Log (WAL). The information about all entries which are
about to be added or deleted will be kept on the disk in the WAL and if there are any errors during the
operations LDAP will berolled back to its original state. The format of the WAL isastandard LDIF file
[LDIF]

If itisan ADD request only the DN of the entriesl will be required for rolling back. For adding a DN into
the WAL we will create the xps_dn2wal() function. It will take a pointer to adn as an input parameter and
will return an error/success code.

In case of a DELETE request whole entries2 should be saved in the WAL. For this purpose the function
xps_entry2wal () will be created. It will require a pointer to the Entry structure as an input parameter and will
return an error/success code.

MODIFY requests will require more information for rolling back. We will store all of the children of the
entry to be modified. XPSwill call xps_dn2wal() if thetype of operationisadd or xps_entry2wal() if itis

delete. We will not need a separate code if the type of operati ONnisreplace, because in this case X PS will
first delete all the child entries, then add the new ones. Thiswill be logged as two separate WAL operations.
In the event that XPS or even the operating system crashes the WAL should contain all the information
required for rolling back the LDAP directory to its previous state. After every operation with the WAL,
fflush() will be called to be sure the information is written to the disk.

When the administrator starts the XPS, the WAL will be opened. It is possible that the WAL could be not
empty. This means that XPS had crashed before some administrative operation was finished. In this case
XPSwill enter the recovery phase and will automatically roll back the directory using the data from the
WAL. A recovery log file will be opened (XPSrecovery.log). (The WAL will be marked Recovery In
Process before this starts. I1f XPS crashes again during the recovery process there is probably abug in the
implementation and the administrator will have to empty the WAL and tidy up the LDAP directory by hand.)
In any case al information about recovery actions taken will be stored in the recovery log file
XPSrecovery.log. It will contain data about the recovery i.e. successful recovery actions and failed recovery

! The DN of the entry to be added, plus the DNs of the subordinate X.509 entries to be added.
2 We will need to take a copy of the entry to be deleted plus all the subordinate X.509 entries.

98

actions along with the cause of the failure. The purpose of thisfileisjust to inform the administrator about
XPSrecovery and giving as much information about probable directory corruption as possible.

The format of the messages sent to the XPSrecovery.log can be found in Appendix 1. Further information
about the WAL design can be found in [WAL].

Multi-tasking

OpenLDAP is capable of multi-tasking, in which several threads can be updating X.509 attributes
simultaneously. Therefore we will use multiple WAL files. Each thread will open its own WAL file using the
original entry's DN as the base for the file name. The file name will consist of the “wal” prefix, a 32-
character string representing the DN's hash, and “.log” file extention.

Configuration options

XPS configuration options will be held in a separate section of the OpenLDAP main configuration file
(dlapd.conf). It will be placed between the global configuration directives and the backend definitions.
Note that all XPS configuration key words are case insensitive, as are their values

Note that all the default values have been chosen, so that the modified OpenLDAP code canrun asa
standard LDAP server using the existing configuration file, and it wont perform XPS functionality

If OpenLDAP isto be used as an XPS then the administrator should define the following option and put yes
asthevaue.

EnableX PS [yesno]

The default value is no.
If EnableXPSis off then all other XPS related options will be ignored.

pkcTypes [userCertificate userCertificate;binary cACertificate cACertificate;binary]

pkcTypes holds a space separated list of public key certificate LDAP attribute types that the X PS server
should trap in order to parse and split up into their component attributes

acTypes [attributeCertificate Attribute;binary attributeCertificateAttribute]

acTypes holds a space separated list of attribute certificate LDAP attribute types that the XPS server should
trap in order to parse and split up into their component attributes

crlTypes [certificateRevocationList;binary authorityRevocationList;binary
certificateRevocationList authorityRevocationList]

crlTypes holds a space separated list of certificate revocation list LDAP attribute types that the X PS server
should trap in order to parse and split up into their component attributes

DuplicateAttribute [yesino]

DuplicateAttribute indicates if the certificate or CRL should be stored in the original entry aswell asin the
child entry. Note that if it is decided to store the original attributesin the entry aswell asin the child, then it
will increase the database size.

The default valueis yes.

RevokedCertificateEntries [yesino]

RevokedCertificateEntries indicates if separate entries should be created subordinate to the CRL entry for

each revoked certificate in the CRL. Each of these entries, if created, will hold the serial number of the
revoked certificate, its revocation date and any crl entry extensions present in the CRL (such as reason code

99

and invalidity date). If these entries are not created, then the only information held about the revoked
certificates will in the serialNumbers attribute in the CRL entry.
The default valueis no.

RevokedRDNformat [x509seria Number+x509issuer | x509isssuerSerial |
x509serial Number]

The following RDN formats are available for RevokedCertificateEntries, as described in [Chadwick]. Note
that this parameter isignored if RevokedCertificateEntriesis No.
The default value is x509serial Number.

x509serial Number+x509issuer — multi-valued RDNs will be created from the certificate serial number
and issuer fields.

x509serialNumber — the RDN is created from the certificate serial number. Thisformat of the RDN will
be suitable for the cases when all certificates | CRLs are issued by one CA.

x509issuerserial —asingle valued RDN is created from the certificate serial number and issuer fields.

Administrators should use this format when the LDAP server does not support multi-valued RDNs.

CertRDNformat [x509seria Number+x509issuer | x509isssuerSerial |
x509serial Number]

This defines the format of the RDNs for attribute certificate and public key certificate entries, as defined in
[Gietz] and [Chadwick].
The default value is x509serial Number+x509i ssuer.

Walpath [path]

Write Ahead Logs (WAL) are needed for internal purposes, so the administrator may specify a path
for the WAL.:
The default path if this parameter is missing, is/ust/local/var/xps/wals/

XPSerrorlog [path/filename]

The Administrator may specify a path for the XPS error logs:
The default fileis/usr/local/var/xps/error.log

define_attr [ASN.1 attribute] [LDAP attribute]

This specifies the format for the matching between the ASN.1 type references of the fieldsin the
X.509 attributes (as defined in the ASN.1 input file, see [Parsing]) and their equivalent LDAP
attribute type names defined in the PK1X schemas [Chadwick], [Gietz], [Sahalayev]. Each line of
thisfile should be in the above format, as described in [Parsing]:

For example:
define_attr certificate.tbsCertificate.signature.algorithm x509signatureAlgorithm

All these definitions will be held in x509attrtypes.txt file (although the administrator can specify his
own file or even put the definitions into slapd.conf if he wishes)

Operations
If EnableXPSis NO, then all operations will pass straight through the XPS code and not be affected by it.

100

If EnableXPSis YES, then the following operations will pass straight through the XPS server and not be
affected by it: Bind, Unbind, Compare, ModDN, Abandon, Search. The following administrative operations
will be intercepted by XPS and modified as described below: ADD, DELETE, and MODIFY, unless they
have a critical control set, in which case they will be rejected with Unsupported critical extension.

ADD operation

When XPS receives an ADD request the following actions will be taken. First it will check if the request
contains any X.509 attributes. If it does not the request will be processed as normal by OpenLDAP and
ignored by XPS. If it does then two lists of entries will be created (in OpenLDAP internal opague structure)
from each X.509 attribute. One list will contain CRL, AC and PKC entries (held in the “xps_e_array” global
variable), the other one will contain revokedEntries from CRLs (if they are exist and if the
“RevokedCertificateEntries’ configuration parameter is set to “yes’). These lists will be created using the
xps_create_entries() function (see [Parsing] for afull explanation). If duplicateAttribute is false, the X.509
attributes will be removed from the parent entry.

If parsing of the X.509 attribute values finishes successfully the DN of the parent entry will be added into the
WAL using xps_dn2wal(). The parent entry will then be added to the directory using the function (be-
>be_add)().

If the parent entry is added and there are no errors, XPSwill call xps_add_entries(). This function will take
the first element from the “xps_e array” list, add its DN to the WAL using xps_dn2wal() and then add the
entry to the directory using (be->be_add)(). The same operations will be performed for each element of the
“Xps_e array”. After adding all of the entries from the “xps_e _array” the entries from the “xps_revoked”
will be added using the same method.

If no error occurs the WAL will be cleaned and the client will receive the LDAP_SUCCESS return code. If
there was any error LDAP should be rolled back to its original state. At this point the WAL will contain alist
of already added entries (actually as LDIF delete entry commands). Using the LDIF commands from the
WAL all the entries will be deleted. After each entry is successfully deleted, its DN (LDIF command) will be
removed from the WAL. If any errors occur at this point the LDAP directory will contain entries that are not
supposed to be there. Their DNswill be stored in the WAL and in the OpenLDAP log if logging in switched
on. It will enable the administrator to remove them manually.

DELETE operation

When XPS receives a DELETE operation it will perform aone level SEARCH operation from the
original entry asthe base entry, searching for entries of the x509base object class [Sahalaev]. Searching will
be done with (*be->be_search)()

Note. If the DELETE was for a non-leaf node near the root, then afull subtree SEARCH could return millions of
entries.

In OpenLDAP the SEARCH operation is perfomed by one of the backends. Normally, all the entries
that are found are sent straight to the client. We will use the OpenL DAP callback mechanism to change the
sending routine to our own routine— xps_sort_search_entries(). The routine will take each returned “ Entry”
as an input parameter and place it into one of the arrays:

xps_level2 if one of X509AC, x509PK C or xX509CRL object classes is present.
xps_level3 if X509CRLentry object classesis present.
xps_level1if non of the above OCs are present.

Other callback routines have also been modified so that
)] if areferral isreturned, or
i) if an error isreturned, or

101

i) if other callback routines other than “Entry” are called
then the DELETE will be rejected with UnwillingToPerform.

XPSwill check that only Level 2 entries are returned. If there are some Level 3 entries this means
that the x509 entries are messed up and the DELETE operation will be rejected with
UnwillingToPerform. If there are no entries returned, then the DELETE was anon-XPS DELETE
and XPS will pass the operation to OpenLDAP for normal processing.

If there are one or more Level 2 entries returned, then XPS will check the object classes of the returned
entries, and for each x509CRL object class found, it will perform a 1-level SEARCH with the CRL entry as
base, searching for object class present. XPS will check that only level 3 entries are returned by these 1-level
Searches. If anything other than Level 3 entries are returned the DELETE will be rejected with
UnwillingToPerform.

XPS has now collected al the XPS generated entries beneath the entry to be deleted. XPS will now
perform a base object SEARCH, searching for object class present (i.e. read the entry to be deleted). XPS
will check that the entry has been inserted into the Level 1 array by the callback routine
Xps_sort_search_entries(), otherwise the DELETE will be rejected with UnwillingToPerform.

XPSwill now call xps_delete_entries(). This function will take the first entry from the xps_level3
array, if it'snot empty, and will add the whole entry into the WAL using xps_entry2wal(), then delete it from
the directory using (be->be_delete)(). The same will be done with all the entries from the xps_level 3 array.
After all entriesfrom the xps_level3 array are deleted, xps_delete entries() will do the same with the
xps_level2 and xps_levell arrays (i.e. add to WAL and delete from the directory).

If no error occurred the WAL will be cleaned and the client will receive the LDAP_SUCCESS result code. If
there were any errors LDAP should berolled back to it original state. All deleted entries are stored in the
WAL. They will be added back to the directory using (*be->be_add)(). When an entry is added to the
directory it will be removed from the WAL. If any errors occur at this point some entries will still be
missing from the directory. All of the failures will be stored in the XPS/recovery.log. The administrator will
have to add the missing entries manually.

MODIFY operation

If XPS receives an MODIFY request it will first check if there are any X.509 attributes in the modifications.
If there are none then the request will be processed as normal by OpenLDAP.

Otherwise, depending on the operation type (mod_op), the following actions will be taken for every X.509
attribute type found in the MODIFY operation.

Operation typeisadd.

In this case the sequence of actionsisidentical to the LDAP ADD operation. XPS will create 2 lists of
entries to be added (xps_e_array and xps_revoked) from the values provided with the MODIFY operation. It
will be done using the xps_create_entries() routine.

At this point in time XPS has alist of al the child and grandchild entries that need to be added to the
directory. XPSwill then move to the next modification operation.

Operation typeisdelete.

If no attribute values are provided (i.e. Delete the attribute), XPS will perform aone level SEARCH
from the entry to be modified, searching for the attribute type to be deleted. The search for the attribute
values will be done with (* be->be_search)(). The callback function xps_sort_search_entries() will put all the
entries that are found into the xps_level2 array. If any entries are inserted into the level 1 or level 3 arrays
then the MODIFY will be rejected with UnwillingToPerform.

If an attribute value is provided (i.e. Delete an attribute value), XPS will perform aone level SEARCH
for this attribute value to check that it exists, by performing a certificateExactMatch for ACs and PKCsand a
certificateListExactMatch for CRLs. If it does exist, then the callback function will put the returned child

102

entry into the xps_level2 array. (If it is put into the level 1 or level 3 arrays then the MODIFY will be
rejected with UnwillingToPerform.

NOTE that the xps _level2 array should have just one more entry in it after the SEARCH was performed than
before the SEARCH was performed. (It cannot assume that there were zero entries in there at the start.)

If the attribute value does not exist, the user will be sent the error message noSuchAttribute.

If the attribute type of the value(s) to be deleted is one of the configured crlTypes, afurther set of one
level searcheswill be performed from the entry or entries returned from the first one level Search. XPS will
perform a 1-level SEARCH with the CRL entry as base, searching for object class present. The callback
function xps_sort_search_entries() should put all entries found into the xps_level3 array. XPS will check that
only level 3 entries are returned by these 1-level Searches. |If anything other than Level 3 entries are returned
the MODIFY will be rejected with UnwillingToPerform.

At this point in time we have alist of al the child and grandchild entries that need to be deleted. XPS
will then move to the next modification operation.

Operation typeisreplace.

In this case XPS will act asit were two separate operations. The sequence of actionsisthe sameasin
the preceding paragraphs for del ete the attribute (with no attribute values provided), and add new attribute
value(s).

Finalising the Modify Operation

After going through all of the modificationsin the MODIFY operation there will be 2 arrays of
entries to be deleted (xps_level2, xps _level 3) and two arrays of entries to be added (xps_e_array and
xps_revoked). XPS will add these entries to the WAL then add or remove them from the directory, viacalls
to xps_add entries() and xps_delete_entries(). Note that whilst the new entries need to be added and old
ones deleted, the WAL must not be emptied yet.

If both sets of adds and deletes are finished successfully, the remaining attributes in the MODIFY
operation need to be maodified in the parent entry, and duplicate attributes may also need adding or removing
from the parent entry. If duplicateAttribute = False, the X.509 attributes are removed from the original
MODIFY operation.

The MODIFY operation isthen passed to OpenLDAP (unlessit is empty i.e. it only contained X.509
attributes and duplicateAttribute = False). Note that the MODIFY operation is atomic, therefore it will either
al work, or al fail. For this reason we do not need to add it to the WAL.

If the Modify operation succeeds, the WAL will be cleaned and the user will receive an
LDAP_SUCCESS return code as the result of his MODIFY operation.

If the MODIFY operation fails and duplicateAttribute = True, remove the X.509 attributes from the
original MODIFY operation and try again. (Thisis because the administrator could have altered the value of
the duplicateAttribute parameter to True after the entry was created with duplicateAttribute = False). If the
Modify operation still fails, then XPS will have to go into rollback mode using the WAL. XPS must delete
all the added child (and grandchild) entries, and re-add back all the deleted child (and grandchild) entries.
NOTE. There will be a problem is the administrator changes the value of duplicateCertificates after adding some X.509
attributes but before running the Modify operation. If the initial value was False and the new valueis True, then if the
Modify attempts to Delete the attribute it will fail because XPS will try to delete the duplicate attribute (which does not
exist). It isfor this reason that we remove the duplicate attributes and try again. If theinitial value was True and the new
value is False, then the Modify operation will delete the child entry, but the duplicate attribute will still remain in the
parent entry until the administrator removes it by hand.

Appendix A. XPSrecovery.log Format

When XPS findsa DN in the WAL the following message will be logged.
Undeleted entry found:

dn: [DN of the entry]

...removed. /... unableto remove

Itwill say “. .. removed” if the entry is successfully deleted, or failed to delete the entry because it did not
exist. If the entry exists but cannot be deleted the “. . . unable to remove’ message will be logged.

When XPS finds an undeleted Attribute in the WAL the following message will be logged.

103

Undel eted attribute value found:

dn: [DN of the entry]

[attribute type]: [attribute value]
...removed. /. .. unableto remove

Itwill say “. .. removed” if theentry issuccessfully deleted, or failed to delete the entry because it did not
exigt. If the entry exists but cannot be deleted the “ . . . unable to remove” message will be logged.

When XPS finds an Entry in the WAL the following message will be logged.

Unrestored entry found:

dn: [DN of the entry]

[attribute type]: [attribute value]
[attribute type]: [attribute value]
... restored/. . . unable to restore

Itwill say “. .. restored” if the entry is successfully restored, or failed to restore the entry because it hadn't
been deleted. If the entry does not exist but cannot be added to the Directory the“ . . . unable to restore”
message will be logged.

When XPS finds an unrestored Attribute in the WAL the following message will be logged.

Unrestored attribute value found:
dn: [DN of the entry]

[attribute type]: attribute value
... restored/. . . unable to restore

itwill say “. .. restored” if the Attribute is successfully restored, or failed to restore the Attribute because it
hadn't been deleted. If the Attribute does not exist but cannot be added the® . . . unable to restore” message
will be logged.

Appendix B. List of Functions

XPS Functions

Xps_create_entries() - this function creates 2 lists (xps_e_array and xps_revoked) of entries from
provided x.509 attibute values.

xps_delete_entries() - this function deletes entries held in the global arrays xps level3, xps level2 and
xps_levell from the Directory.

xps_add_entries() - this function adds entries held in the global arrays xps_e_array and xps_revoked
to the Directory. This function first adds the DN of the entry-to-be-added to the WAL using xps_dn2wal ()
and then adds the entry to the directory using (be->be_add)(). The same operations will be performed for
each element of the “xps_e_array”. After adding all of the entries from the “xps_e_array” the entries from
the “xps_revoked” array will be added using the same methods.

OpenLDAP internal functions for updating the backend database

(*be->be_add)() — adds an entry to the backend directory
(*be->be_delete)() — deletes an entry from the backend directory
(*be->be_modify)() —modifies an entry from the backend directory

These areinternal OpenLDAP functions for adding, deleting and modifying entries and attributes. As
OpenLDAP has a number of different backends each of them has its own function for the operations. For
example, when the backend is defined the add function can be called using the pointer be->be_add. The same
istrue for deleting and modifying.

104

WAL Functions

xps_dn2wal() - this function will save the DN of an added entry in the WAL. It isused for rolling back
added entries, if necessary. The WAL will contain an LDIF command to delete the named entry.
xps_entry2wal () - this function will save an entry-to-be-deleted in the WAL. It isused for rolling back
deleted entries. The WAL will contain an LDIF command to add the entry to the DIT.

References

[API] M. Smith, A. Herron, M. Wahl, A. Anantha <draft-ietf-ldapext-ldap-c-api-xx.txt>

[Auth] Wahl, M., Alverstrand, H., Hodges, J., Morgan, R. "Authentication Methods for LDAP", RFC 2829,
May 2000

[Chadwick] D.W.Chadwick, M.V.Sahalayev. “Internet X.509 Public Key Infrastructure - LDAP
Schemafor X.509 CRLS’. <draft-ietf-pkix-ldap-crl-schema-00.txt>, Feb 2003

[Gietz] N. Klasen, P. dsaGietz. "An LDAPv3 Schemafor X.509 Certificates'<draft-klasen-Idap-
x509certificate-schema-00.txt>, Feb 2002.

[Sahalayev] D.W.Chadwick, M.V.Sahalayev. “Internet X.509 Public Key Infrastructure - LDAP
Schemafor X.509 Attribute Certificates’. <draft-ietf-pkix-ldap-ac-schema-00.txt>, Feb 2003
[WAL] Mikhail Sahalayev, David Chadwick “Write Ahead Log (WAL) Design”, Feb 2003

[X509] ISO/ITU-T Rec. X.509(2000) The Directory: Authentication Framework

[Parsing] Mikhail Sahalayev, Ed Ball, David Chadwick “Parsing X.509 Attributes’, Feb 2003

[LDIF] G. Good “The LDAP Data Interchange Format (LDIF) - Technical Specification”, RFC 2829, June
2000

105

Appendix 9. Write Ahead Log (WAL) Design

M. Sahalayev, D. W. Chadwick
Release Number Release Date Comments
Version 1.0 3 February 2003 Initial release for public comment

The purpose of the WAL isto store information about LDAP DNs or entries while performing
an LDAP operation such as ADD, DELETE or MODIFY. Thiswill allow the X.509 Parsing Server
(XPS) to restore theinitial state of the database in case of afailure.

When a user initiates an operation, the WAL file will be opened. It will stay opened until the
operation is finished and it’s no longer required,and then this file will be deleted.

The content of the WAL fileis either the DN of an entry (for ADD requests) or a whole entry
(for DELETE requests). This information will be stored in LDIF format and multiple entries will be
separated by blank lines. All LDIF operations will be performed using the existing OpenLDAP
mechanisms. To be sure that information is actually written on the disk after every operation with
the WAL system function fflush() will be called.

Example:

If auser sends an ADD request which contains the entry with 2 X.509 certificates, then XPS
will create the entry and 2 additional X.509 entries. After storing the initial entry's DN in the WAL
this entry will be added to the Directory. Then the first X.509 entry's DN will be stored in the WAL
and the entry stored in the Directory. The same will be done for the second X.509 entry. At the end
the WAL file will be similar to the following, assuming that the serial numbers for the two X.509
certificates are 1111111 and 222222, and the DN of the CA s
“EMAILADDRESS=certify@pca.dfn.de, CN=DFN Toplevel Certification Authority, OU=DFN-
PCA, OU=DFN-CERT GmbH, O=Deutsches Forschungsnetz,C=DE”.

dn: =Roman Gebhart,ou=Payroll, o=Salford,c=gb

<CRLF>

dn: x509serialNumber=1111111, “EMAILADDRESS=certify@pca.dfn.de,CN=DFN
Toplevel Certification Authority, OU=DFN-PCA,OU=DFN-CERT GmbH,O=Deutsches
Forschungsnetz, C=DE”, cn=Roman Gebhart,ou=Payroll, o=Salford,c=gb

<CRLF>

dn: x509serial Number=2222222, “EMAILADDRESS=certify@pca.dfn.de, CN=DFN
Toplevel Certification Authority, OU=DFN-PCA,OU=DFN-CERT GmbH,O=Deutsches
Forschungsnetz, C=DE”, cn=Roman Gebhart,ou=Payroll, o=Salford,c=gb

If al operations were successful the WAL file will be deleted. Otherwise the first blank line
from the end of file will be found. If the WAL contains the DN of an entry, this entry will be
deleted from the directory. If it's a whole entry, it will be added back. Then this piece of
information will be deleted from the WAL.

In the same way al the WAL file will be processed until it is empty. When all recovery
operations are finished, the WAL file will be deleted. For more information see [detailed design].
Note that when OpenLDAP/XPS first initialises, it must search for any WAL files left from the
previous invocations, and perform the recovery operations such as those above before the XPS is
ready to receive new requests.

The OpenLDAP server is multitasking and it is capable of handling multiple requests at once.

So XPS may be running in different threads simultaneously. To avoid collisions different WALS
will be required for each thread. Since the format of the WAL is a text file, each operation will

106

create its own file. In order to avoid name collisions each file name will be constructed using the
following information:

“wal” —the same part for every WAL file, distinguishing it from other OpenLDAP and XPSfiles.

32 ASCII symbols representing a 128-bit hash of the DN of the entry to be modified. This will
avoid collisions and also will keep the XPS from modifying the same entry concurrently,
since only one process can work with the particular WAL file. The hashing will be done
using OpenLDAP [util_MD?5Init(), lutil_MD5Update(), and lutil_MD5Final() functions.
For the converting 128-bit hash into ASCII string the function int hash2string(char * hash,
char *dn) will be created. The input parameters are
dn - input string, containing the DN of the entry.
hash - 32-character string, representing the created hash. It will be 32 hexadecimal numbers
(0-9, af)

hash2string () will return O if hashing was successful, or 1 - if not. .log — file extension, serves for
information only purposes.

Example:

If there are three operations beingperformed by OpenL DAP/XPS at the present time there will
be three log files in the directory, defined in slapd.conf. If walpath is set to /usr/local/var/xps/was/
the result of Is/usr/local/var/xps/wals/ will be similar to the following:

wal KHWIHfdsaf JG420ghdI T4Y G.log
walerqlDRF2gaglL V PE8efabNV T.log
wal 1tr12L HOK hjtl O961gR1IM xQv.log

A collision may appear when some of the old WAL files are left from the previous running of
the OpenLDAP/XPS server (for example if the system crashed due to some reason). In this case
during the OpenLDAP startup XPS will try to restore the information from every WAL file
(described above) and, regardless of the result, delete the WAL file (if the restoration wasn't
successful if will be logged in xpsrecovery.log).

107

Appendix 10. Parsing X.509 Attributes
E.Badl, M.Sahaayev

Version Date Comment
1.0 28 February 2003 Initial release
11 13 May 2003 Update of first release with
change to x509attrfile.txt

When the XPS finds x.509 attributes in the entry to be added it cals one of the
x509*** 2 mods() functions.

There are three such functions:

x509AC_2 mods() - converts Attribute Certificate into the list of Modifications

X509CRL_2 mods() - converts Certificate Revocation List into the list of Modifications

x509PK C_2 mods() - converts Public Key Certificate into the list of Modifications

All these functions are generated by an ASN.1 compiler, written by E.Ball.

ASN1 compiler description

The compiler is based on a sub-set of the ASN.1 defined by X.680 (12/97) with some
restrictions and additions. The additions are support for the ANY DEFINED BY type, which has
been included for backwards support, and also a new EXTENSION type. Thisis for support of the
extensions mechanism used in X509 certificates, whereby a value is passed in binary as OCTET
STRING but actually also has an ASN.1 definition for the contents of the octet string.

The compiler is built using the compiler generator tools flex and bison. Flex is based on the
well known UNIX lex and builds alexical analyzer which is used to process the text input to the
complier. The lexical analyzer recognize keywords in the ASN1, identifiers, numbers etc. and
removes white space in the traditional way. The definition used by flex to build the lexical analyzer
iscontained in the file asnl.lex (see Appendix 1). The output from the lexical analyzer is actualy a
sequence of tokens and corresponding values that are used by the compiler itself. The compiler is
built using the tool bison, a compiler generator based on the well known UNIX tool yacc. The
definition of the compiler is contained in the file asnl.y (see Appendix 1), and consists of Bachus-
Naur type definitions that closely follow the ASN1 definition described above.

Although bison is extremely useful in automatically building a parser that will recognize input
inits definition file, it does not automatically generate parse trees and output code. These must be
added to the definition file, in the form of embedded actions, to build a parse tree, and also a code
generator. After the input has been scanned and a parse tree built, the code generator walks thistree
and trandates this into output code.

The Parse Tree

The C structures used by the compiler are contained in afile called common.h (see Appendix
1).

The most important are the Definition and the Type, corresponding to the equivalent ASN.1.
The compiler maintains an internal stack that holds Type values and as each Typeisrecognizeditis
put onto the stack. Where Types may be combined together, as defined by the ASN1, they are
pulled from the stack and a new Type put back on the stack. Eventualy, assuming that the input is
good, an ASN.1 definition will be recognized and a Definition structure will be created and put on a
linked list. The Definition will contain alinked list of Type structures that are part of the Definition.

108

Generating the Code

Starting with the first Definition in the parse tree it is analyzed and the text of a C subroutine
written to the output file. This has the name decodeABCD, where ABCD is replaced by the name of
the Definition. For each Type contained in the typelist of the Definition a C TypeDescription
structure is defined in the written routine. These are combined together into an array and passed to a
more basic decode function.

For example:-

ABCD ::= SEQUENCE { X INTEGER, y BIT STRING }

would produce:-

void decodeABCD(char * name,int tag,int tagOption,byte **P,int

count, TypeDescription TD[],int optional,int Default,char * Objectldentifier)
{intt;

TypeDescription _TDO={"x",-1,2,0,(_CPF)decodel NTEGER,0,0,""};
TypeDescription _TD1={"y",-1,2,0,(_CPF)decodelNTEGER,0,0,""};
TypeDescription _TD[]={_TDO0,_TD1};

printf("%s",name);

decodeSEQUENCE("ABCD" tag,tagOption,P,2,_TD,optional ,Default,"");
}

The Code Library

A skeleton library has been written called decodelib.c. This provides the basic support for all
the ASN.1 built in types, and it takes the user to the value part of each TLV ber structure in the
input. The user must decide what it is that he wants to do with this value, e.g put it into his own
structure, throw it away or whatever.

The library also copes with ASN.1 OPTIONAL and DEFAULT situations, although it is left
up to the user to supply any missing DEFAULT values.

The library implements basic error checking, i.e. that tags are of the required type and that
lengths of sequences are not exceeded.

Using the Compiler

The compiler is called decoder and it takes two command line arguments, the first being the
name of the file containing the ASNL1 definition, the second being the file name into which the
generated C will be written. At the moment the compiler first copies the file decoderlib.c to thisfile
and then writes the routines that it generates. It could be easily modified to miss out copying the
library and this could then be simply linked in with the user's application.

e.g. decoder g.asnl g.c

Thiswill compile the definition in g.asnl and write thefile g.c

ASN.1 Additions

In order to support the EXTENSION mechanism the ASN.1 TypeAssignment has been
extended from:-

TypeAssignment ::= typereference "::=" Type

to:-

109

TypeAssignment ::= typereference "::=" Type | OID typereference "::=" Type

Where OID is an object identifier production in dotted integer notation e.g 1.2.3.4 This
allows an OID to be associated with an ASN1 type.

The Type ExtensionType is defined:-

ExtensionType ::="EXTENSION" IcID, where|cID is alowercase prefixed
identifier.

These two modifications combine as follows:-

X509 DEFINITIONS ::=
BEGIN
Test::= SEQUENCE{
abc OBJECT IDENTIFIER,
e EXTENSION abc}
0.1.2.3.4 A::= INTEGER
END

Here EXTENSION abc meansthat e will be encoded as an OCTET STRING but that its
internal structure will be defined by the OID contained in the value abc. At run timethe OID is
extracted from abc and stored. When the decodeEXTENSION code is reached this OID is looked
up from abc and compared with those of known definitions. In this exampleif it is0.1.2.3.4 then the
value of e will be decoded as an INTEGER. If the OID is not known an error will be generated.

Generating the parsing functions

To generate these functions the ASN. 1 definitions of CRL, PKC and AC have been written
(files pkc.asnl, ac.asnl, crl.asnl - see Appendix 1)
The following commands

decoder pkc.asnl pkc.c
decoder ac.asnl ac.c
decoder crl.asnl crl.c

produce C files that contain the required functions along with necessary library functions.

Since the functions, created be the ASN.1 compiler use the strings from ASN.1 type
references as attribute types, they will need to be replaced with the actual LDAP attribute types,
taken from the LDAP PKI schema IDs[CRL], [AC], [PKC]. For example the ASN.1 type
serialNumber will need to be replaced with the x509serial Number LDAP attribute type. Thisis
achieved as follows: a configuration file x509attrtypes.txt comprises two columns of strings. The
first column holds the ASN.1 type reference, the second holds the corresponding LDAP attribute
type name. An example x509attrtypes.txt file is shown in Appendix 1. If the LDAP schema
definitions change, or new ones are defined, then the file x509attrtypes.txt can be updated, the new
LDAP schemas can be added, OpenLDAP can be restarted and the new schema definitions will take
effect. If however, anew X.509 extension is defined, this can only be supported by: adding the new
X.509 extension to the appropriate asnl file (pkc, ac or crl), recompiling it using the ASN.1
compiler, updating the file x509attrtypes.txt and updating the OpenL DAP schema.

110

Parsing the extensions

If aCRL, PKC or AC has any extensions they will be parsed as and stored in the memory as
an "Extension " attribute. The XPS supports a number of the selected attributes, so their values have
to be decoded as well. For this purpose the XPS will have alist of OIDs of the supported attributes
(held in file x509attrtypes.txt) and a corresponding parsing function from the library, described
above. For example, the Subject Altenative Name extension for the PKC has the following ASN.1
definition:

SubjectAltName ::= GeneralNames
GeneralNames ::= SEQUENCE SIZE (1..MAX) OF GeneralName

GeneralName ::= CHOICE {

otherName [0] OtherName,
rfc822Name [1] [A5String,

dNSName [2] [AS5String,
x400Address [3] ORAddress,
directoryName [4 Name,

ediPartyName [5] EDIPartyName,
uniformResourceldentifier [6] [A5String,
iIPAddress [7] OCTET STRING,
registerediD [8] OBJECT IDENTIFIER}

If the OID of this extension is found while parsing the certificate the following function will
be called:

void decodeSEQUENCE(char *name,int tag,int implicit,byte ** P,int count, TypeDescription
TD[],int optional ,int Default,)

The attribute types will be replaced with the corresponding ones from the schema[CRL],
[AC], [PKC].

References

[AC] Chadwick, D.W., Sahalayev, M. V. "Internet X.509 Public Key Infrastructure LDAP
Schema for X.509 Attribute Certificates", <draft-ietf-sahal ayev-pkix-ldap-ac-schema-
00.txt>, February 2003

[CRL] Chadwick, D.W., Sahalayev, M. V. "Internet X.509 Public Key Infrastructure LDAP
Schemafor X.509 CRLs', <draft-ietf-sahalayev-pKix-ldap-crl-schema-00.txt>, February
2003

[PKC] Klasen, N., Gietz, P. "An LDAPv3 Schemafor X.509 Certificates' ,<draft-klasen-ldap-
x509certificate-schema-00.txt>, February, 2002

Appendix 1 Example input file structures

Example asnl.lex file

%6

111

#include "asnl.tab.h"

#include "printtoken.h"

[ISCOPEVAL "("[0-9a-zA-Z]+".."[0-9a-zA-Z] +")"

[[{ SCOPEVALY} {printf("%s" yytext);strcpy(yylval .str,yytext); return SCOPE;}
%0}

ID [A-Z][A-Z&a-z0-9]*
IcID [az][a-zA-Z0-9]*
TAG "["[0—9]*"]”
NUMBER [0-9]+

%%

"IASString" { printf("%s ",yytext); strcpy(yylval.str,yytext);return IASSTRING;}
"TeletexString" { printf("%s " ,yytext);
strepy(yylval.str,yytext);
return TELETEXSTRING;

}
"PrintableString" { printf("%s",yytext);
strepy(yylval.str,yytext);
return PRINTABLESTRING;

}
"BMPString" { printf("%s " yytext);

strepy(yylval.str,yytext);
return BMPSTRING;

}
"UniversalString" { printf("%s" yytext);

strepy(yylval.str,yytext);
return UNIVERSALSTRING;
}
" {printf(".. dotdot");strcpy(yylval.str,yytext); return DOTDOT;}
EXTENSION { printf("EXTENSION ");yylval .va=EXTENSION;
return EXTENSION;}
GeneralizedTime { printf("GeneralizedTime ");
yylval.val=GeneralizedTime;
return GeneralizedTime;}
UTCTime{printf("UTCTime");yylval.val=UTCTime; return UTCTime;}

"(" {printf("("); strepy(yylval.str,yytext); return OPENBR;}
)" {printf(") ");strepy(yylval.str,yytext);return CLOSEBR;}

MIN { printf("%s " yytext); strcpy(yylval.str,yytext); return MIN;}
MAX {printf("%s " yytext); strcpy(yylval.str,yytext); return MAX;}

112

NULL {printf("%s",yytext);yylval.val=_NULL; return _NULL;}
REAL {printf("%s" yytext);yylval.val=REAL; return REAL;}

SIZE {printf("SIZE ");yylval.val=SIZE;return SIZE; }

OF { printf("OF ");yylval.va=0F,; return (OF);}

ANY {printf("ANY "); yylval.val=ANY; return(ANY);}

DEFINED { printf("DEFINED "); yylval.va=DEFINED; return(DEFINED);}
BY {printf("BY "); yylval.va=BY; return(BY);}

DEFAULT {printf("DEFAULT ");yylval.va=DEFAULT;return DEFAULT; }

IMPLICIT {printf("IMPLICIT ");yylva.va=IMPLICIT;return IMPLICIT;} /* consume this
keyword */

OPTIONAL {printf("OPTIONAL ");yylval.va=OPTIONAL ;return OPTIONAL;}
EXPLICIT {printf("EXPLICIT ");} /* consume */

TRUE {printf("TRUE");yylval.val=TRUE;return TRUE;}

FALSE {printf("**FALSE ");yylval.val=FAL SE; return FALSE;}

{TAG} {inti,sum=0;
char * pnt=yytext;// convert the tag digitsto an int
for(i=1;i<strlen(yytext)-1;i++)
sum=sum* 10+pnt[i]-'0’;

printf("%s",yytext);yylval .val=sum; return(TAG);
}
{NUMBER} {int i,sum=0; // (0)
char *pnt=yytext;// convert the value digitsto an int
I printf("\n** NUMBER yytext=%s\n" yytext);
for(i=0;i<strlen(yytext);i++)
sum=sum* 10+pnt[i]-'0’;

printf("%d",sum);yylval.val=sum; return(NUMBER);
}

""" {printf(", ");return (COMMA);}
" {printf("\n{ ");yylval.va=_br;return(_br);}
"} {printf("}\n");yylval.val= br_;return (br_);}

= {printf("::="); return(DFB);}
{lcID} {printf("%s " yytext);

strepy(yylval.str,yytext);
return(lciD);

}

BOOLEAN {printf("%s",yytext);yylval.val=BOOL EAN; return BOOLEAN;}
OCTET {printf("OCTET ");

yylval.val=OCTET;
return (OCTET);}

113

BIT {printf("BIT ");yylval.val=BIT;return BIT;}

STRING {printf("STRING ");
yylva.val=STRING; return STRING;}

OBJECT {printf("%s" yytext);
yylval.va=0BJECT;
return(OBJECT);}
IDENTIFIER {printf("%s" yytext);
yylval.val=IDENTIFIER,;
return(IDENTIFIER);}

DEFINITIONS{ printf("DEFINITIONS ");return(DEFINITIONS);}

BEGIN {printf("BEGIN ");return(_ BEGIN);}

INTEGER {printf("INTEGER "); yylval.va=INTEGER; return (INTEGER); }
END {printf("END "); return(_END);}

ENUMERATED { printf("ENUMERATED ");yylva .val=ENUMERATED; return
ENUMERATED;}

"L printf (M. ");yylval .va=DOTDOTDOT; return(DOTDOTDOT);}

CHOICE { printf("CHOICE ");
yylval.va=CHOICE;
return(CHOICE);}

SEQUENCE { printf("SEQUENCE ");
yylval.va=SEQUENCE;
return(SEQUENCE);}

SET {printf("SET ");
strepy(yylval .str,yytext);
return(SET);}

{ID} {printf("%s" yytext);
strepy(yylval .str,yytext);
return(1D);}

"--{" {printf("%s " yytext); yylval.va=LEFTMATCH;return LEFTMATCH;}
"}--" { printf("%s ", yytext); yylval.val=RIGHTMATCH; return RIGHTMATCH;}

"--" {register int c;
while ((c=input()) '="\n'&& c!=EOF);
} /* consume comments */

" {printf("%s",yytext); return DOT;}

114

[\n]+ { printf("\n");}
[]+ /* whitespace*/

Example asnl.y file
[* special purpose asnl grammar for component matching project*/

%

#include <stdio.h>
#include "type.h"
#include "asnltype.h"
#include "definition.h"
#include "stack.h"
#include "oid.h"

#define TERMINAL O // used to denote aterminal token
Stack ST;
inti;
int paircount=0;
Definition *top=0;
char buf[100];
Type AnyType={"" {"ANY",ANY},0{0,-1}};
Type AnyDefinedByType={"" {"ANY DEFINED BY",ANY_DEFINED BY},0{0,-1}};
Type BitStringType={"" {"BIT STRING",BIT_STRING},0{0,-1} };
Type Rea Type={"" {"REAL",REAL},0,{0,-1}};
Type ObjectldentifierType={"" {"OBJECT IDENTIFIER",OBJECT IDENTIFIER},0,{0,-1}};
Type ChoiceType={"" {"CHOICE",CHOICE},0{0,-1} };
Type Null Type={"" {"NULL", NULL},0,{0,-1}};
Type ldType={""{"",0},0{0,-1} };

Type EnumeratedType={"" {"ENUMERATED" ENUMERATED},0{0,-1}} ;
Type Integer Type={"" {"INTEGER" INTEGER} ,0,{ 0,-1} }

Type OctetStringType={"" {"OCTET STRING",OCTET_STRING},0,{0,-1},0,0,0};
Type ExtensionType={"" {"EXTENSION",EXTENSION},0{0,-1} ,0,0,0}

Type SequenceOf Type={"" {"SEQUENCE OF', SEQUENCE_OF},0{0,-1}};
Type SetType={"" {"SET",SET} ,0{0,-1}};

Type BooleanType={"" {"BOOLEAN",BOOLEAN},0{0,-1}};

Type SequenceType={"" {"SEQUENCE",SEQUENCE} ,0{0,-1}};

Type SetOf Type={"" {"SET OF",SET_OF},0{0,-1} };

Type UTCTimeType={"" {"UTCTime",UTCTime},0,{0,-1}};

Type IASStringType={"" ,{"|A5String",|IA5STRING} ,0,{ 0,-1} } ;

Type TeletexStringType={"" {"TeletexString", TELETEXSTRING} ,0,{ 0,-1} };

Type PrintableStringType={"" { "PrintableString",PRINTABLESTRING},0,{0,-1} };
Type BMPStringType={"" {"BMPString",BMPSTRING} ,0{0,-1} } ;

Type Universa StringType={"" ,{"Universal String" ,UNIVERSALSTRING},0,{0,-1} };

Type GenerdizedTimeType={"" {"GeneralisedTime" ,GeneralizedTime} ,0,{0,-1} };

115

Type * TypePnt;
/I ASN1Type* apnt;

char buf[100]; // for temp storage of IcIDs

ASN1Type asnlSyntax={"Syntax",0};

ASN1Type asn1OctetString={"OCTET STRING",OCTET_STRING};
%0}

%union {int val; char str[100];}

%token <str> TRUE FALSE _NULL OCTET STRING

%token <val> VALUE VALUE _OF

%token <str>ANY DEFINED BY ANY_DEFINED_BY

%token <str> DEFAULT IMPLICIT

%token <str>DFB _BEGIN END DEFINITIONS IDENTIFIER

%token <str> CHOICE

%token <str>IMPLICIT OPTIONAL

%token <str> ModuleDefinition SET SET_OF SEQUENCE_OF

%token <str> COMMA

%token <val> TAG MINUS NUMBER

%token <str> IcID UTCTime GeneralizedTime

%token <val> INTEGER OCTET_STRING BIT_STRING BOOLEAN SEQUENCE OF
%token <str> 1D OPENBR CLOSEBR

%token <str> _br br MIN MAX DOTDOT

%token <str> SIZE SCOPE OBJECT IDENTIFIER OBJECT _IDENTIFIER
%token <str> REAL BIT ENUMERATED DOTDOTDOT DOT

%token <va> NAMED_NUMBER

%token <str> LEFTMATCH, RIGHTMATCH

/[%token <str> OIDVAL

%token <val> EXTENSION

%token <str> IASSTRING, TELETEXSTRING, PRINTABLESTRING,BMPSTRING,
UNIVERSALSTRING

%type <str> typereference TaggedType DefinedType

%type <str> ComponentTypeList ComponentType

%type <str> ReferencedType ChoiceType ChoiceThing

%type <str> AlternativeTypeList AlternativeType

%type <str> NullType OctetStringType SetType SetOf Type SetThing

%type <str> ObjectldentifierType Rea Type BitStringType EnumeratedType
%type <str> RootEnumeration Enumeration Enumerations Additional Enumeration
Y%type <str> XXX Enumerationltem

%type <val> NamedNumber SignedNumber

%type <val> IntegerType BooleanType SequenceType SequenceOf Type SequenceThing
%type <val> BuiltinType Type

%type <str> |cID NamedType

%type <str> SizeConstraint UTCTimeType

1[%type <str> SyntaxDefinition

%type <str> Oid

%%

exp : ID DEFINITIONS DFB {resetStack(& ST);} _BEGIN ModuleBody {} END
{/printf("\NASN1 parsed ok\n");

116

} ;

Oid : NUMBER {Type T=IdType; // 9 0.1.2.3.4
sprintf(T.Objectldentifier,"%d",$1);
pushType(& ST,&T);
} DOT OidList
{inti;
TypeA,T,
pul Type(& ST,&A);
pull Type(& ST,&T);
strcat(T.Objectldentifier,".");
strcat(T.Objectldentifier,A.Objectldentifier);
pushType(& ST,&T);

1
OidList: NUMBER { Type T=IdType;
sprintf(T.Objectldentifier,"%d",$1);
pushType(& ST,& T);

| Oid {};
ModuleBody : AssignmentList | /* empty */ {};
AssignmentList : Assignment | AssignmentList Assignment {} ;
Assignment: TypeAssignment {};
/l'| VaueAssignment ;

/*
SyntaxDefinition: LEFTMATCH SyntaxList RIGHTMATCH
{TypeT;

[lprintf("***syntax definition ");
I printStack(& ST);
}

SyntaxList: ID {Type T,* new;

strcpy(T.name,$1);
pushType(& ST,&T);
[lprintStack(& ST);

}
| ID COMMA SyntaxList
{/[Thereisatype on the stack containing syntaxlist
Type SL,*new;
pull Type(& ST,& SL);//get it
new=newType($1,& asnlSyntax,0);
SL.next=new;

117

pushType(& ST,&SL);

Hs
*

TypeAssignment : typereference {} DFB Type

{ TypeA;TypeT;inti;
Definition *D;

printStack(& ST);
pull Type(& ST,&A);// the Type e.g. SEQUENCE
pull Type(& ST,&T);// the typereference
Il printf("*** Typeassignment tag=%d %d\n", T .tag.value A .tag.value);
addDefinition(top,& T);
D=currentDefinition(top);
D->aType=A.aType; // e.g. ("SEQUENCE" SEQUENCE) or ("AAA" 0)
D->tag.value=A .tag.value;
D->tag.flag=A .tag.flag;

strepy(D->Objectldentifier, T.Objectl dentifier);

/[D->SyntaxDefinition= A.SyntaxDefinition;
D->typelist=A.next;
D->next=0;

typereference: ID {Type T=IdType;
/1 printf("\n** D= %s\n",$1);
strepy(T.aType.name,$1);
pushType(& ST,&T);
}
| Oid ID
{Type T=IdType, A;
/I printf("\n**OID= %s ID= %s\n",$1,$2);
pull Type(& ST,&A); //the oid
strepy(T.Objectl dentifier,A.Objectl dentifier);
strepy(T.aType.name,$2);
pushType(& ST,&T);
Il sprintType(&T);
} ;

Type: BuiltinType{ } | ReferencedType{} | ConstrainedType{};

ConstrainedType: TypeWithConstraint {} ;

118

TypeWithConstraint: SequenceSizeConstraintOf {} ;
SequenceSizeConstraintOf: SEQUENCE SizeConstraint OF Type
{ Type T1=SequenceOf Type;
Type T2,* new;

pull Type(& ST,& T2); // the value left by Type

new=newType(T2.name,& T2.aType,0);// make some new storage

new->tag=T2.tag;
T1.next=new,
pushType(& ST,&T1);
}i

SizeConstraint: SIZE {} Constraint{} ;

Constraint: OPENBR {} LowerEnd {} DOTDOT {} UpperEnd {} CLOSEBR{} ;

LowerEnd: NUMBER {}| MIN {} ;
UpperEnd: NUMBER {}| MAX {} ;
ReferencedType : DefinedType{} ;

DefinedType : typereference

{
b

BuiltinType: IntegerType {} | BooleanType{}| SequenceType(} |

CharacterStringType{} |

SetOfType {}| SequenceOfType{}| OctetStringType {} |

TaggedType{} INull Type{}|ChoiceType{} |

SetType{} | ObjectidentifierType{ }|
Rea Type{} | BitStringType{} |

AnyType{}| AnyDefinedByType{}|

UTCTimeType{} | GeneralizedTimeType{} |
ExtensionType{}

| EnumeratedType {};

CharacterStringType : IASStringType | TeletexStringType |
PrintableStringType | BMPStringType]
Universal StringType;

IASStringType: IASSTRING { pushType(& ST,&IASStringType);
b

TeletexStringType: TELETEXSTRING { pushType(& ST,& TeletexStringType);

1

PrintableStringType: PRINTABLESTRING { pushType(& ST,& PrintableStringType);

119

BMPStringType: BMPSTRING { pushType(& ST,& BMPStringType);

Universal StringType: UNIVERSALSTRING { pushType(& ST,& Universal StringType);
¥

ExtensionType : EXTENSION IcID
{Typee;

e=ExtensionType;
strcpy(e.Objectldentifier,$2);

I printf("\n***extension ");
sprintType(&e);

pushType(& ST,&e€);

}s

AnyDefinedByType: AnyDefinedByThing {} ;

AnyDefinedByThing: ANY DEFINED BY IcID {pushType(& ST,&AnyDefinedByType);
} |ANY DEFINED BY ID
{pushType(& ST,& AnyDefinedByType);

AnyType: ANY {pushType(&ST,&AnyType);} ;

NamedNumber: IcID {} _br SignedNumber {} br_
{TypeTA;
T=IdType;
strcpy(T.name, $1);
pull Type(& ST,&A); // the value
T.value=A.vaug,
pushType(& ST,&T);

1

SignedNumber: NUMBER
{TypeT;
T.value=%1;
pushType(& ST,&T);
} | MINUSNUMBER
{ TypeT,;
T.value= - $1;
pushType(& ST,&T);

};

EnumeratedType: ENUMERATED _br Enumerations br_
{TypeT;
T=EnumeratedType;
pushType(& ST,&T);

};

Enumerations. RootEnumeration ; //| RootEnumeration XXX ;

120

XXX: COMMA DOTDOTDOT | COMMA DOTDOTDOT COMMA Additional Enumeration;
Additional Enumeration: Enumeration ;

RootEnumeration: Enumeration ;

Enumeration: Enumerationltem | Enumerationitem COMMA Enumeration ; // this needs extending
Enumerationltem: NamedNumber {}; // | IcID {} ;// for the moment dont allow IcID

Real Type: REAL {pushType(& ST,&Rea Type);} ;

BitStringType: BIT STRING { pushType(& ST, & BitStringType);} ;
ObjectidentifierType: OBJECT IDENTIFIER { pushType(& ST,& ObjectidentifierType);} ;

SequenceOf Type: SEQUENCE OF

{

}

Type

{ Type T1=SequenceOf Type;
Type T2,* new;

pull Type(& ST,& T2); // the value left by Type
new=newType(T2.name, & T2.aType,0);// make some new storage
lprintTypelList(&T2);

T1.next=new:;
pushType(& ST,&T1);

3
SetOf Type: SET OF Type
{Type T1=SetOf Type;
Type T2,* new;
pull Type(& ST,&T2); // the value left by Type
[lprintTypeList(&T2);
new=newType(T2.name,& T2.aType,0);// make some new storage

T1.next=new;
pushType(& ST,&T1);

Hs
SetType: SetThing{} ;

SetThing: SET _br br_ {pushType(& ST,& SetType);} |

121

SET _br AlternativeTypeList br_
{TypeT1,T2;
lprintf("\n**set type");
T2=SetType;
/printStack(& ST);
//stack contains "componenttype list "
pull Type(& ST,&T1); //aABC etcin linked list

T2.next=T1.next;//the move the chain across
pushType(& ST,&T2);
IprintStack(& ST);

} o

OctetStringType : OCTET STRING { pushType(& ST,& OctetStringType);} ;
I* |
OCTET STRING SyntaxDefinition
{
Type * SyntaxDef;
Type *new,A,;
pull Type(& ST,&A);
new=newType("",&asn1OctetString,0);
SyntaxDef=newType("",& asn1Syntax,0);
strepy(SyntaxDef->name,A.name);
SyntaxDef->next=A.next;
new->SyntaxDefinition=SyntaxDef;
pushType(& ST,new);
I printf("***OCTET STRING");
/I printStack(& ST);

b
*/
ChoiceType: ChoiceThing{} ;

ChoiceThing : CHOICE _br AlternativeTypeL.ist br_
{TypeT1,T2;

/printf("\n**choice type");

T2=ChoiceType,
/printStack(& ST);

//stack contains "componenttype list "
pull Type(& ST,&T1); //aABC etcin linked list
T2.tag=T1l.tag;

printf("****choice tag=%d %d\n", T2.tag.value, T2.tag.flag);
T2.next=T1.next;//the move the chain across
pushType(& ST,& T2);
IprintStack(& ST);

AlternativeTypelList : AlternativeType{} | AlternativeTypeList COMMA AlternativeType
{Type T1,T2,*pnt;

I/l we now take two types off the stack & join them together
I/ so the top of stack gets one added onto its linked list

122

/printf("\nalternative type list");
/I printStack(& ST);
pull Type(& ST,& T1);pull Type(& ST,& T2);
Il sprintType(& T1);
Il sprintType(&T2);
pnt=T2.next; // the first malloced one
/1 find the end of the chain

while(pnt->next!=0) pnt=pnt->next;
//pnt is now the end
pnt->next=T1.next;
pushType(& ST,&T2);
/printStack(& ST);
b

AlternativeType: NamedType {Type T,*new;
// have a named type or atype on the stack
Il create anewTY pe (malloc)
/[add it it on to the next pointer of the one on the stack
/I printf("\n**alternative type");
/I printStack(& ST);
pull Type(& ST,&T);
new=newType(T.name,& T.aType,0);//new Type
new->tag=T .tag;
T.next=new;
pushType(& ST,&T);
/I printStack(& ST);
H
Type
{Type T,*new;
/l have anamed type or atype on the stack
/I create anewTY pe (malloc)
/['add it it on to the next pointer of the one on the stack
/printf("\n** alternative type");
IprintStack(& ST);
pull Type(& ST,&T);
new=newType(T.name,& T.aType,0);//new Type
new->tag=T .tag;
T.next=new;
pushType(& ST,&T);
/I printStack(& ST);
|3

NullType: NULL {pushType(&ST,&NullType);} ;
TaggedType: TAG {TypeT;

T.tag.value=$1 +0xAOQ;

T.tag.flag=0;
strepy(T.name,"tag");

123

Il printf("**tag=%d\n", T .tag.value);
pushType(& ST,&T);
/I printStack(& ST);
}
Type
{Type TagT,T,
printf("\n***tag type");
IlprintStack(& ST);
pull Type(& ST,&T);
pull Type(& ST,& TagT);

T.tag=TagT .tag;

printf("\n****tag=%d %d", T .tag.value, T .tag.flag);
pushType(& ST,&T);
printStack(& ST);

H

TAG{TypeT,;
T.tag.value=%1;
strepy(T.name,"tag");
pushType(& ST,&T);
/I printStack(& ST);
}
IMPLICIT
Type
{Type TagT,T,
printf("\n***IMPLICIT tag type");
/printStack(& ST);
pull Type(& ST,&T);
pull Type(& ST,& TagT);
[lprintf("\n***tag=%d", TagT .tag.value);

T.tag.vaue=TagT .tag.value;
T.tag.flag=IMPLICIT_TAG,;

pushType(& ST,&T);

/I printStack(& ST);

b
IntegerType : INTEGER { pushType(& ST,& IntegerType);} |
INTEGER _br NamedNumberList br_{pushType(& ST,& IntegerType);} ;

NamedNumberList: NamedNumber {} | NamedNumberList COMMA NamedNumber {};

NamedNumber: IcID OPENBR NUMBER CLOSEBR {};

SequenceType : SEQUENCE _br br_ { pushType(& ST,& SequenceType);} |

SequenceThing{} ;

SequenceThing: SEQUENCE _br {} ComponentTypelList br_

{TypeT1,T2;
/printf("\n** sequence type");

124

T2=SequenceType,
IprintStack(& ST);
//stack contains "componenttype list "
pull Type(& ST,&T1); //aABCetcinlinked list

T2.next=T1.next; // move the chain across
pushType(& ST,& T2);
IlprintStack(& ST);

ComponentTypeList : ComponentType{} | ComponentTypeList COMMA ComponentType
{Type T1,T2*pnt;
/I we now take two types off the stack & join them together
Il so the top of stack gets one added onto its linked list
/I printf("\n*** componenttypelist);
/I printStack(& ST);
pull Type(& ST,& T1);

1 printf("match=%s!",T1.matchingRule);
pull Type(& ST,& T2),
1 printf("match=%s$", T2.matchingRule€);

pnt=T2.next; // the first malloced one
/1 find the end of the chain
while(pnt->next!=0) pnt=pnt->next;
//pnt is now the end
pnt->next=T1.next;
pushType(& ST,& T2);

};

ComponentType: NamedType
{TypeT,*new;
printf("\n** Component type");

// have a named type on the stack

I create anewTY pe (malloc)
/[add it it on to the next pointer of the one on the stack
IlprintStack(& ST);

pull Type(& ST,&T);

I printf("***1\n");
new=newType(T.name,& T.aType,0);//new Typetaggedonto T
I printf("***2\n");

new->tag.value=T.tag.value;

new->tag.flag=T .tag.flag;

strepy (new->O0bjectldentifier, T.Objectl dentifier);
T.next=new;

pushType(& ST,&T);
IprintStack(& ST);
3
NamedType OPTIONAL
{TypeT,*new;

125

printf("\nComponent type optional");
// have a named type on the stack
Il create anewTY pe (malloc)
/[add it it on to the next pointer of the one on the stack
pull Type(& ST,&T);
new=newType(T.name,& T.aType,0);//new Typetaggedonto T
new->tag.value=T.tag.value;
new->tag.flag=T.tag.flag;
new->optional=1,;
strepy (new->O0bjectldentifier, T.Objectl dentifier);
T.next=new;
pushType(& ST,&T);
I printStack(& ST);
3
NamedType DEFAULT Vaue
{TypeT,*new;
[printf("\nComponent type");
// have a named type on the stack
Il create anewTY pe (malloc)
/l add it it on to the next pointer of the one on the stack
pull Type(& ST,&T);
new=newType(T.name,& T.aType,0);//new Typetaggedonto T
new->tag.value=T .tag.value;
new->tag.flag=T.tag.flag;
new->Default=1;
strepy (new->Objectldentifier, T.Objectl dentifier);
T.next=new;
pushType(& ST,&T);
/printStack(& ST);
b

Value: NUMBER({} | TRUE{} | FALSE{} |icID {};

NamedType: IcID {Type T;
strepy(T.name,$1);
pushType(& ST,&T);}

Type
{TypeTA;
I printf("\n** named type");
I printStack(& ST);
pull Type(& ST, & T);
I sprintType(&T);
pull Type(& ST,&A); //lciD
Il printf(" %s",A.name);
strecpy(T.name,A.name);
pushType(& ST,&T);
/I printStack(& ST);
Il printf("\n** end named type tag %d %d ", T.tag.value,A.tag.value);

};

126

BooleanType : BOOLEAN {pushType(& ST,&BooleanType);} ;
UTCTimeType: UTCTime { pushType(& ST, & UTCTimeType);};
GeneraizedTimeType : GeneralizedTime { pushType(& ST,& GeneralizedTimeType);} ;

%%
/] extern FILE *yyin;
/*
main(int argc,char *argv[])
{ ++argv, --argc; /* skip over program name */
/*
if (argc>0)
yyin = fopen(argv[0], "r");
else
yyin = stdin;
yyparse();
printf("top=%s\n" ,top.name);

}
*]

yyerror (char * s){ printf("%s\n",s);exit(0);}

yywrap () {/* printf("paircount is %d done\n",paircount);* /}

Common.h file

#if ! defined _oidstuff
#define _oidstuff
typedef struct _oid{int length;char * oidbytes;} OID;

typedef struct _oidfunct {void (* function)();unsigned char *oidString;} OidFunction;

typedef struct _oidref { char * name;
OID *oid;
struct _oidref * next;
} OIDREF,
//OID *newOID(OID oid);
#endif
#if | defined _choice

#define _choice

typedef void(* _CPF)(char * , unsigned char **);
typedef void(* _ CPFPLUS)(char *,int,int,unsigned char **int, void *,int,int, char *);
typedef struct _typedesc

{

char * name;
int tag;// just for user specified tags

127

int primitive; // 30 for SEQUENCE etc
int tagOption;// IMPLICIT_TAG or EXPLICIT_TAG
/[void (* function)(char * ,unsigned char **) ;
_CPF function;
int optional;
int Default;
char * Objectldentifier;
}
TypeDescription;
#endif

#if | defined _tagg
#define _tagg
typedef struct _tagg{
int flag; // implicit or explicit
int value;// the actual tagoidbytes

#define IMPLICIT_TAGO
#define EXPLICIT_TAG 1

}Tag;

#endif

#if ! defined _asndef
#define _asndef
typedef struct _asnitype{
char name[100];
int token;
} ASN1Type;
#endif

#if 'defined _typedef

#define _typedef

typedef struct _type{
char name[100];

ASN1TypeaType;
struct _type * next;
Tag tag
int optional;// 1if OPTIONAL O otherwise
int Default;// 1if thisis adefault type
/I struct _type * SyntaxDefinition;
char Objectldentifier[100];
int value; // for NUMBER types & enumerations
}Type;
#endif

128

#if | defined _stackdef
#define _stackdef
typedef struct _stack{
Type array[50];
int index;
} Stack;
#endif

#if ! defined s_def
#define s_def
typedef struct _definition {
char name[100];
struct _definition * next;
Type *typelist;
Tag tag;
ASN1TypeaTyps;
Il Type* SyntaxDefinition;
char Objectldentifier[100];
/I char matchingRule[100];
} Definition;

#endif

pkc.asnl

X509 DEFINITIONS ::=
BEGIN

Certificate ::= SEQUENCE ({
tbsCertificate =~ TBSCertificate,
signatureAlgorithm Algorithmldentifier,
signatureValue BIT STRING }

TBSCertificate ::= SEQUENCE {
version [0] EXPLICIT Version DEFAULT v1,
serial Number CertificateSerial Number,

signature Algorithmldentifier,
issuer Name,

validity Validity,

subject Name,

subjectPublicKeylnfo SubjectPublicK eylnfo,

issuerUniquelD [1] IMPLICIT Uniqueldentifier OPTIONAL,
-- If present, version shall be v2 or v3

subjectUniquelD [2] IMPLICIT Uniqueldentifier OPTIONAL,
-- If present, version shall bev2 or v3

extensions [3] EXPLICIT Extensions OPTIONAL
-- If present, version shall bev3

}

Version ::= INTEGER { v1(0), v2(1), v3(2) }
CertificateSerialNumber ::= INTEGER

129

Algorithmidentifier ::= SEQUENCE {
algorithm OBJECT IDENTIFIER,
parameters ANY DEFINED BY algorithm OPTIONAL }
Name ::= CHOICE {
rdnSequence RDNSequence }
RDNSequence ::= SEQUENCE OF RelativeDistinguishedName
RelativeDistinguishedName ::=
SET OF AttributeTypeAndValue
AttributeTypeAndValue ::= SEQUENCE {
type AttributeType,
value AttributeValue}

AttributeType ::= OBJECT IDENTIFIER
AttributeVaue ::= ANY DEFINED BY AttributeType
-- MODIFIED by E Ball
Validity ::= SEQUENCE {
notBefore Time,
notAfter Time}
Time ::= CHOICE {
utcTime UTCTime,
generalTime GeneralizedTime}
Uniqueldentifier ::= BIT STRING
SubjectPublicKeylnfo ::= SEQUENCE {
algorithm Algorithmldentifier,
subjectPublickey BIT STRING }
Extensions ::= SEQUENCE SIZE (1..MAX) OF Extension
Extension ::= SEQUENCE ({
extniD OBJECT IDENTIFIER,
criticl BOOLEAN DEFAULT FALSE,
extnValue OCTET STRING }
END

ac.asnl

X509ATTRIBUTECERTIFICATE DEFINITIONS ::=
BEGIN

AttributeCertificate ::= SEQUENCE {
acinfo AttributeCertificatel nfo,
signatureAlgorithm Algorithmldentifier,
signatureValue BIT STRING

}

AttributeCertificatelnfo ::= SEQUENCE {
version AttCertVerson DEFAULT 1,
holder Holder,
issuer AttCertlssuer,
signature Algorithmidentifier,

serialNumber CertificateSerialNumber,

130

attrCertValidityPeriod AttCertValidityPeriod,

attributes Attributes,
issuerUniquelD Uniqueldentifier OPTIONAL,
extensions Extensions OPTIONAL

}
Attributes ::= SEQUENCE OF Attribute

AttCertVersion ::= INTEGER { v2(1) }
Holder ::= SEQUENCE {
baseCertificatelD [0] IssuerSerial OPTIONAL,
-- the issuer and serial number of
-- the holder's Public Key Certificate

entityName [1] GeneraNames OPTIONAL,

-- the name of the claimant or role
objectDigestinfo [2] ObjectDigestinfo OPTIONAL
-- used to directly authenticate the holder,

-- for example, an executable

}

ObjectDigestinfo ::= SEQUENCE {
digestedObjectType ENUMERATED {
publicKey (0),
publicKeyCert D,
otherObjectTypes (2) },
-- otherObjectTypes MUST NOT
-- be used in this profile
otherObjectTypelD OBJECT IDENTIFIER OPTIONAL,
digestAlgorithm Algorithmldentifier,
objectDigest BIT STRING

}

AttCertlssuer ::= CHOICE {
vlForm GeneraNames, -- MUST NOT be used in this
-- profile
v2Form [0] V2Form --v2only

}

V2Form ::= SEQUENCE {
issuerName GeneralNames OPTIONAL,
baseCertificatelD [0] IssuerSerial OPTIONAL,
objectDigestinfo [1] ObjectDigestinfo OPTIONAL
-- issuerName MUST be present in this profile
-- baseCertificatel D and objectDigestinfo MUST NOT
-- be present in this profile

}

IssuerSeria ::= SEQUENCE {
issuer GeneralNames,
serial CertificateSerialNumber,
issuerUID Uniqueldentifier OPTIONAL

131

}

AttCertValidityPeriod ::= SEQUENCE {
notBeforeTime GeneralizedTime,
notAfterTime GenerdizedTime

}
Algorithmldentifier ::= SEQUENCE {
algorithm OBJECT IDENTIFIER,
parameters ANY DEFINED BY agorithm OPTIONAL }

CertificateSerialNumber::= INTEGER
GeneralNames ::= SEQUENCE SIZE (1..MAX) OF GeneralName

GeneralName ::= CHOICE {

otherName [O] AnotherName,
rfc822Name [1] [AS5String,

dNSName [2] IA5String,
x400Address [3] OCTET STRING,
directoryName [4] Name,

ediPartyName [5] EDIPartyName,
uniformResourceldentifier [6] 1A5String,
iIPAddress [7] OCTET STRING,
registerediD [8] OBJECT IDENTIFIER

}

AnotherName ::= TYPEIDENTIFIER

TYPEIDENTIFIER ::= SEQUENCE {
typeid OBJECT IDENTIFIER,
value ANY DEFINED BY typeid }

EDIPartyName ::= SEQUENCE {
nameAssigner [0] DirectoryString OPTIONAL,
partyName [1] DirectoryString

Uniqueldentifier::= BIT STRING

Name::= CHOICE { rdnSequence RDN Sequence }
RDNSequence ::= SEQUENCE OF RelativeDistinguishedName

RelativeDistinguishedName::= SET OF AttributeTypeAndValue

AttributeTypeAndVaue ::= SEQUENCE {
type AttributeType,
value AttributeVaue}
AttributeType::= OBJECT IDENTIFIER
AttributeVaue::= ANY DEFINED BY AttributeType

132

DirectoryString ::= CHOICE {
teletexString TeletexString,
printableString PrintableString,
bmpString BMPString,
universalString Universal String

}

-- Attribute types

Extensions ::= SEQUENCE SIZE (1..MAX) OF Extension
Extension ::= SEQUENCE {
extnilD OBJECT IDENTIFIER,
criticl BOOLEAN DEFAULT FALSE,
extnValue EXTENSION extnID }

Attribute ::= SEQUENCE {
type AttributeType,
values AttributeValues
-- at least one valueisrequired

}
AttributeVaues::= SET OF AttributeVaue

END

crl.asnl

X509 DEFINITIONS ::=

BEGIN

CertificateList ::= SEQUENCE {
tbsCertList TBSCertList,
signatureAlgorithm Algorithmidentifier,
signatureValue BIT STRING }

TBSCertList ::= SEQUENCE ({

version Version OPTIONAL,

-- if present, shall be v2
signature Algorithmldentifier,
issuer Name,
thisUpdate Time,
nextUpdate Time OPTIONAL,

revokedCertificates SEQUENCE OF SEQUENCE {
userCertificate CertificateSerial Number,
revocationDate Time,
crlEntryExtensions Extensions OPTIONAL
-- if present, shall bev2
} OPTIONAL,
crlExtensions [0] EXPLICIT Extensions OPTIONAL
-- if present, shall bev2

133

Version::= INTEGER

Name::= CHOICE { rdnSequence RDN Sequence }
RDNSequence ::= SEQUENCE OF RelativeDistinguishedName

RelativeDistinguishedName::= SET OF AttributeTypeAndValue

AttributeTypeAndVaue ::= SEQUENCE {
type AttributeType,
value AttributevVaue}
AttributeType::= OBJECT IDENTIFIER
AttributeVaue::= ANY DEFINED BY AttributeType

Time ::= CHOICE {

utcTime UTCTime,
generalTime GeneralizedTime}
Uniqueldentifier ::= BIT STRING

Extensions ::= SEQUENCE SIZE (1..MAX) OF Extension

Extension ::= SEQUENCE {
extnilD OBJECT IDENTIFIER,
criticdl BOOLEAN DEFAULT FALSE,
extnValue OCTET STRING }

CertificateSerialNumber ::= INTEGER

Algorithmidentifier ::= SEQUENCE {
algorithm OBJECT IDENTIFIER,
parameters ANY DEFINED BY algorithm OPTIONAL }

END

Example x509attrtypes.txt file

Define_attr X509Certificate.tbsCertificate.version x509version

Define_attr X509Certificate.tbsCertificate.validity.notBefore x509validityNotBefore

Define_attr X509Certificate.tbsCertificate.validity.notAfter x509validityNotAfter

Define_attr X509Certificate.tbsCertificate. Extention.holderAltName.rfc822name

x509pkcHolder Rfc822Name

Define_attr X509Certificate.tbsCertificate.Extention.holderAltName.HolderDnsName
x509pkcHolder DnsName

Define_attr X509Certificate.tbsCertificate.Extention.holderAltName.HolderDN x509pkcHolder DN
Define_attr X509Certificate.tbsCertificate.Extention.holderAltName.HolderURI x509pkcHolder URI
Define_attr X509Certificate.tbsCertificate.Extention.holderAltName.HolderlpAddress
x509pkcHolder | pAddress

Define_attr X509Certificate.tbsCertificate.Extention.holderAltName.HolderRegisteredI D
x509acHolder RegisteredI D

134

Define_attr X509Certificate.tbsCertificate. Extention.l ssuerAltName.l ssuerRfc822Name

x509I ssuer Rfc822Name
Define_attr X509Certificate.tbsCertificate. Extention.l ssuerAltName.l ssuerRfc822Name

x509I ssuer DnsName
Define_attr X509Certificate.tbsCertificate.Extention.l ssuerAltName.l ssuerRfc822Name x509I ssuer URI

Define_attr X509Certificate.tbsCertificate.Extention.l ssuerAltName.l ssuerRfc822Name

x5091 ssuer | pAddress
Define_attr X509Certificate.tbsCertificate.Extention.l ssuerAltName.l ssuerRfc822Name

x5091 ssuer Registeredl D
Define_attr X509Certificate.tbsCertificate. Extention.l ssuerAltName.l ssuerRfc822Name

x509authorityCertl ssuer

135

