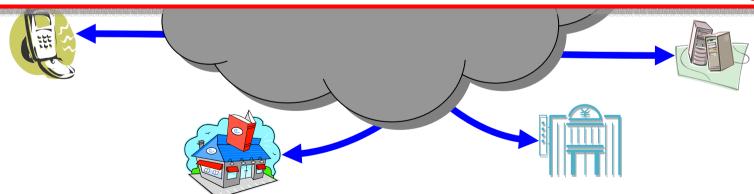


A Lower-Bound of Complexity for RSA-Based Password-Authenticated Key Exchange


SeongHan Shin, Kazukuni Kobara, and Hideki Imai

University of Tokyo, JAPAN

Fundamental Security Goals

Authentication & Confidentiality

We need something in order to secure the communications.

Authenticated Key Exchange

- Authenticated Key Exchange (AKE) protocols both mutual authentication and generation of cryptographically-secure session keys in a secure way
 - A combination of authentication and key exchange

Classification by Authentication

Which kind of information is needed for authentication

- □ AKE based on PKI (Public Key Infrastructures)
 PKI (WPKI) is required.
 IKE (Internet Key Exchange), SSL/TLS and SSH
- □ AKE based on SK (Strong Secrets)
 Via symmetric key encryption or message authentication
- AKE based on PK (Public Keys) and PW (Weak Secrets)
 No security infrastructures (e.g., PKI)
- AKE based on PW (Weak Secrets)

EURO PKNeither security infrastructures nor device (for user)

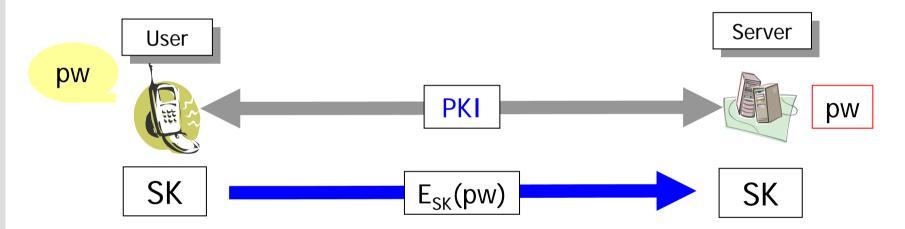
Classification by Key Exchange

Which kind of KE protocol is needed for generating session keys

AKE based on KA (Key Agreement) Protocol

e.g., Diffie-Hellman protocol

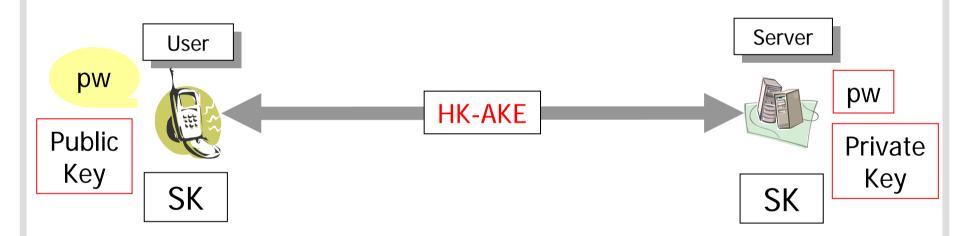
The Diffie-Hellman key is used to compute authenticators and a session key.


■ AKE based on KT (Key Transport) Protocol using symmetric-key (e.g., AES) or public-key encryption (e.g., RSA)

The KM (keying material) is used to compute authenticators and a session key.

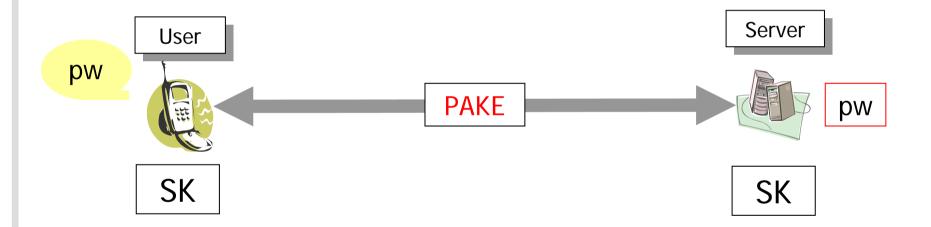
 Authenticators are needed to ensure whether each party has a correct Diffie-Hellman key or keying material or not.

SSL/TLS, SSH


- SSL/TLS, SSH based on (PKI+PW)
 - Password-based user authentication mode

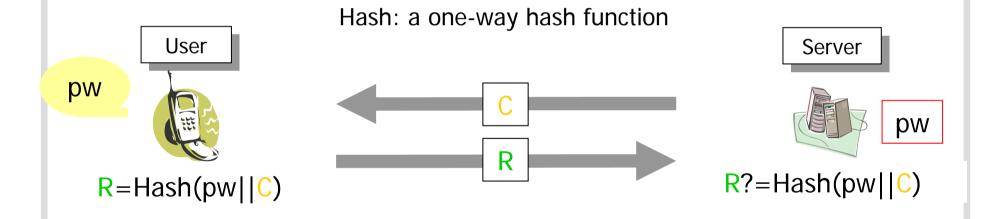
- Management of public keys and its validity check through CRL (Certificate Revocation Lists) or OCSP (Online Certificate Status Protocol)
- Burden of PKI

HK-AKE


- □ HK-AKE (Halevi and Krawczyk's AKE [HK99])
 - A user remembers a password and stores a server's public key in advance.

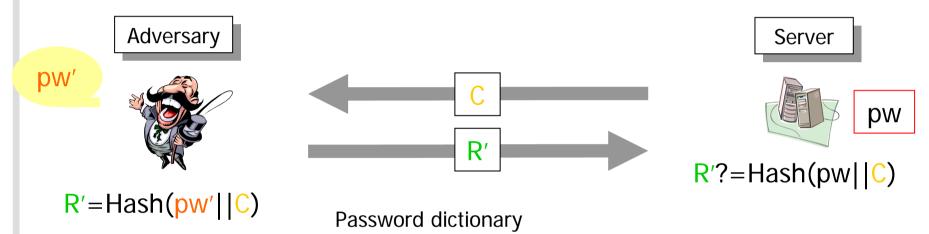
[HK99] S. Halevi and H. Krawczyk, "Public-Key Cryptography and Password Protocols", ACM Transactions of Information and System Security, 1999

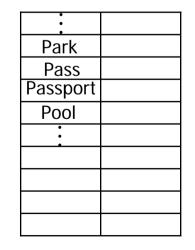
PAKE


- □ PAKE (Password-Authenticated Key Exchange)
 - □ A user remembers only password (without any device).
 - □ IEEE P1363.2 (in standardization)

- Only 2-party setting
- Inefficient in order to verify a server's RSA public key

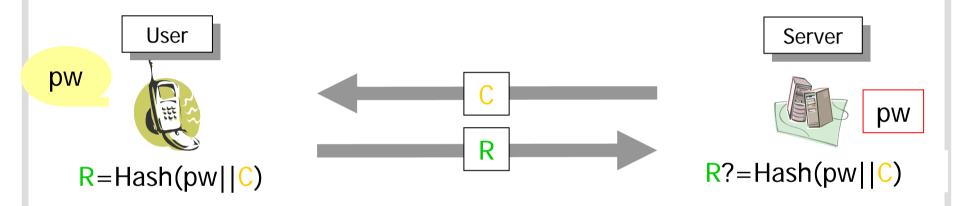
CHAP


Challenge-response HAndshake Protocol (CHAP) mainly used in PPP (Point to Point Protocol) for dialup connection.


- □ Hash is a *secure one-way* hash function such that
 - (i) it is easy to compute Hash(X) and
 - (ii) it is hard to compute X from Hash(X).

On-line Attack on CHAP

On-line dictionary attacks


pw': password candidate

On-line attacks can be easily prevented by letting a server take appropriate intervals between invalid trials.

Off-line Attack on CHAP

■ Vulnerable to off-line dictionary attacks

pw': password candidate

Password dictionary			
	•		
	Park		
	Pass		

Pass
Passport
Pool
:

AKE?!

A combination of password-based authentication and RSA-based key transport protocol

- Password-based authentication is a legacy solution.
 usability of passwords and convenience
- The RSA encryption function is fast.

high efficiency for user's low-power computing devices For computing one modular exponentiation, it requires around quadratic running time in the bit-length of its inputs. When e=3,

$$RSA_{N,3}(x) \equiv x^3 \mod N$$

Brief History of PAKE

- Bellovin and Merritt [BM92] discussed about the problem of off-line dictionary attacks first showed the feasibility that a combination of symmetric and asymmetric (public-key) cryptographic techniques can provide insufficient information for an adversary to verify a guessed password and thus defeat off-line dictionary attacks Their paper became the basis for Password-Authenticated Key Exchange (PAKE)
- Until 2000,
 Many password only protocols without provable security
- Up to present,

Provably-secure and practical (DH or RSA-based) PAKE protocols EURO_PKI

Brief History of RSA-based PAKE

- Bellovin and Merritt
 RSA-based Encrypted Key Exchange
 e-residue attacks
 insecure
- Provably-secure RSA-based PAKE MacKenzie at Asiacrypt 2000
 - the exponent e should be greater than n
 Catalano at Crypto 2004
 - -e can be a small value (e=3 or $2^{16}+1$)
 - suitable for the low-power computing devices on client side
 Zhang at Asiacrypt 2004
 - number-theoretic techniques

Interactive Protocol

e-residue attack

Adversary can exploit the RSA public key (e,n) s.t. $gcd(e,\varphi(n))\neq 1$ The basic idea is that the RSA encryption is no longer a permutation, which maps an element x to the set of e-residues. Since the adversary knows the factorization of n, it is easy to check whether an element is e-residues or not.

■ In order to avoid e-residue attack, it is one of the ways to use "interactive protocol".

Motivation and Contribution

- □ The previous RSA-based PAKE protocols (including Catalano's one) which exploit a challenge-response method for verifying the validity of a RSA public key didn't specify the lower-bound of complexity of their protocols.
- We show a RSA-based PAKE protocol when e is a small number.
- We deduce its lower-bound of complexity along with the actual computation and communication costs.

2. RSA-PAKE

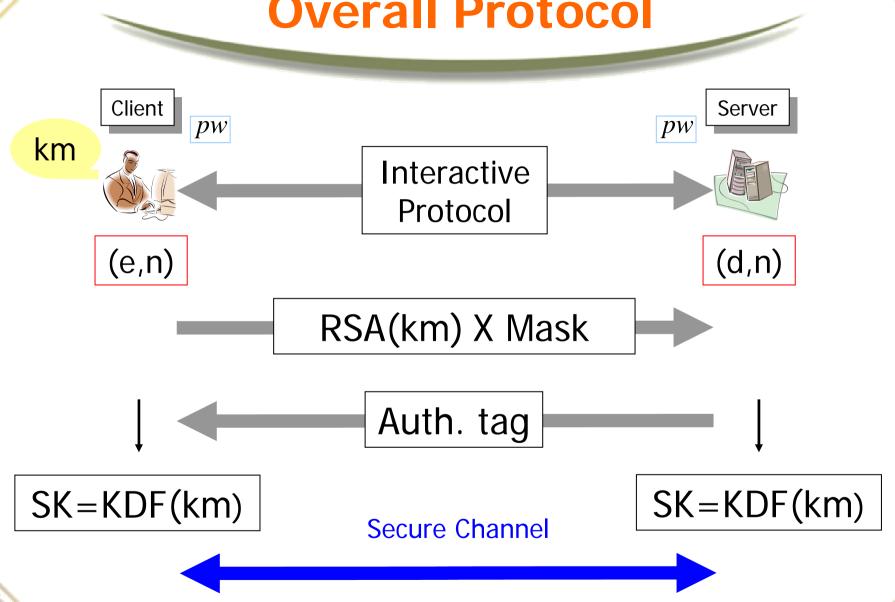
Notations

(e,n),(d,n): an RSA public/private key pair

RSA: the RSA encryption with (e,n)

G: a full-domain hash (FDH) function $\{0,1\}^* \to \mathbb{Z}_N^* \setminus \{1\}$

H: a one-way hash function


pw: user's password

km: a keying material (e.g., a random number)

Auth: an authenticator

KDF: a key derivation function

Concrete Construction (1/2)

$$(e,d,n) < - RSAKeyGen(1^k)$$
 (e,n)

$$r < -\{0,1\}^k$$

____ r

 $\{X_i\}$

For
$$i=1$$
 to I

$$y_i = H(n,r,i), x_i = y_i^d \mod n$$

For i=1 to I

$$x_i^e \mod n ?= H(n,r,i)$$

EURO_PKI

Concrete Construction (2/2)

Client pw

Server pw

(d,n)

$$t < -Z_n^*$$
, $z = t^e \mod n$

$$PW = G(n,pw)$$

$$z' = z X PW$$

PW = G(n,pw)

$$t = (z' X PW^{-1})^d$$

Auth=H1(C,S,n,z,pw,t)

Auth valid?

$$sk = HO(C,S,n,z,pw,t)$$

$$sk = H0(C,S,n,z,pw,t)$$

The Complexity depends on "I"

 $(e,d,n) < - RSAKeyGen(1^k)$

Communication costs: |n| X I

Computation costs: I modular exp.

For
$$i=1$$
 to I

$$y_i = H(n,r,i), x_i = y_i \mod n$$

For
$$i=1$$
 to I

 x_i^e mod n ?= H(n,r,i)

EURO_PKI

Security Definitions

Definition 1 (AKE Security) A protocol P is said to be secure if, when adversary A asks q_{se} queries to Send oracle and passwords are chosen from a dictionary of size N, the adversary's adv. in attacking the protocol is bounded by

$$O(q_{se}/N) + \varepsilon(k)$$

for some negligible function $\varepsilon(\cdot)$ in k.

Definition 2 (One-wayness of RSA)

Succ(I) =
$$Pr[x'=x|(e,d,n) <- RSAKeyGen(1^k);$$

 $x <- Z_n^*; y=x^e mod n; x' <- I(n,e,y)]$

The RSA function is one-way if Succ(I) is negligible in k.

Security Proof

Security proof (refer to Catalano's paper)

Theorem 1 (AKE Security) For any adversary A within a polynomial time t, with less than q_{se} active interactions with the parties and q_{ex} passive eavesdropping, and asking q_{h}, q_{g} and q_{hj} hash queries to H, G and Hj respectively, the advantage of A in attacking the protocol is upper bounded by

Advake(A)
$$\leq$$
 24QXSuccow(·,·) + 4QXSuccforge(t) + 24Q/N + ϵ (k)

where k is the security parameter and $Q \le q_{se}+q_{ex}$.

The Lower-bound of Complexity

e-residue Attack

Adversary A uses a RSA function that is not a permutation.

With the view of z, the adversary tries all the passwords, and only a strict fraction leads to z in the image of RSA enc.

But for that, the adversary has to forge a proof of validity for RSA enc.

- □ Fact 1. For odd integer n and e (e \geq 3) such that $gcd(e,\phi(n))$ ≠1, any e-residue modulo n should have at least three e-th roots.
- □ Corollary 1. $Pr[forge] \le (1/3)^{l}$

How many x_i is required? (1/2)

- The two cases for an adversary to break the protocol
- □ The first case (on-line attack): the adv. generates the right RSA key pair and then performs on-line exhaustive search attacks.
- The second case (e-residue attack): the adv. deliberately generates the RSA key pair (e,n), such that e|φ(n), by which off-line exhaustive search attacks are performed.

How many x_i is required? (2/2)

□ Theorem 2. For any odd integer e (e \geq 3), the lower-bound of I is $\lceil -\log_3(1-(1-j/N)^{1/j}) \rceil$. We restrict the success prob. of off-line attack by that of on-line attack.

$$E(on-line) \leq E(off-line)$$

As for each instance j, the expectation value of possible password candidates in off-line attack should be more than or equal to the counterpart in on-line attack.

However, we should claim that the other terms in the security result are irrelevant to both on-line and off-

Efficiency

- When e=3 and N (2³⁷) for alphanumerical passwords with 6 characters, I=24.
- □ Computation costs on client: (I+1) modular exponentiations τ_{exp} with the exponent e and one modular multiplication τ_{mul}

51 X
$$\tau_{\text{mul}}$$
 $(\tau_{\text{exp}} \approx 2 \cdot \tau_{\text{mul}})$

□ Communication costs: (I+3)k + |H1| bits 27.15625 KB

Conclusion

Conclusion

■ We showed a RSA-based PAKE protocol when e is a small number.

■ We deduced its lower-bound of complexity along with the actual computation and communication costs.