Implementing Role Based Access Controls Using

X.509 Attribute Certificates - the PERMIS Privilege
Management Infrastructure

David W Chadwick, Alexander Otenko, Edward Ball
IS Indtitute, University of Sdford, M5 4WT, England

Email: D.W.Chadwick@salford.ac.uk
Telephone: +44 161 295 5351
Fax: +44 161 745 8169

Implementing Role Based Access Controls Using

X.509 Attribute Certificates - the PERMIS Privilege
Management Infrastructure

Abstract

This paper describes a policy driven role based access control system. The user's

roles, and the policy are stored in X509 Attribute Certificates. The policy, written in
XML, describeswho istrusted to alocate roles to users, and what permissions each
role has. The DTD has been published at XML.org. Access control decisons are made
by an Access Control Decison Function conssting of just three Javamethods and a
congtructor. The decision is made according to the requested mode of access, the

user’ strusted roles and the policy. A tool making and storing ACsis aso described.

Keywords

Trust Management, X.509, Attribute Certificates, Role Based Access Controls, XML,
Privilege Management Infrastructure

Introduction

The primary purpose of a Public Key Infrastructure (PKI) isto strongly authenticate
the parties communicating with each other. The standard format for a public key
certificate is specified in the X.509 standard [X509]. But authentication onitsown is
not enough. Aswell as knowing who aremote party is, one aso needs to know what
action(s) the remote party is authorised to undertake. Thus we also need an
authorisation mechaniam. Edition 4 of X.509 isthe firg edition to fully sandardise a
strong authorisation mechanism, which it calls a Privilege Management Infrastructure
(PMI). A PMI provides the authorisation function after the authentication function has
taken place, and has a number of smilarities with a PKI (see sde box). The X.509
PMI standard does not favour any particular authorisation scheme. Discretionary,
Mandatory and Role Based Access Control (DAC, MAC and RBAC) schemes can dl
be supported. RBAC (see Sde box) has the advantage that it can significantly smplify
the management of access controls for large numbers of users, ance the permissons
are dlocated to roles rather than to individua users.

The EC funded PERMIS project was given the chalenge of building an X.509 role
based PMI that can be used by very different applicationsin 3 cities of Europe. The
project had members from the cities of Barcelona (Spain), Bologna (Italy) and Sdford
(UK). All three centres dready had experience of running pilot PKls, and so it was
natura for them to want to add a PMI capability. The chosen gpplications of the 3
citiesare very different in character, so they were agood test of the generdity of the
developed PMI.

Bologna wanted to allow architects to download street maps of the city, to update the
maps with their proposed plans, and to upload the new building plans and requests for
building licensesto the city planning office s server.

Barcdona isamgor tourist and commercia centre but parking is very restricted.
Many parking tickets are frequently issued to hired cars but by the time the car hire
companies receive the parking tickets, the hirers have |eft the country. The plan wasto
give the car hire companies on line access to the city’ s parking ticket database, so that

the companies can ingtantly check to see if any parking tickets have been issued for
returned cars. Each company will be able to send the details of the driver to the city,
thereby transferring the fine to the individud. Legidation requires thet acar hire
company can only access the tickets issued to its own cars, and so authorisation will
need to be at the record level.

Sdford isimplementing an dectronic tendering application. The tendering process

will start when the city places the Request for Proposa (RFP) documents on its web
gte, alowing anyone to download them. However, in some resiricted tendering
ingtances, only companies previoudy authorised by Sdford will be able to submit
tenders. In other casesit may be a requirement that a company has SO 9000 or other
certification in order to submit a tender. Once the tenders have been submitted, they
must remain anonymous until the winner has been chosen. The city tender officers
must not be given access to the dectronic tender store before the closing date of the
RFP, and tenderers must not be alowed to submit tenders after the closing date.

The chdlenge for the PERMIS project was to build a generalised role based X.509
PMI that can cater for these very different gpplications.

Trust Management with X.509 PMIs

According to the definition in RFC 2704 [Blaze], atrust management system
comprises the following five components:

i)A language for describing “actions, which are operations with security
consequences that are to be controlled by the system.

ii)A mechaniam for identifying “principas, which are entities that can be
authorized to perform actions.

iii) A language for specifying gpplication “policies, which govern the actions thet
principals are authorized to perform.

iv)A language for specifying “credentias, which adlow principalsto delegate
authorization to other principas.

V) A “compliance checker', which provides a service to applications for
determining how an action requested by principas should be handled,
given apalicy and a set of credentids.

The objective of the PERMIS project was to build atrust management system from
the supplier’s perspective, rather than smply arole based X.509 PMI, since the latter
ismissng some vitd sysem components. Whilst X.509 specifies mechanismsfor ii)
and iv) above, it does not specify i), ii) or v). In X.509 principas are the holders and
issuers of ACs and are usudly identified® by their X.500 General Name (usually an
X.500 digtinguished names or |P address, URI or email address) or by reference to
their public key certificate (issuer name and serid number). Credentials are pecified
as X.500 attributes within ACs and they comprise an attribute type and value. These
attributes will hold the credentids of the particular access control scheme (MAC,
DAC or RBAC) being implemented. X.509 describes how these attributes can be
delegated from holder to holder. However X.509 does not standardise the languages
for the policy (iii) and actions (i). These were significant tasks of the PERMI S project,
as was building the compliance checker (v) (which is part of our privilege verification
subsystem). A fina essentid component of afunctiona system, which is not explicitly

L |f the principal is a software object, it can be identified by ahash of itself.

mentioned in [Blaze] or [X509], isa privilege dlocation subsystem that dlows an
issuer to create and digitaly sgn X.509 ACs.

Implementing RBAC with X.509

The X.509 PMI standard supports RBAC, [Sandhu] by defining two types of attribute
certificate. Role specification ACs hold the permission assgnments granted to each
role, eg. Role Employee can Print files to Laser 1. Role assignment ACshold the
roles assigned to each user eg. D. Chadwick has Role Employee (user assgnmentsin
RBAC, terminology). In role specification ACs, the AC holder istherole, and the
privilege attributes are permissons granted to therole. In role assgnment ACsthe AC
holder isthe user, and the privilege atributes are the roles assgned to the user. If one
were to implement the X.509 standard as written, then in order to determine the
permissons granted to a user, the compliance checker would need to read in dl the
role assgnment ACs granted to the user, dl the role specification ACsfor each
granted role, plus vaidate the signatures of each AC and check the various CRLsto
ensure that no AC has been revoked since cregtion. Further, if delegation of authority
is supported, the chain of role assignment ACs from the user up to the trusted SOA
would need to be validated. Thisis clearly atime consuming and onerous task, as
confirmed by Knight [Knight]. In order to make our system more efficient we made
two performance enhancing design decisons. Firstly we decided to place dl therole
gpecifications/permisson assgnmentsin just one policy AC, thereby sgnificantly
amplifying the permission validation process. Secondly we decided to store dl the
role assgnment ACsin digtributed LDAP directories and implement the “pull” model
[Farrdll] (called server-pull by [Park]), so that CRL s become unnecessary (revoked
ACsae samply ddeted from their LDAP directories). Also, in theinitid release, we
do not support delegation of authority.

X.509 fully supports hierarchicad RBAC by dlowing both roles and privilegesto be
inserted as attributesin arole specification AC, so thet the latter role inherits the
privileges of the encapsulated roles. For example, Role Manager can Delete files from
printer queue of Laser 1 and has role of Employee. Sincein PERMIS our policy AC
subsumes the functiondity of role specification ACs, it is our policy that describesthe
role hierarchy (seelater.)

X.509 only has alimited number of ways of supporting constrained RBAC. Time
congraints can be placed on the vaidity period of arole assgnment atribute
certificate. Congtraints can be placed on the targets at which a permission can be used,
and on the policies under which an attribute certificate can confer privileges.
Congtraints can aso be placed on the delegation of roles. However many of the
congraints, such as the mutuad exclusivity of roles, have to be enforced by
mechanisms outside the AC congtruct e.g. within the policy and compliance checker.
Consequently the PERMI S project has only partidly implemented RBAC, and this
will be the subject of future research.

Defining the Policy Language

The policy needs to specify who isto be granted what type of action on which targets,
and under what conditions. Having a domain wide policy for authorisation is
preferable to having separate access control lists configured into each target. The
latter is hard to manage, duplicates the effort of the administrators (Snce the task has
to be repeated for each target), and isless secure since it is very difficult to keep track

of which access rights any particular user has across the whole domain. Policy based
authorisation on the other hand alows the domain adminigrator (the SOA) to specify
the policy for the whole domain, and dl targets will then be controlled by the same set
of rules.

Sgnificant research has aready taken place in defining policy languages. The Ponder
language [Ponder] is compact and powerful, but does not have alarge set of
supporting tools. The Keynote policy language [Blaze] is dso comprehensve and
covers many of our requirements, but is focussed on DAC rather than RBAC. Also,
the policy assertions are very generic and are not related specificaly to X.509. For
example, the authoriser and licensees fields are opague strings whereas we wanted
them to have Structure and meaning. Further, it does not seem to be possible to control
the depth of delegation alowed from one authoriser to a subordinate. Findly, the
gyntax, comprising of ASCII strings and keywords, is specific to Keynote. The
PERMI S project wanted to specify the policy in awel-known language that could be
both easily parsed by computers, and read by the SOAS (with or without software
tools). We decided that XML was a good candidate for a policy specification
language, since there is extensve tool support for XML, it isfast becoming an

industry standard, and raw XML can be easily read and understood. Shortly after we
started our work, Bertino et a published a paper [X-Sec] that showed that XML was
indeed suitable for specifying authorisation policies and the Lawrence Berkeley
Nationd Laboratory implemented XML policiesin their Akenti system [Thompson].
Later, the OASIS consortium began work on the eXtensible Access Control Markup
Language [XACML].

We drew on the previous research, particularly Ponder, and took many of its concepts
and tailored them to support X.509 and RBAC. There are many similarities between
our resulting Data Type Definition (a DTD is ameta-language that holds the rules for
creating XML documents) and the later XACML work. Our X.500 PMI RBAC Policy
comprises the following components.

?? SubjectPolicy — this specifies the subject domainsi.e. only users from a subject
domain may be authorised to access resources covered by the policy. Each domain
is specified as an LDAP subtree, using Include DN and Exclude DN statements

?? RoleHierarchyPolicy — this specifies the different roles and their hierarchica
relationships to each other

?? SOAPolicy — this specifies which SOAs are trusted to dlocate roles. By including
more than one SOA in this policy, thelocd SOA istrusting remote SOAS, and this
enables the distributed management of roles to take place

?? RoleAssgnmentPolicy — this specifies which roles may be dlocated to which
subjects by which SOASs, whether delegation of roles may take place or not, and
how long the roles may be assigned for. This sub-policy effectively sateswho is
trusted to allocate which roles to whom, and is centrd to the distributed
management of trust

?? TagetPolicy — this specifies the target domains covered by this policy. Each
domain is specified as an LDAP subtree, using Include DN and Exclude DN
datements

?? ActionPolicy — this specifies the actions (or methods) supported by the targets,
aong with the parameters that should be passed dong with each action e.g. action
Open with parameter Flename

?? TagetAccessPolicy — this specifies which roles have permission to perform which
actions on which targets, and under which conditions. Conditions are pecified
using Boolean logic and might contain condraints such as“IF timeis GT 9am
AND timeisLT 5pm OR IF Caling IP addressis a subset of 125.67.x.X". All
actionsthat are not specified in a Target Access Policy are denied.

A full decription of the policy can be found in [Chadwick]. An SOA crestesthe

policy for his domain using his preferred XML editing tool, and stores thisin aloca

file, say MyPolicy. XML, to be used later by the Privilege Allocator to creste the

policy AC.

Figure 1. ThePrivilege Allocation Subsystem

s e

L SOA: Attribute
! Cetificates

Privilege
Allocator

Privilege

INTRANET

The Privilege Allocation Subsystem

The privilege dlocation subsystem (see Figure 1) comprises a Privilege Allocator
(PA) (see below) that issues X.509 role assgnment ACsfor users, and aso signsthe
policy AC that will control the RBAC AP (seelater). These are stored in an LDAP
directory for subsequent use. In addition to privileges, each user will dso need to be
issued with an gpplication specific authentication token. If a PKI is being used, this
will be adigitaly sgned public key certificate. If a conventiond authentication
systemisbeing used it will be a username/password pair. The PERMIS AP is
authentication agnostic.

As the digtributed management of rolesis supported so different Sites can alocate
ACsto ther users and store them in their LDAP directories. This sgnificantly eases
the management of privilegesin large digtributed environments, such as GRID
networks, Internet marketplaces etc, as the loca SOAPalicy tellsthe PERMIS AP
which remote SOAsto trust. Thus we can have role assignment ACsissued by SOA;
that are trusted by one domain and not trusted by another domain.

The Privilege Allocator (PA)

Thistool isused by the SOA or an AA to dlocate privileges to users. Since PERMIS
isusng RBAC, the SOA usesthe PA to dlocate roles to usersin the form of role
assignment ACs. A rolein PERMIS issmply defined as an attribute type and vaue.
We are using two dtribute types permisRole and | SOCertified, whose values are IA5
grings. In the case of Bologna, there are two permisRole vaues. Map- Readers and
Architects. Map-Readers can download any maps produced by the municipdity,
whereas Architects are dlowed to download maps and upload digitaly modified
maps. In the case of Barcelona, there are also two permisRoles defined: Generdised
and Authorised. Any citizen or business can be dlocated the Generdised role. Anyone
with the Generdised role has permission to read their own pending car parking fines.
Businesses that have signed an agreement with the Barcelona city council are given

the Authorised role. Authorised roles can read their own pending fines and aso may
modify the details of them (e.g. update the driver’s name and address). Sdford is
different to the other Sites, in that whilst it will dlocate two permisRoles, that of
Tenderer and Tender-Officer, it will dso rely on an externd SOA (in this case the
British Standards Ingtitute) to alocate the | SOCertified rolesto users. (In fact in the
project we set up aproxy BSI SOA to dlocate these roles, asthe BS is not a project

partner.)

The ACs are stored in an LDAP directory. This can be made publicly accessble snce
thereis no modification risk asthe ACs are digitally sgned. This also means that
authoritieswho issue ACs can store them locally but dlow globa access. We think
this might be particularly ussful for example in the case of 1SOCertified roles. Anyone
wishing to know if a person has an 1SOCertified role may accessthe BS| LDAP
directory and retrieve the person’s X.509 AC. The ACRL s of revoked certificates (if
any) will dso be sored here. Thusthereislittle advantage in generd of distributing
the ACsto their holders, since arelying party will sill need to accessthe issuing
authorities LDAP directory to retrieve the latest ACRL (or call an OCSP responder
once these become available for attribute certificates). This mechanism can be
extended to any type of privilege certification e.g. Microsoft Certified Engineer, etc.
and these “roles’ can easily be built into our API viathe policy. We are dready using
thisin an dectronic prescribing system that we are building that could dlow the

Royd Coallege of Pharmacy to dlocate rolesto qualified pharmacists, and the Generd
Medica Council to alocate rolesto qudified doctors.

The PA can dso create digitaly-signed policy ACs. These are standard X.509 ACs
with the following specid characteristics the holder and issuer names are the same
(i.e. that of the SOA), the attribute type is pmiXMLPolicy and the attribute value is
the XML policy created as described above. The palicy AC indicates the root of trust
of the PMI, and issmilar to the self-sgned public key certificate of the root CA of a
PKI. The PA prompts the SOA for the name of the palicy file (eg. MyPolicy. XML)
and then it copies the contents into the attribute value. After the SOA has sSigned the
policy AC, itisgtored in the SOA’ s entry in the LDAP directory. Each policy isgiven
an Object Identifier, which isaglobaly unique number. Thisis passed to the PERMIS
API during congtruction (see later) to ensure it dways runs with the correct policy,
and dlows palicies to be dynamicdly changed.

The Privilege Verification Subsystem

The privilege verification subsystem (see figure 2) is responsible for authenticating

and authorising the remote user and providing accessto the target. The primary
component is the application gateway. Aswe wanted a policy to control al access
within adomain we followed the guidance in 1SO 10181-3 Access Control
Framework [X812] which splits the functiondity of the gpplication gateway into two
components. an gpplication specific component termed the Access Control
Enforcement Function (AEF), and an application-independent component termed the
Access Control Decison Function (ADF). The ADF is equivaent to Blaze' s
compliance checker [Blaze] and ensuresthat dl access controls decisonsin adoman
can be consstently enforced by the ADF independent of the application. The ADF
makes its decisions based on the policy for the domain.

Two gpplication programmable interfaces (APIs) between the AEF and ADF have
been defined; the AZN APl [AZN] and the Generic Authorization and Access control
(GAA) APl [GAA] with its C binding [Ryutov]. Both have somewhat complex C
interfaces, but we wanted a ssmpleto use Java API. Basing our work on the AZN AP
firstly we specified the PERMIS AP in Javarather than in C, and secondly we
amplified the APl by assuming that the Target and the AEF are either co-located or
can communicate across atrusted LAN. Without this latter smplification the
authorisation token carried from the AEF to the Target would need to be protected, for
example as an X.509 dtribute certificate, and so we would have gained little from
implementing an gpplication gateway.

In summary, a PERMIS user accesses resources viaan gpplication gateway. The AEF
authenticates the user in an gpplication specific way, then asksthe ADF if the user is
alowed to perform the requested action on the particular target resource. The ADF
accesses one or more LDAP directories to retrieve the PERMIS RBAC policy and the
role ACsfor the user, and bases its decision on these. If the decison isgrant, the AEF
will accessthe target on behdf of the user. If the decison is deny, the AEF will refuse
access to the user. The AEF talks to the ADF viathe PERMIS Java API.

Figure 2. ThePrivilege Verification Subsystem

Authentication
_ Service
Submit . Present
User | Access | | | Access | Target
Request i AEF Request
Decision o
Request Decision o
Application
The PERMIS PM1 Ap| | | Cateway
—p
g ADF

L/

Retrieve Policy and Role ACs

The PERMIS PMI API

The PERMIS APl comprises 3 smple methods. GetCreds, Decision, and Shutdown,
and a Congtructor. The Constructor builds the PERMIS APl Java object. For
congtruction, the AEF passes the name of the SOA (the root of trust for authorisation),
the Object Identifier of the policy, and alist of LDAP URIs from where the ADF can
retrieve the policy AC and subsequently therole ACs. The policy AC isdways
retrieved from the first URI in the list. The Congtructor is caled when the AEF gtarts
up. After the API has been constructed, the ADF reads in and vaidates the XML
policy that will control al future decisons.

When auser initiates a cal to the target, the AEF authenticates the user, then passes
the LDAP distinguished name (DN) of the user to the ADF through a call to GetCreds.
In the 3 cities the users will be authenticating in different ways. In Saford the user

will be sending an SMIME email message to the AEF, in Barcelona and Bologna he
will be opening an SSL connection. In dl casesthe user will be digitdly sgning the
opening message, and verification of the sgnature will yield the user’s LDAP DN.

The ADF usesthis DN to retrieve dl the role ACs of the user from the list of LDAP
URIs passed &t initidisation time (the “pull” moddl). Therole ACs are vaidated
againg the policy e.g. to check that the DN iswithin avaid subject domain, and to
check that the ACs are within the vaidity time of the policy etc. Invdid role ACs are
discarded, whilst the roles from the valid ACs are extracted and kept for the user, and
returned to the AEF as a subject object. (The GetCreds interface also supports the
“push” mode [Farrell] (caled user-pull by [Park]), whereby the AEF can push a set of
ACsto the ADF, ingtead of the ADF pulling them from the LDAP directories, but
since our ADF currently does not retrieve CRLS, this mechanism is unused a

present).

Once the user has been successfully authenticated he will attempt to perform actions
on the target. At each attempt, the AEF passes the subject object, the target name, and
the attempted action along with its parameters, to the ADF viaacal to Decison.
Decisgon checksif the action is dlowed for the roles that the user has, taking into
account al the conditions specified in the TargetAccessPolicy. If the action is alowed,
Decison returns Granted, if it is not alowed it returns Denied. The user may attempt
an arbitrary number of actions on different targets, and Decisonis cdled for each

one. Because GetCreds has performed the onerous task of role validation, Decision is
very quick to execute. Had we smplified the APl by merging GetCreds and Decison
into one call, then performance would have been adversdly affected for those users
performing more than a single action.

Shutdown can be called by the AEF a any time. Its purposeisto terminate the ADF
and cause the current policy to be discarded. This could happen when the gpplication
is gracefully shutdown, or if the SOA wants to dynamically impose a new policy on
the domain. The AEF can follow the call to Shutdown with anew Congtructor cal,
and thiswill cause the ADF to read in the latest policy and be ready to make access
control decisons again.

Conclusion

We have shown how the standard X.509 PMI can be adapted to build an efficient role
based trust management system, in which the role assgnments can be widdly
distributed between organisations, and the loca policy determines which roles are to
be trusted and what privileges are to be given to them. The loca policy iswritten in
XML and provides the rules governing al aspects of accessto the targetsin the loca
domain. A smple Java AP is provided which alows dl target applications to easly
incorporate this system. The generdity of the PERMIS API has aready provenits
worth, asit isbeing used in 4 very different gpplications throughout Europe.

Acknowledgments

Thiswork has been 50% funded by the EC ISIS programme PERMIS project, and
partialy funded by the EPSRC under grant number GR/M83483. The authors would
aso like to thank Entrugt Inc. for making their PKI security software available to the
Universty on preferentid terms.

An earlier verson of this paper was presented at the SACMAT 2002 conference.

References

[AZN] The Open Group. “Authorization (AZN) API”, January 2000, ISBN 1-85912-
266-3

[Blaze] Blaze, M., Feigenbaum, J., loannidis, J. “ The KeyNote Trust-Management
System Version 2”, RFC 2704, September 1999.

[Chadwick] Chadwick, D.W., Otenko, A. “RBAC Policiesin XML for X.509 Based
Privilege Management” to be presented at IFIP SEC 2002, Egypt, May 2002

[Farrdl] Farrel, S., Houdey, R. “An Internet Attribute Certificate for Authorization”,
<draft-ietf-pkix-ac509prof-05.txt>, August 2000

10

[GAA] T. Ryutov, C. Neuman, L. Pearlman. “ Generic Authorization and Access
control Application Program Interface C-bindings’ <draft-ietf-cat-gaa- chind- 05.txt>,
November 2000. See http://www.is .edu/gost/info/gasapi/

[Knight] Knight, S., Grandy, C. “Scaahility Issuesin PMI Deegation”. Pre-
Proceedings of the First Annual PKI Workshop, Gaithersburg, USA, April 2002,
pp67-77

[Park] J.S.Park, R. Sandhu, G. Ahn. “Role-Based Access Control on the Web”, ACM
Transactions on Information and Systems Security, Vol 4. Nol, Feb 2001, pp 37-71.
[Ponder] Damianou, N., Dulay, N., Lupu, E., Sloman, M. “The Ponder Policy
Specification Language’, Proc Policy 2001, Workshop on Policies for Distributed
Systems and Networks, Bristol, UK 29-31 Jan 2001, Springer-Verlag LNCS 1995, pp
18-39

[Ryutov] Ryutov, T., Neuman, C. “Generic Authorization and Access control
Application Program Interface: C-bindings’, <draft-ietf- cat-gaa- chind-05.txt>,
November 2000.

[Sandhu] Sandhu, R.S., Coyne, E.J.,, Feingtein, H.L., Y ouman, C.E. “Role Based
Access Control Models’. IEEE Computer 29, 2 (Feb 1996), p38-47.

[Thompson] M. R. Thompson, S. Mudumbai, A. Essari, W. Chin. “ Authorization
Policy in aPKI Environment”, Proceedings of the First Annua PKI Workshop,
Gaithersburg, USA, April 2002, pages 137-149.

[X509] ITU-T Rec. X.509 (2000) | ISO/IEC 9594-8 The Directory: Authentication
Framework

[X812] ITU-T Rec X.812 (1995) | ISO/IEC 10181-3:1996 “ Security Frameworks for
open systems: Access control framework”

[XACML] “OASIS eXtensble Access Control Markup Language (XACML)” v0.11,
March 2002, available from http:/Amww.oas s-open.org/committees/xacml/docs/
[X-Sec] Bertino, E., Castano, S., Farrari, E. “On specifying security policies for web
documents with an XML-based language’. Proceedings of the Sxth ACM
Symposium on Access control models and technologies 2001.

SIDE BOX

Introduction to X.509(2000) PMIs

PMIs provide the authorisation function after the authentication has taken place, and
have a number of amilaritieswith PKls.

The primary data structure in aPMI is an X.509 Attribute Certificate (AC). This
strongly binds a set of attributes to its holder, and these attributes are used to describe
the various privileges that the issuer has bestowed upon the holder. The issuer is
termed an Attribute Authority (AA), Sinceit is the authoritative provider of the
attributes given to the holder. Examples of attributes and issuers might be: a degree
awarded by auniverdty, an 1SO 9000 certificate issued by a QA compliance
organisation, the role of supervisor issued by a manager, file access permissions
issued by afile's owner. The whole data congruct is digitally signed by the AA,
thereby providing data integrity and authentication of the issuer.

Each AC contains details of the holder, the issuer, the algorithms used in creeting the
sgnature on the AC, the AC validity time and various optiord extensons. Anyone
familiar with the contents of an X.509 public key certificate (PKC) will immediately

see the amilarities between a PKC and an AC. In essence the public key of a PKC has

11

been replaced by a set of attributes, so as to provide authorisation instead of
authentication. (In this respect a public key certificate can be seen as a specidisation
of amore generd attribute certificate) Becausethe AC isdigitaly signed by the
issuer, then any processin possession of an AC can check itsintegrity by checking the
digitd sgnature onthe AC. Thusa PMI builds upon and complements existing PKs.

Since a PMI isto authorisation what a PKI isto authentication, there are many other
smilar concepts between PKls and PMIs. Whilst public key certificates are used to
maintain a strong binding between a user’s name and his public key, an atribute
certificate (AC) maintains a strong binding between a user’ s name and one or more
privilege dtributes. The entity thet digitaly sgnsa public key cetificateiscdled a
Certification Authority (CA), whilst the entity that Sgns an atribute certificate is
cdled an Attribute Authority (AA). Within a PKl, each relying party must have one or
more roots of trust. These are CAswho the relying party implicitly truststo
authenticate other entities. They are sometimes cdled root CAs or trust anchors.
Popular Web browsers come pre-configured with over 50 PKI roots of trust. The root
of trust of aPMI is called the Source of Authority (SOA). Thisisan entity that a
resource implicitly truststo dlocate privileges and accessrightsto it. The SOA is
ultimately responsible for issuing ACs to trusted holders, and these can be ether end
users or subordinate AAs. Just as CAs may have subordinate CAs to which they
delegate the powers of authentication and certification, smilarly, SOAs may have
subordinate AAsto which they delegate their powers of authorisation. For example, in
an organisation the Finance Director might be the SOA for dlocating the privilege of
spending company money. But (S)he might aso ddegate this privilege to

departmentd managers (subordinate AAS) who can then dlocate specific spending
privileges (ACs) to project leaders. When a problem occursin a PKI, auser might
need to have his sgning key revoked, and so a CA will issue a certificate revocation
list (CRL) containing the list of PKCs no longer to be trusted. Smilarly if aPMI user
needs to have his authorisation permissons revoked, an AA will issue an attribute
certificate revocationlist (ACRL) containing the list of ACs no longer to be trusted.

More information about attribute certificates can be found in [Farrdl].

SIDE BOX

Introduction to RBAC

Much research has focussed on Role Based Access Controls (RBAC) eg.
[Sandhu][Park]. In the basic RBAC mode, RBACy, anumber of roles are defined.
Theserolestypicaly represent organisationd roles such as secretary, manager,
employee etc. Each roleisassigned a set of permissonsi.e. the ability to perform
certain actions on certain targets (termed permission assgnment). Each user isthen
assigned to one or more roles (termed user assgnment). When accessing atarget, a
user presents hisrolg(s), and the target reads the permission assgnments to seeif this
roleis dlowed to perform this action.

The hierarchicd RBAC modd, RBAC;, isamore sophigticated verson of the basic
RBAC modd. With this modd, the roles are organised hierarchicdly, and the senior
rolesinherit the privileges of the more junior roles. So for example we might have the
fallowing hierarchy:

employee > programmer > manager > director.
If aprivilegeis given to an employee role eg. can enter main building, then each of
the superior roles can aso enter the main building even though their permission
assignment does not explicitly satethis. If a programmer roleis assgned permisson
to enter the computer building, then managers and directors would aso inherit this
permission. Hierarchica roles mean that permission assgnments are more compact.

Another extenson to basc RBAC is constrained RBAC, RBAC;. Thisdlows various
congtraints to be applied to the user and permission assignments. One common
condraint isthat certain roles are declared to be mutualy exclusive, meaning that the
same person cannot Smultaneoudy hold more than one role from the mutudly
exclusve set. For example, the roles of sudent and examiner, or the roles of tenderer
(one who submits a tender) and tender officer (one who opens submitted tenders)
would both be examples of mutually exclusive sets. Another congraint might be
placed on the number of roles a person can hold, or the number of people who can
hold a particular role.

Findly the consolidated RBAC model, RBACs, includes the features of both RBAC,
and RBAC;.

RBAC is seen to be so important that NIST is now facilitating the voluntary
development of an RBAC standard. For more details see http://csrc.nist.gov/rbac/ .

13

