
Pisa University

Faculty of Science

Computer Science Bachelor Degree

Internship Thesis

Support for Blacklist Policies in role
based authorization system.

Candidate

Matteo Casenove

Supervisor

Prof. David Chadwick
University of Kent, UK

Referee

Prof. Roberto Barbuti
University of Pisa, IT

Academic Year 2010-2011

”Le grandi montagne hanno il valore degli uomini che le salgono, altrimenti

non sarebbero altro che un cumulo di sassi.” Cit. Walter Bonatti

”The great mountains have the valor of the men who climb them, otherwise

they would be nothing but a heap of stones.” Cit. Walter Bonatti

Abstract

This thesis describes a project carried out at the department of Computer Sci-

ence at the University Of Kent in Canterbury. The professor David Chadwick,

as chief of the Information Systems Security Research Group (ISSRG) at the

UKC, proposed this project for an international exchange program called Eras-

mus Placement. The project was a part of another one, bigger than it, called

TAS3 (Trusted Architecture for Securely Shared Services) where the software

PERMIS is developed. PERMIS (http://sec.cs.kent.ac.uk/permis/) is

an infrastructure that provides all the necessary facilities for users to manage

privileges and authorisation policies and for applications to make authorisation

decisions.

The PERMIS PDP is a monotonic decision engine, in that Everyone is

Denied Access except those that are allowed access by the rules. The addition

of more rules grants more people access. There is no way of reducing accesses

by adding more rules. The downside of a monotonic PDP is that it can be

difficult to configure certain rules with exception clauses, for example, everyone

at Kent has access to the library except Matteo. The work was focused on

finding solutions to represent the exception rules: one of these requires to

change the policy to Everyone is Granted Access Except, and the other requires

to make a combined system of grant all PDP engine and the deny all PDP

engine.

In this thesis we will discuss about PERMIS in general and how it works,

we will described the policies used by PERMIS and then we will analyse the

single parts of the project development of the new extension. Finally we will

conclude with the results that the project has achieved and the possible future

developments.

http://sec.cs.kent.ac.uk/permis/

Acknowledgements

First of all, I would like to say thank you to the person who gave me the opportunity

to live this experience and carry out this work, with availability and patience, even

during the writing of my thesis: the Professor David Chadwick. A special thank goes

also to Stijn, who helped me a lot during all my placement period. He was always

fully available anytime and he has been a great colleague.

Ovviamente un grosso grazie va alla mia famiglia. In particolare ai miei genitori,

senza i quali non sarei potuto essere qui, appoggiandomi sempre in ogni decisione e

avendo pazienza anche nei momenti in cui ero meno promettente. Mammina, hai

visto che l’hai ”ricoldata”... Ai miei fratelli che ci sono sempre stati, partecipi in

ogni mia decisione e difficoltá. Il fratello Paolo, un rifugio sempre accogliente e che

in quanto a tecnologie non ci siamo mai fatti mancare niente, e Massi con prediche

pallose e lunghe, con tanti ”ci vuole che ti applichi”, grazie, sono state sempre utili

e aggiungerei ”essenziali”. A Massi e Cinzia e tutte le decisioni prese insime, se

sono qui é anche grazie a voi (ps: ma non é ora che vi sposate? :)). A Stefy che é

stato sempre un esempio di determinazione e voglia di fare e poi...riusciamo proprio

a organizzare delle belle feste.

Un grande grazie a ”via riminaldi” (Giuda, Lore’, Bob, l’Orsetto, Frankie, Mary, il

Beddo, Feffo, Pancio etc.), a quelli sempre presenti e a quelli di passaggio. Quanti

momenti passati insieme e quante cazzate. Un hug particolare va al Gruppo Minix

(Giuda e lore) che m’ha forgiato in questi anni d’universitá (dico solo ”dal tramonto

all’alba”). Abbiamo passato momenti fantastici.

Al professor Maestrini e alla professoressa Pelagatti, che hanno creduto in noi.

Agli amici di casa, agli amici di sempre. Grazie che m’avete fatto sentire sempre

come se non fossi mai partito. A tutte le volte che visto che torno allora bisogna

festeggiare, anche se comunque sia tornavo sempre. Quante ne abbiamo fatte e

CHAPTER 0. ACKNOWLEDGEMENTS d

quanti viaggi tremendi mi avete fatto fare per tornare a Pisa, ma comunque sempre

con una storia da raccontare. Inutile fare la lista di tutti voi, ne siete troppi, ma

un piccolo gruppo merita di essere nominato perché quello c’é sempre: Fra, Sandro,

Alessandro e l’Harley.

In the end, I cannot avoid to mention the persons with which I shared most of the

time that I spent on this work. The Canterbury friends. Starting from my colleagues,

Kristy and Tom, and arriving to the London Road housemates, Alex, Laurence, Sian

and Nicola. A special thank to Alex who has been by my side and helped me in any

hard moment that I spent there. If I had success on this work is also thanks to you.

All of you have given me an amazing period of my life.

Contents

1 Introduction 1

1.1 Overview . 1

1.2 The Access Control model . 2

1.3 Role-Based Access Control . 3

1.3.1 Flat RBAC . 4

1.3.2 Hierarchical RBAC . 6

1.3.3 Constrained RBAC . 6

1.4 Related Technologies . 8

2 PERMIS 10

2.1 Introduction . 10

2.2 PERMIS Access Control Infrastructure 10

2.3 The PERMIS delegation system 13

2.4 The PDP . 14

3 The policies 17

3.1 Introduction to Policies . 17

3.2 Policies structure . 23

3.2.1 Subject Policy . 24

3.2.2 SOA Policy . 25

3.2.3 Role Hierarchy Policy . 25

3.2.4 Role Assignment Policy 26

3.2.5 Target Policy . 27

CHAPTER 0. CONTENTS f

3.2.6 Action Policy . 28

3.2.7 Target Access Policy . 29

3.3 How write a new policy . 31

3.4 Policy Editor . 37

3.5 Policy Tester . 41

4 Whitelist and Blacklist 45

4.1 Whitelist and Blacklist . 45

4.2 Exception rules . 48

5 Blacklist PERMIS Policies 51

5.1 Introduction . 51

5.2 Exception rule in PERMIS Policies 52

5.3 Grant-all PERMIS decision engine 58

5.4 Combination of grant-all and deny-all PERMIS decision engine . 62

6 Validation 66

6.1 Correctness Tests . 66

6.2 Performance Test . 70

7 Conclusion 72

7.1 Achievements . 72

7.2 Future Developments . 73

A PERMIS Policies for Web Based Resources 74

A.1 Specifying Resources . 74

A.2 Specifying Actions . 75

A.3 Set up PERMIS policies for less secure subordinate directories . 75

A.3.1 Exclude the access to subdirectory 75

A.3.2 Exclude the access to superior directory 76

B Policies for the Benchmark tests 78

CHAPTER 0. CONTENTS g

Bibliography 85

Chapter 1

Introduction

This chapter provides an overview of the thesis and introduces the access

control field. A presentation of the related technologies that will occur in this

work, will be also provided.

1.1 Overview

Access Control is a very wide field and it is important in different environments.

From enterprises to public services, whenever there are shared resources, it

is used to ensuring a correct and authorised use of these resources. Access

control is an important functionality for addressing security issues, especially

now, when there is an exponential increasing trend of web applications.

PERMIS along with others, are policy based authorisation infrastructures.

They permit to manage user privileges and they render access control deci-

sions. Working at the software level, it permits any software to extend its

access control features with the features provided by PERMIS. It can be re-

motely invoked by an application asking if a specific subject can perform a

specific action on a specific resource. The system then will reply to the re-

quest with a proper response that contains PERMIT or DENY, according to

the configured policy. The policies contain the rules and criteria that specify

how user privileges are managed and access control decisions are made.

In accordance with the RBAC standard [RBAC], PERMIS uses whitelist

policies which are specified as permission rules. When a request occurs in the

CHAPTER 1. INTRODUCTION 2

authorisation infrastructure, it will check if the request matches with an entry

in the policy. If this happened, the authorisation infrastructure will reply with

a PERMIT response. Otherwise, it will reply with either a DENY or NOT

APPLICABLE response.

This is a monotonic decision engine that uses a Deny All Policy in which

are specified subjects who have an access guaranteed. In contrast, it can be

difficult to configure the exception clauses in the rules , e.g., ”All students

are granted access except MSc students”. To represent the previous rule, it is

necessary to either modify the current PERMIS policy to accept the exception

clauses or create a blacklist with the exception clauses controlled by a new

reversed PDP, and combine this second PDP with the original one. Both of

these solutions have been implemented in the course of the project and will be

presented in this thesis.

However, before describing all the project, an introduction of all the aspect

behind PERMIS is necessary to fully understanding it.

1.2 The Access Control model

In computer security, access control includes three subfields: the authentication

phase recognise the entity that wants to use the system and then, with the

authorisation phase, the system checks if the entity has the rights to perform

one specific action and according to that it gives the authorisation. In the end,

with the audit phase the system logs the operations performed to keep track

of them.

There are various Access Control Models but can be divided in two cat-

egories: discretionary or non-discretionary[ACW]. In the latter, there is a

security policy administrator who is the only one that has right to give and

configure access permissions for all the resources. On the other hand, the

discretionary model allows the user to make policy decisions and/or assign se-

curity attributes for his own resources. The three most accredited models are:

Discretionary Access Control (DAC), Mandatory Access Control (MAC) and

Role Based Access Control (RBAC). In DAC only the owner decides who is

CHAPTER 1. INTRODUCTION 3

allowed to gain access to the object and which privileges they have. In MAC

there is a rule-list specified by the administrator and the access is permitted, if

and only if there is a rule that allows a given user to gain access to a resource.

Very similar to the MAC model is the RBAC model. It is not necessarily

a mandatory model, but could be also a discretionary one according to the

needs of the system. It is based on the concept of role that can be assigned

to user and then is the role that has the permission of performing the action.

It has a level of indirection, the indirection being the role between the user

and the permission. ABAC is a generalization of the RBAC model in which

a role is not restricted to an organizational role, but can be any attributes of

the subject.

PERMIS uses the ABAC (then also RBAC) model, in which roles are used

to model organization roles, user groups, or any attributes of the user.

1.3 Role-Based Access Control

Very important for us is to analyse in detail the RBAC model, since PERMIS

is built on this model.

The RBAC (Role-based Access Control) [RBAC] provides a popular model

for information security, designed to address many needs of the commercial and

government sector. Several studies indicate that permission assigned to roles

tend to change relatively slowly compared to changes in user membership of

roles. For this reason, RBAC introduces the concept of role in the Access

Control, defining role-permission instead of user-permission relationships. In

this way, the user is just assigned to the predefined roles. It results an easier

procedure compare to create associations for each user to permissions.

It is policy neutral, it directly supports three well-known security princi-

ples: least privilege, separation of duty, and data abstraction. Least privilege

is supported by assigning to the role only the minimum permissions required

for the tasks conducted by the members of the role. Separation of duties is

achieved by ensuring that mutually exclusive roles must be invoked to com-

plete a sensitive task. Data abstraction is supported by means of abstract

CHAPTER 1. INTRODUCTION 4

permissions such as open or close for a door rather than read or write for a

file.

There is no a well defined standard for the RBAC model provided by NIST

[NISTRBAC] but it leaves many aspects undefined and this leads on to have a

large scale of different interpretations and implementations of the model. Also

the NIST model of RBAC has inside different levels of it with different features

for each level: Flat RBAC, Hierarchical RBAC and Constrained RBAC.

1.3.1 Flat RBAC

Flat RBAC contains the essential concept of the whole model. The figure 1.1

shows three sets of entities called user (U), role (R) and permissions (P). The

basic concept of it is that users are assigned to roles, permissions are assigned

to roles and users acquire permissions by being a member of roles. The stan-

dard requires that user-role and role-permission assignment are many-to-many.

This is an essential aspect of RBAC.

Figure 1.1: Flat RBAC

In this model the User is a human being but an abstraction of this can be

accepted such as an autonomous system. A Role is a job function or job title

within the organization with some associated semantics regarding the authority

and responsibility conferred on a member of the role. A Permission is an

CHAPTER 1. INTRODUCTION 5

approval of a particular mode of access to one or more objects in the system1.

Permissions are in general positive and confer the ability to the holder to

perform some action(s) in the system2. The nature of the permissions greatly

depends on the implementation details of a system and its type. RBAC has no

restrictions of the meaning on the permissions, treating them as uninterpreted

symbols to some extent. In the flat RBAC there is also the concept of sessions.

Each session is a mapping of one user to possible many roles, i.e., a user

establishes a session during which he ”activates” some subsets of roles that he

or she is a member of. The permissions available to the user are the union of

permissions from all roles activated in that session.

Figure 1.2: Hierarchical RBAC

A user may have multiple sessions opened at the same time and each session

may have a different combination of active roles. In particular, powerful roles

can be kept dormant until they are needed. In this way the least privilege

principle is supported by RBAC.

Many issues are left open by the flat RBAC standard and they are differ-

ently managed from implementation to implementation, such as the behaviour

1The term authorization, access right and privilege are used in literature with the same
meaning of permission

2Flat RBAC does not exclude the negative permission which deny access. In fact, using
this freedom, our project extend the normal RBAC policy of PERMIS with negative rules

CHAPTER 1. INTRODUCTION 6

of revocation and the use of condition.

1.3.2 Hierarchical RBAC

The second level of RBAC includes roles hierarchies, see Figure 1.2. Every

time that the roles are discussed, the hierarchies are discussed too, being the

natural interpretation of the organization’s lines of authority and responsibil-

ity always present in the real situations. An example is on the Figure 1.3.

Mathematically, these hierarchies are partial orders.

By convention more powerful (or senior) roles are shown toward the top of

role-hierarchy diagrams, and less powerful (or junior) roles toward the bottom.

Senior roles inherit all permissions of their junior roles respectively, and this

inheritance of permission is transitive too (this is true as long as the hierar-

chy is a partial order). The inherited permissions are added to the own role

permissions. In the example of Figure 1.3, Staff and Researcher inherit the

Student permissions but each one of these have different permissions directly

assigned to it, so in the end they have a different set of permissions.

Professor

nnn
nnn

nnn
nnn

MMM
MMM

MMM
MM

Researcher

QQQ
QQQ

QQQ
QQQ

Q Staff

ppp
ppp

ppp
p

Student

Figure 1.3: Example of Role Hierarchy

1.3.3 Constrained RBAC

Constrained RBAC adds constraints to the hierarchical RBAC model. They

are predicates which, applied to relationship, return a value of ”acceptable” or

”not acceptable”. The constraints may be applied to the user-role assignment,

to the role-permission assignment, or to the activation of roles within user

sessions. They can be applied in a lot of different ways, so we will just discuss

some some interesting constrains.

CHAPTER 1. INTRODUCTION 7

The most frequently mentioned constraint is mutually exclusive roles. The

user can be assigned to at most one role in a mutually exclusive set. This sup-

ports separation of duties. The mutually exclusive role can be also applied to

the role-permission relationship. It specifies that the same permission cannot

be assigned to two roles. Of course these two constraints can be applied at

the same time requiring that the same permission cannot be assigned to more

than one user in a mutually exclusive set.

Figure 1.4: RBAC models

Another example of user assignment constraint is that a role can have a

maximum number of members. It is called cardinality constraint.

Constraints can also be applied to sessions, and the user and roles functions

associated with the session. For example it may be acceptable for a user to be

a member of two roles but the user cannot be active in both roles at the same

time.

This supports dynamic separation of duties.

Somehow also the hierarchy can be considered as a constraint. The con-

straint is that a permission assigned to a junior role must also be assigned to

all senior roles.

CHAPTER 1. INTRODUCTION 8

All the levels of RBAC that we have presented can be merged together to

combine the different features as in the Figure 1.4.

We have introduced a family of RBAC models that can be applied in almost

every environment. We saw that RBAC is a very powerful method in the

Access Control field but is not a panacea for all access control issues. More

sophisticated forms of access control are required to deal with situations where

sequences of operations need to be controlled. RBAC does not attempt to

directly control the permissions for such a sequence of events. Other forms of

access control can be layered on top of RBAC for this purpose.

1.4 Related Technologies

PERMIS includes different type of support to increase its portability and

adaptability in different environment. We will make a list of the most impor-

tant technologies used by PERMIS and we will describe how they are used.

• LDAP stands for Lightweight Directory Access Protocol and it is an

application protocol for accessing and maintaining distributed directory

information services over an Internet Protocol (IP) network. It defines a

directory service information and query models. The information model

is centered around entries, which are composed of attributes. The entries

are organized into a tree structure, usually corresponding to a geograph-

ical and organizational distribution. The query models allow searching

of portions of the tree based on filter criteria involving attributes, and

returning requested attributes from each matching entry [LDAP].

It is used by PERMIS as a network accessible repository for storing

policies and credentials.

• X.509 is a standard for a Public Key Infrastructure (PKI) and Privi-

lege Management Infrastructure (PMI). X.509 specifies, amongst other

things, standard formats for public key certificates, certificate revoca-

tion lists, attribute certificates, and a certification path validation algo-

rithm [X509].

CHAPTER 1. INTRODUCTION 9

PERMIS uses it to provide trust and tamper-proof resistance to policies

and credentials. But along with X.509, PERMIS can use other formats

including plain XML policies and SAML attribute assertions.

• SAML is an XML-based open standard for exchanging authentication

and authorization data between security domains. It uses security tokens

containing assertions to pass information about a principal (usually an

end-user) between an identity provider and a web service. SAML 2.0

enables web-based authentication and authorization scenarios [SAMLW].

PERMIS supports SAML assertions in the requests.

• XACML is an XML-based language for access control that has been

standardized in OASIS. XACML describes both an access control policy

language and a request/response language. The policy language is used

to express access control policies (who can do what when). It provide

a mechanism that offers much finer granular access control than sim-

ply denying or granting access – that is, a mechanism that can enforce

some before and after actions (called obligations) along with ”permit”

or ”deny” permission [SUNXACML] [IBMXACML] [OASISXACML].

PERMIS implements a XACML interface to receive XACML request

and send XACML response, but PERMIS does not support the XACML

policy language, as it has its own RBAC based language.

From now on, we will describe the internal PERMIS implementation and

how it is used in a real environment. We will explain a PERMIS policy and

how to write a correct one. The last chapter will illustrate the design and the

consequent implementation of the new extension for the blacklist support.

Chapter 2

PERMIS

In this part will be presented the whole PERMIS infrastructure, how it works

and how it interacts with other services in a real environment.

2.1 Introduction

In the Access Control field, as we have already said, there are three main

phases: Authentication, Authorisation and Audit. The first determines who

the user is, the second what he is allowed to do and the last one keeps track

of what he did. PERMIS is an Authorisation Infrastructure that manages

privileges and makes access control decisions. Its functionality goes over the

normal authorisation system. It implements the novel concept of credential

validation which verifies user’s credentials permitting then to use a distributed

management of credentials. PERMIS also supports delegation of authority,

thus credentials can be delegated between users, further decentralizing creden-

tial management. All these characteristics permit to PERMIS to easily adapt

to every heterogeneous system and especially in distributed systems.

2.2 PERMIS Access Control Infrastructure

PERMIS has the policies at the base of all the authorization system, to provide

flexibility, scalability and application independency. The authorisation model

paradigm adopted is the well-known ”Subject - Action - Target” paradigm en-

hanced with the ISO Attribute Based Access Control (ABAC) model [ABAC].

CHAPTER 2. PERMIS 11

Unfortunately, in a distributed environment, attributes travel between differ-

ent independent systems and a malicious user could claim attributes which he

is not the rightfully owner. Consequently, subject’s attributes are presented

as digitally signed credential issued to the subject by one or more trusted at-

tribute authorities (AAs)1. Once that the credentials are digitally signed, the

system has to check if they are original and issued by trusted AAs. PERMIS

introduces a Validation Service called Credential Validation System (CVS)

to validate these credentials. The CVS uses policies to specify the trusted

AAs and the rightful attributes of the user; each resource owner specifies the

credential validation policies for gaining access to his resources.

PERMIS uses the Hierarchical RBAC (or ABAC) model, in which roles

are used to model organization roles or any attributes of the user. Roles or

attributes may be organized in a partial hierarchy. A superior role inherits all

the privileges allocated to its subordinate roles. Role hierarchies do not need

apply only to organizational roles, but can apply to any attributes, such as level

of authentication (LoA), where there is a natural precedence in the attribute

values, in which higher value implies the privileges of the lower values.

An Authorisation Infrastructure (AI) is placed between the subject and the

target. Conceptually, it receives the request from the subject and it checks if

the request is correct and if the subject is authorised to perform the requested

action on the requested target. If AI authorises the request, it is delivered to

the target. Otherwise it is rejected.

Figure 2.1 shows our high level conceptual model for an authorisation in-

frastructure. The numbers sign the steps that the system performs to process

a request. Step 0 is the initialization step for the infrastructure, when the

policies are created and stored in the various components. When a subject is-

sues an application request (step 1), the application policy enforcement point

(PEP) includes the user credentials in the request, collecting them from the

Credential Issuing Service (CIS) or Attribute Repository (AR) (steps 3-4).

1 AAs have the aim to issue Attribute Certificates (ACs). They also provide the service
to revoke ACs, keeping the revoked AC in a Attribute Certificate Revocation List (ACRL).
Since issued, ACs and ACRLs can be stored in a directory system; user can obtain them by
using LDAP.

CHAPTER 2. PERMIS 12

Figure 2.1: Authentication Infrastructure Model

After that, the credentials are validated (step 5) by the Credential Validation

Service accordingly with the policy. The valid credentials are returned to the

PEP (step 6), combined with the environmental information, such as current

time and date (step 2), and then passed to the PDP along with the request for

an access control decision (steps 9-10). If the PDP, according to the policy,

grants the request, then this is allowed to reach the target (step 12), otherwise

it is rejected. In either case, along with the response the PDP may return a

set of obligations, which are actions that the PEP must enforce in order to

complete the authorisation (step 11). The Obligations Service is the functional

component responsible for enacting these obligations.

These steps are the effective interactions between the software and the

Authorisation Infrastructure and between the services inside the infrastructure

itself. In the conceptual model the Subject box represents the interface with

the user and the Target is the interface of the requested resource. The PEP

is a procedure implemented in the software. It is the enforcing point and it

interacts directly with the external services such as the PDP and the CVS.

Both are the core of the AI, implementing the main functionalities. The PDP

will be described in detail in one of the next chapters.

In this distributed scenario it is necessary to have, behind the authori-

CHAPTER 2. PERMIS 13

sation infrastructure, a Trust Infrastructure to permit that everything works

correctly. Credentials are the format used to securely transfer a subject’s

attributes/roles from the Attribute Authority to the recipient. They are

also known as attribute assertions. They can also be allocated in form of

X.509 Attribute Certificates (ACs2) digitally signed and usually stored in ei-

ther a local file or LDAP directory. These bind the issued attributes with

the subject’s and issuer’s identities in a tamper-proof manner. PERMIS only

trusts valid credentials issued by trusted AAs or their delegate in accordance

with the current policies in the authorisation infrastructure (Issuing, Valida-

tion and Delegation policies).

But how is a trusted AA recognised? It is a job of the PERMIS ’s Credential

Validation Service. The CVS checks that each credential issuer is mentioned

in its policy. This policy contains rules that govern which attributes different

AAs are trusted to issue, along with Delegation Policy for each AA.

Trivially the validity of the credential is proved by its digital signature from

the AAs. However, this requires a trusted PKI to be implemented to support

PERMIS, as PERMIS does not provide certificate verification itself.

2.3 The PERMIS delegation system

Often in real situations it happens that a person asks to someone else to do his

job for a short time. For example, a boss could ask his employee to perform

his task, so he ”delegates” to him the task. In this way the employee has the

authorisations of the boss level (role) for the time that the task needs, and

after that, he will be no longer be authorised at that level. The boss gives the

authority to the employee to perform the task on his behalf.

This situation is supported in the PERMIS authorisation infrastructure by

a Delegation Issuing Service (DIS). It is a web service that dynamically issues

ACs on demand when requested to by a delegator. The delegator delegates his

attribute(s), i.e. his role(s), to another user to permit the latter to have the

2A set of attributes and a public key certificate identifier that are made unforgeable by
use of the digital signature created with a private key.

CHAPTER 2. PERMIS 14

right permissions to perform the task on the delegator’s behalf. Obviously a

delegation can be revoked.

The delegation is completely independent of any administrative involve-

ment, in fact it may be called directly by any application’s PEP to issue short

lived ACs. The DIS is controlled by its own policy that specify who is allowed

to delegate what to whom.

A delegate can be authorised to yield his role in turn to others, but each

AA may constrain delegations by validity times and delegation chain lengths.

In this way for example a delegation can be reused maximum 2 times and it

will expire in a week. PERMIS ensures that all delegated credentials conform

to the following delegation paradigm:

i) an issuer cannot delegate more privileges then he possesses, and

ii) an issuer cannot delegate a privilege to himself or to a superior in the

delegation chain, since the recipient already holds this privilege.

Following these two rules the DIS avoids the propagation of privileges from

issuers to subjects and the inappropriate delegation that could remove the

controls of the delegations.

2.4 The PDP

The PERMIS Authorisation Decision Engine is responsible for credential vali-

dation and access control decision making. Credential validation is the process

that enforces the trust model as described in Section 2.2, and ensure that only

valid roles/attributes are attributed to users. Access Control decision making

instead, is the process that ensures only users with the required attributes gain

access to the protected resources. Both of them are important, but only the

Access Control is essential for an authorisation infrastructure.

The component PDP is responsible for making access control decisions

based on the valid attributes of the user and the Target Source of Authority3

access control policy, which is a subset of the PERMIS policy.

3A Source of Authority or SOA is the root of trust of a Privilege Management Infras-
tructure. This is an entity that a resource implicity trusts to allocate privileges and access

CHAPTER 2. PERMIS 15

The PDP has inside a Policy Parser for each type of policy. It is one of

the most important part of the PDP. It has the several aims: it checks the

validity of the policy, it reads the policy and in the end it loads all the policy

information. The parser can read plain XML or digitally signed and protected

policies. The former type of policies are stored as text file in the local filestore

whilst the latter are stored as X.509 policy ACs in either the local filestore

or the Target SOA’s entry in an LDAP directory. The difference between the

two type of policies is the type of protection: the normal XML policy being

stored as normal text file is protected by the OS, on the other hand the X.509

ACs are tamper resistant and integrity protected by cryptography.

Once the Parser has processed the policy4 the PDP is ready to accept the

request. Its core is in the decision engine, the delicate part that makes de-

cision according to the parsed policy. The decision engine takes the request

composed of the Subject of the request, the Action to perform, the Target

on which the Subject wants to perform the Action and the eventual environ-

mental attributes. Accordingly with the policy it checks each element of the

request and if all matches then it returns ”PERMIT” as reply, ”DENY” or

”NOT APPLICABLE” in the other case. The PEP is in charged of passing

the request to the PDP along with user’s valid attributes and any required

environmental attributes. But the environmental attributes do not depend on

the target of the request or the action to perform and so, they are always the

same. This means that, before to be included in the request the environment

attributes have to be retrieved by the PEP somehow.

When the PDP checks the request with the policy different situations can

occur: i) the policy has a rule for the request, ii) the policy has NOT a rule

for the request, iii) the policy has a rule but something is missing from the

request and iv) the policy has a rule for some information of the request but

not for all. In i) the PDP simply finds the rule that matches with the request

and it returns PERMIT as reply. In ii) on the other hand there are no rules

that grant the request, so the PDP returns DENY. In iii) there is a more

rights to it. The SOA is ultimately responsible for issuing ACs to trusted holders, and these
can be either end users or subordinate AAs.

4Every time the policy changes, the parser re-pars it to load the new changes.

CHAPTER 2. PERMIS 16

sophisticated scenario where the decision engine finds a rule to match but the

rule requires more attributes then the request has, such as more environmental

attributes. In this case the PDP returns DENY or INDETERMINATE as the

reply depending upon what is missing. The case iv) could happen when the

request is out of the scope of the policy, for example when the action or the

target in the request are not in the domains. In this particular case the PDP

replies with NOT APPLICABLE.

These are the responses returned to the PEP, but actually the PERMIS

APIs return exceptions in case of INDETERMINATE o NOT APPLICABLE

situations. These exceptions are then wrapped in XACML responses and than

returned.

The request can provide also extra information such as additional roles or

environmental variables, and in this case the extra information is ignored.

These replies return to the PEP that, accordingly with their values, rejects

the request, delivers the request or communicates the error to the user.

This description of the infrastructure and how the various components

interact is enough to have an idea of the authorisation infrastructure and how

it works. The trust model and the decision engine are very important in the

infrastructure. The first one permits to connect all the components located in

a distributed system keeping security and trustworthy in every steps whereas

the second one makes the decisions necessary to control the accesses.

Chapter 3

The policies

As we said before, policies are at the base of the PERMIS authorisation in-

frastructure. They give the guidelines for the actions of the components.

In this chapter we will present the PERMIS policies and we will describe

how to write a correct one. We will also present two softwares implementations

around PERMIS to manage policies: the Policy Editor and the Policy Tester.

They are important resources for an administrator, providing tools to write

policies easily and to easily test them.

3.1 Introduction to Policies

In PERMIS, the policies implement the RBAC authorisation model. The

characteristics of a policy are: what it defines, how it is written and how it is

represented.

Implementing RBAC, the policy defines the authorisation rules. PER-

MIS specifies an RBAC policy specifically designed for use with an X.509

attribute certificate based PMI1. X.509 supports RBAC by defining role spec-

ification attribute certificates that hold the permission granted to each role,

and role assignment attribute certificates that assign various roles to the user.

In role specification ACs, the holder is the role , and the privilege attributes

are permissions granted to the role. In role assignment ACs, the holder is

the user2, and the privilege attributes are the roles assigned to the him. The

1Privilege Management Infrastructure
2The name of the user

CHAPTER 3. THE POLICIES 18

user is identified by either his LDAP Distinguished Name (DN) or his public

key certificate (issuer and serial number). The PERMIS X.509 PMI RBAC

Policy is the union of a number of sub-policies as shown in Figure 3.1. The

domain of top level policy is the union of the sub-policies domains. Each of

them has a unique object identifier (OID) to globally identify it. Passing the

OID, PERMIS can retrieve the correct policy to use for making access control

decisions.

Figure 3.1: The X.509 PMI RBAC Policy and its Sub-Policies

The policy is written in XML to provide an easy way to define policy

by administrators and to make the policy easy to read by users. PERMIS

provides its own schema3 to define the way to write the policy [SCHEMA].

The schema is a meta-language that holds the rules for creating the XML

policies. Each rule of the schema specifies how to write a rule in the policy

and which statements have to be used to write it. The main components of

our schema are the following:

• SubjectPolicy - this specifies the subject domains. Only users from

a subject domain can be authorised to access resources covered by the

policy.

• RoleHierarchyPolicy - this specifies the hierarchy between different

3An XML schema is a rigorous specification of an XML-based language in terms of
constraints on elements and attributes. An XML document is said to be valid against a
schema if the elements and attributes in this XML document satisfy the constraints specified
in the schema.

CHAPTER 3. THE POLICIES 19

roles.

• SOAPolicy - this specifies which SOAs are trusted to issue roles.

• RoleAssignmentPolicy - this specifies which roles may be allocated to

which subjects by which SOAs.

• TargetPolicy - this specifies the target domains. Only targets in the

domain can be accessed by a user.

• ActionPolicy - this specifies the actions (or methods) supported by the

targets.

• TargetAccessPolicy - this specifies which roles are authorised to per-

form which actions on which targets, and under which conditions. Con-

ditions are specified in Boolean logic and may contain constraints. All

the actions that are not present in the Target Access Policy are denied.

The following figures show some main parts of the schema.

[. . .]
<xs : e l ement name=” Sub j ec tPo l i cy ”>

<xs:complexType>
<xs : s equence minOccurs=”1” maxOccurs=”unbounded”>

<xs : e l ement r e f=”SubjectDomainSpec” />
</ xs : s equence>

</ xs:complexType>
<xs :key name=”SubjectDomainSpecKey”>

<x s : s e l e c t o r xpath=” . / SubjectDomainSpec”/>
<x s : f i e l d xpath=”@ID”/>

</ xs :key>
</ xs : e l ement>

<xs : e l ement name=”SubjectDomainSpec”>
<xs:complexType>

<xs:complexContent>
<x s : e x t e n s i o n base=”DomainSpecType”>

<x s : a t t r i b u t e name=”ID” type=” x s : s t r i n g ” use=” requ i r ed ”
/>

</ x s : e x t e n s i o n>
</ xs:complexContent>

</ xs:complexType>
</ xs : e l ement>

CHAPTER 3. THE POLICIES 20

<xs:complexType name=”SubtreeDefType”>
<xs : annota t i on>

<xs :documentat ion>
SubtreeDef i s the ab s t r a c t base type o f Inc lude and

Exclude e lements
as s p e c i f i e d by Sassa Otenko

</ xs :documentat ion>
</ xs : annota t i on>
<x s : a t t r i b u t e name=”LDAPDN” type=” x s : s t r i n g ”>

<xs : annota t i on>
<xs :documentat ion>

For PERMIS LDAP DNs are equ iva l en t to simply DNs . Both
formats are equa l l y acceptab l e to PERMIS. Exclude i s
used to exc lude subt r e e s from with in an inc luded
subt ree LDAPDN i s an LDAP DN from RFC 2253 or a
s imple DN. CN=guest ,OU=GlobusTest ,O=Grid means the
same as /CN=guest /OU=GlobusTest /O=Grid .

Max and Min have the same semant ics as f o r the Inc lude subt ree
s p e c i f i c a t i o n . Note that e i t h e r DN or URL must be pre sent (
un l i k e Inc lude , where both may be miss ing) . The semant ics o f
the DN and URL are the same as f o r Inc lude .

Semantic : LDAPDNs cannot be f u l l y de s c r ibed by the Schema so a
so f tware check i s r equ i r ed f o r t h i s

</ xs :documentat ion>
</ xs : annota t i on>

</ x s : a t t r i b u t e>
<x s : a t t r i b u t e name=”URL” type=”xs:anyURI”>

<xs : annota t i on>
<xs :documentat ion>

Semantic : A check i s nece s sa ry to make sure t h i s URI
conforms to a supported URI scheme

</ xs :documentat ion>
</ xs : annota t i on>

</ x s : a t t r i b u t e>
<x s : a t t r i b u t e name=”Min” type=” xs :nonNegat ive In tege r ”/>
<x s : a t t r i b u t e name=”Max” type=” xs :nonNegat ive Intege r ”/>

</ xs:complexType>

<xs : e l ement name=” Inc lude ”>
<xs:complexType>

<xs : annota t i on>
<xs :documentat ion>

Subject Domain must conta in at l e a s t one LDAP sub−t r e e .
We do not support s i n g l e e n t r i e s at the moment . (So
i f a new sub−node i s created , and i t i s not in the
Exclude statement , i t w i l l be a l lowed .)

</ xs :documentat ion>
</ xs : annota t i on>
<xs:complexContent>

<x s : e x t e n s i o n base=”SubtreeDefType”>
<xs : s equence maxOccurs=”unbounded”>

CHAPTER 3. THE POLICIES 21

<xs : e l ement minOccurs=”0” r e f=” Exclude ”/>
</ xs : s equence>

</ x s : e x t e n s i o n>
</ xs:complexContent>

</ xs:complexType>
</ xs : e l ement>

<xs : e l ement name=” Exclude ” type=”SubtreeDefType”/>
[. . .]

Figure 3.2: Subject element of the schema for the PERMIS policies

As we can see in Figure 3.2, with the SubjectPolicy we define it as a com-

plexType composed by a sequence of element and that the element is a Sub-

jectDomainSpec. The latter is specified below the SubjectPolicy in almost the

same way and so on.

In this way the schema defines that a SubjectPolicy statement has as chil-

dren one or more SubjectDomainSpec statements, each one with an attribute

ID with type string (obligatory). In turn, the SubjectDomainSpec has one

or more Include or Exclude statements, each one with an attribute LDAPDN

with type string (obligatory).

[. . .]
<xs : e l ement name=” TargetAccessPol i cy ”>

<xs:complexType>
<xs : s equence maxOccurs=”unbounded”>

<xs : e l ement r e f=” TargetAccess ” />
</ xs : s equence>

</ xs:complexType>
</ xs : e l ement>

<xs : e l ement name=” TargetAccess ”>
<xs : annota t i on>

<xs :documentat ion>
The t a r g e t a c c e s s p o l i c y compr ises one or more t a r g e t

a c c e s s e s . Each TargetAccess a l l ows an i n i t i a t o r with
the s p e c i f i e d s e t o f r o l e s to car ry out the s p e c i f i e d
a c t i o n s on the l i s t o f t a rge t s , but only i f the
c o n d i t i o n s s p e c i f i e d by the op t i o na l IF c l a u s e are true
, and only i f the i n i t i a t o r i s not attempting to
perform a c o n f l i c t i n g ac t i on as s p e c i f i e d in the MSoD
p o l i c y . The i n i t i a t o r must p o s s e s s a l l o f the r o l e s in
the Ro leL i s t in order to get a c c e s s . I f a c c e s s i s
granted , any s p e c i f i e d o b l i g a t i o n s w i l l be returned to
the PEP

CHAPTER 3. THE POLICIES 22

</ xs :documentat ion>
</ xs : annota t i on>
<xs:complexType>

<xs : s equence>
<xs : e l ement r e f=” Ro leL i s t ” />
<xs : e l ement r e f=” TargetL i s t ” />
<xs : e l ement minOccurs=”0” r e f=”IF” />
<xs : e l ement minOccurs=”0” r e f=” Obl i ga t i on s ” />

</ xs : s equence>
<x s : a t t r i b u t e name=”ID” type=” x s : s t r i n g ”>

<xs : annota t i on>
<xs :documentat ion>TargetAccess ID i s a l a b e l f o r humans

and i s ignored .
</ xs :documentat ion>

</ xs : annota t i on>
</ x s : a t t r i b u t e>

</ xs:complexType>
</ xs : e l ement>

<xs : e l ement name=” TargetL i s t ”>
<xs:complexType>

<xs : s equence>
<xs : e l ement maxOccurs=”unbounded” r e f=” Target ” />

</ xs : s equence>
</ xs:complexType>

</ xs : e l ement>

<xs : e l ement name=” Target ”>
<xs : annota t i on>

<xs :documentat ion>
Target s p e c i f i e s a t a r g e t i n s t ance or domain and the

a c t i o n s that can be c a r r i e d out on i t
Changes: Act ions a t t r i b u t e that conta ined the comma

separated l i s t o f a c t i o n s a l lowed i s now a sequence o f
one or more AllowedAction e lements

</ xs :documentat ion>
</ xs : annota t i on>
<xs:complexType>

<xs : s equence>
<x s : c h o i c e>

<xs : e l ement r e f=”TargetName” />
<xs : e l ement r e f=”TargetDomain” />

</ x s : c h o i c e>
<xs : e l ement r e f=” AllowedAction ” minOccurs=”0” maxOccurs=”

unbounded”/>
</ xs : s equence>

</ xs:complexType>
</ xs : e l ement>

[. . .]

Figure 3.3: Target Access elements of the scheme for the PERMIS policies

CHAPTER 3. THE POLICIES 23

Another significative statement is the TargetAccessPolicy (Figure 3.3) and

it is defined as a sequence of TargetAccess. In the schema the minOccur at-

tribute for the sequence of TargetAccess is not present so there may not be any

of them defined. If this happens, no access rule is defined, and so nobody can

access any resources. Apart from that, TargetAccess is defined as a sequence

of four elements: RoleList, TargetList, IF and Obligations. The first is the list

of roles that is authorised to perform the action. The TargetList is in turn

a sequence of Target composed by a TargetName or a TargetDomain and an

AllowedAction. With the IF statement the schema introduces the constraints

whilst the Obligations define the actions that the system has to perform as a

consequence of the action in the request.

Along with these, other statements are defined in the schema to define the

way to write the PERMIS policies. The previous two figures are just some

pieces of the schema. The complete version of it can be found on the PERMIS

site.

In the end, the PERMIS policy can be represented either as a normal plain

XML file stored in the filesystem or as X.509 AC stored in the filesystem or

in a LDAP directory.

3.2 Policies structure

The structure of the policy follows the components dictated in the schema and

described above. In fact, the schema defines the correct way to write the policy

and imposes the exact steps to follow. Only a policy that respects completely

the schema can be accepted. This procedure is called validation and it is in

charged of checking if the policy is written following the rules provided by the

schema.

A policy can be divided in different parts where each one describes a par-

ticular aspect of the situation we are representing. Each part of these will be

presented individually.

CHAPTER 3. THE POLICIES 24

3.2.1 Subject Policy

The Subject Policy is the first part of the policy. It is always at the beginning

and it specifies the domains of the users who can be granted roles. The user is

identified by his LDAP DN and each domain is specified as an LDAP subtree,

using Include and Exclude statements. The Include statement allows to specify

the LDAP DN of the root node of a subject domain. On the other hand, the

Exclude statement excludes the LDAP subtree from the domain. Both Include

and Exclude statements have two optional attributes (Min and Max) to provide

layering in the inclusion or exclusion. With Min and Max, it is possible to

specify the depth of the layers of inclusion or exclusion respectively. The

default value of Min is zero, meaning the root of the subtree, and the default

for Max is infinity, meaning the leaves of the subtree. If the LDAP DN is

”null” in an Inclusion statement, it means that the domain is all the users in

the world.

Let’s suppose we have a subject domain that includes all users at the Uni-

versity of Pisa and only researchers at the University of Kent, but that excludes

the department of engineering of the University of Pisa. Let’s suppose also to

have another subject domain composed of the managers of Sun Microsystems.

The resulting Subject Policy can be written as below.

<Sub jec tPo l i cy>
<SubjectDomainSpec ID=”SunMicrosystemsManagers”>

<Inc lude LDAPDN=”ou=managing , dc=SunMicrosystems , c=us”/>
</SubjectDomainSpec>
<SubjectDomainSpec ID=”ResearchDomain”>

<Inc lude LDAPDN=”dc=unipi , dc=i t ”/>
<Inc lude LDAPDN=”ou=research , dc=unikent , dc=uk”/>
<Exclude LDAPDN=”ou=eng inee r ing , dc=unipi , dc=i t ”/>

</SubjectDomainSpec>
</ Sub j ec tPo l i cy>

Figure 3.4: Subject Policy Example

If a subject requires the access but is not specified in the Include statements

as LDAP DN or in its subtrees, the system will deny the access and a Subject

Out Of Domain exception will be thrown.

CHAPTER 3. THE POLICIES 25

3.2.2 SOA Policy

The Source of Authority (SOA) Policy has the aim to specify who is trusted to

issue roles to the subjects specified in the subject policy. It is a list of LDAP

DNs of the SOAs. These DNs will match the root issuer name in published

ACs.

The first DN in the list has to be the policy creator’s DN, and it must be

always present. Subsequent, names of the possible remote SOAs have to be

present to ensure that the ACs signed by them are accepted. In other words,

every AC that is to be trusted by the policy, must have been signed by one of

the SOAs in the list. If this does not happen, the AC is not accepted.

Some cases require a SOA list composed by only the policy creator, and

consequently all ACs will have to be signed by him. In other cases exter-

nal SOAs may be necessary, providing then a support of externally allocated

privileges.

<SOAPolicy>
<SOASpec ID=”SOA” LDAPDN=”cn=MatteoCasenove , ou=student , o=

unipi , c=i t ”/>
</SOAPolicy>

Figure 3.5: SOA Policy Example

The above SOA Policy code defines a single SOA represented by the student

Matteo Casenove that has to be the policy creator, too.

3.2.3 Role Hierarchy Policy

The Role Hierarchy Policy defines the role hierarchies that are supported by

the RBAC policy. Each role hierarchy (the RoleSpec statement in the schema)

is a directed graph whereby it supports multiple superior roles inheriting the

privileges of a common subordinate role and also that a superior role inherits

all the privileges of a set of subordinate roles.

Each role is represented as an Attribute Type, Attribute Value pair where

the first is the type of the role and the second is the value (name) of the role.

Generally, two elements must be of the same type to be able to relate to each

other. Accordingly, the roles, member of the same hierarchy, must be of the

same type, usually it is the LDAP attribute type name.

CHAPTER 3. THE POLICIES 26

In the example below, we consider a basic hierarchy of a company composed

by the Managers at the top, as its subordinate the Finance Department and

the Marketing Department and at the bottom, as subordinate of them, there

is the Employee.

<RoleHierarchyPol i cy>
<RoleSpec OID=” 1 . 2 . 8 2 6 . 0 . 1 . 3 3 4 4 8 1 0 . 1 . 1 . 2 0 ” Type=”

companyRole”>
<SupRole Value=”Employee”/>
<SupRole Value=”Manager”>

<SubRole Value=”FinanceDepartment”/>
<SubRole Value=”MarketingDepartment”/>

</SupRole>
<SupRole Value=”FinanceDepartment”>

<SubRole Value=”Employee”/>
</SupRole>
<SupRole Value=”MarketingDepartment”>

<SubRole Value=”Employee”/>
</SupRole>

</ RoleSpec>
</ RoleHierarchyPol i cy>

Figure 3.6: Hierarchy Policy Example

3.2.4 Role Assignment Policy

Once we have defined the subject domain and the roles, it is necessary to

specify how to assign roles to the subjects. This is the duty of the Role

Assignment Policy, specifying which roles can be assigned to which subject by

which SOAs. For each assignment, we can also specify other parameters like

the delegation depth (0 means no delegation) and the time constraints4 on the

assignment.

For example, we can take in consideration a university environment with

”student”, ”staff” and ”professor” as domains5, and ”Student”, ”Staff” and

”Professor” respectively as roles. The consequent Role Assignment Policy,

with no delegation and no time restriction, can be written like the follow code:

4Policy time constraints, which are optional, over-rule any validity time in the attribute
certificate.

5This means that we will have a SubjectPolicy like: <SubjectDomainSpec
ID=”student”> <Include LDAPDN=”ou=student, o=PERMIS,c=gb”/ ><
/SubjectDomainSpec> etc.

CHAPTER 3. THE POLICIES 27

<RoleAssignmentPol icy>
<RoleAssignment ID=” RoleAssignment1 ”>

<SubjectDomain ID=” student ”/>
<RoleL i s t>

<Role Type=” permisRole ” Value=” Student ”/>
</ Ro leL i s t>
<Delegate />
<SOA ID=”SOA”/>
<Va l id i t y />

</ RoleAssignment>
<RoleAssignment ID=” RoleAssignment2 ”>

<SubjectDomain ID=” p r o f e s s o r ”/>
<RoleL i s t>

<Role Type=” permisRole ” Value=” P r o f e s s o r ”/>
</ Ro leL i s t>
<Delegate />
<SOA ID=”SOA”/>
<Va l id i t y />

</ RoleAssignment>
<RoleAssignment ID=” RoleAssignment3 ”>

<SubjectDomain ID=” s t a f f ”/>
<RoleL i s t>

<Role Type=” permisRole ” Value=” S t a f f ”/>
</ Ro leL i s t>
<Delegate />
<SOA ID=”SOA”/>
<Va l id i t y />

</ RoleAssignment>
</ RoleAssignmentPol icy>

Figure 3.7: Role Assignment Policy Example

3.2.5 Target Policy

The Target Policy specifies the target domains managed by the policy. They

are specified in the same way of the subject domains as LDAP DNs using In-

clude and Exclude statements but they can also be HTTP-like URLs.

<TargetPol i cy>
<TargetDomainSpec ID=” door ”>

<Inc lude LDAPDN=”dc=kent , dc=ac , dc=uk”>
<Exclude LDAPDN=”dc=l i b r a r y , dc=kent , dc=ac , dc=uk”/>

<Inc lude>
<ObjectClass Name=”Doors”/>

</TargetDomainSpec>
<TargetDomainSpec ID=” unsecured ”>

<Inc lude URL=” h t t p : // kent . ac . uk/”/>
<TargetDomainSpec>

CHAPTER 3. THE POLICIES 28

<TargetDomainSpec ID=” secured ”>
<Inc lude URL=” h t t p s : // kent . ac . uk/”/>

<TargetDomainSpec>
</ TargetPol i cy>

Figure 3.8: Target Policy Example

The union of all the domains specified in the TargetPolicy element is called

the coverage domain of the policy. A requested target that is not a member of

the coverage domain of the policy can never be mentioned in any of the access

rules of that policy because this is checked at policy parsing time. Note that

the opposite is not true: it is perfectly possible for a requested target to belong

to the coverage domain of the policy but not have any access rule mention this

particular target.

3.2.6 Action Policy

The actions that the users can perform are specified in the Action Policy. Every

target supports different actions on it so, all of them have to be specified in

the Action Policy as a list. Each action is defined with a name and a sequence

of arguments.

Supposing to have the previous types of targets, we will have then actions

for the door and actions for the link. However, it should be clear that in a case

like this it doesn’t make much sense to ”open” on the target http://kent.ac.uk/,

nor does it make much sense to ”GET” on a door. So, we can restrict the ap-

plicability of the different actions by specifying a TargetDomain inside the

relevant Action element. This is the recommended way of constructing poli-

cies and it is done as follows:

<Act ionPol i cy>
<Action ID=”open−door ” Name=”open”>

<TargetDomain ID=” door ”/>
</ Action>
<Action ID=” c lo s e−door ” Name=” c l o s e ”>

<TargetDomain ID=” door ”/>
</ Action>
<Action ID=” get−data ” Name=”GET”/>

<TargetDomain ID=” secured ”/>
<TargetDomain ID=” unsecured ”/>

CHAPTER 3. THE POLICIES 29

</ Action>
<Action ID=” post−data ” Name=”POST”/>

<TargetDomain ID=” secured ”/>
<TargetDomain ID=” unsecured ”/>

</ Action>
</ Act ionPol i cy>

Figure 3.9: Action Policy Example

3.2.7 Target Access Policy

The last one and the most important part of the policy is the Target Access

Policy. It is a set of Target Access clauses and it permits to make access control

decisions. In fact, each target access clause grants an user with a specified set

of role permissions to carry out the specified actions on the specified list of

targets, but only if the conditions of the optional IF clause are true. Note

that the policy works implicitly as Deny All and only specifying explicitly the

permission as a rule in the target access clause, this can be granted.

Target Access specifies a set of roles and this means that a user must possess

all these roles in order to gain the specific access/privilege.

After the set of roles, the Target List clause lists the targets taken from

the domain. For each target are specified the granted actions6.

Constraint RBAC is implemented in the policy with the IF clause. It

specifies the conditions which must be satisfied in order for the action to be

granted. A condition is comprises:

- a comparison (logical) operator,

- the LHS 7 operand, described by its source, name and type, and

- a series of one or more variables or constant values against which the

LHS operand is to be compared.

The comparison operator belongs to a set of operators defined in the

schema, such as EQ, GT, Substring, Subset etc.

6If no actions are specified then all actions that the target supports are granted.
7LHS is informal shorthand for the left-hand side of an equation.

CHAPTER 3. THE POLICIES 30

The LHS operand is, in general, a Context ADI as defined in [ISOACF].

It is the context information available in the AEF 8 and it describes security-

relevant properties of the context in which an access request occurs. In detail, it

is implemented by PERMIS with the environmental variables. If it is strongly

application dependent then the policy creator need to refer to the AEF Ref-

erence Manual for the list of the environment variables. An example of an

application independent environmental variable is the time of day.

Constants are the RHS operands and they comprise types and values. They

are compared against the LHS variables using the specified operator. The

resulting value will be true or false.

The following example allows the student to open to the door only in lim-

ited gap of time (after 8 am and before 9 pm).

<TargetAccess>
<RoleL i s t>

<Role Type=” permisRole ” Value=” Student ”/>
</ Ro leL i s t>
<TargetL i s t>

<Target>
<TargetDomain ID=” door ”/>
<AllowedAction ID=”open−door ”/>

</ Target>
</ TargetL i s t>
<IF>

<AND>
<GE>

<Environment Parameter=” time ” Type=”Time”/>
<Constant Type=”Time” Value=”∗−∗−∗T08:00”/>

</GE>
<LE>

<Environment Parameter=” time ” Type=”Time”/>
<Constant Type=”Time” Value=”∗−∗−∗T21:00”/>

</LE>
</AND>

</IF>
</ TargetAccess>

Figure 3.10: Action Policy Example

8Access Control Enforcement Function. This is the same as the Policy Enforcement
Point.

CHAPTER 3. THE POLICIES 31

3.3 How write a new policy

In the previous section we described individually each part of the policy, ex-

plaining what each one is used for and how to write it. Now we are going to

write a whole policy combining all the single parts together.

Writing a policy is a complex work of analysis and modeling that needs a

deep study of the system. Therefore we need to start from a model of a real

situation and then create a policy according to it. The model represents an

abstract view of an environment for which the policy need to be written. It

defines the subjects that interact in the system, the targets with which the

subjects interact, the type of interactions and how they can or cannot interact

each other. Only after an accurate analysis that permits to identify all the

interesting characteristics of the system , we can formalize these characteristics

in the policy with the formal chosen language. Note that if the policy is only

on a specific aspect of the real case, such as the access the departments of a

company, so the model will be only on the same aspect.

Let’s consider a real case of a university, but it would be kept in mind

that this model can be easily applied in other situations such as companies

or hospital systems (obviously with some adjustments). Among the several

matters of the university, the one we are interested in is access to the different

facilities by the personnel.

Starting analysing the most significative personnel, different identities are

identified: Administrator, Administrative Staff member, Secretary, Professor,

Researcher, MSc Student, BSc Student, Phd Student. Each identity corre-

sponds to a role in the university and consequently to a set of permissions.

Obviously the three types of students have in common the property to be

simply a student but each one adds different particularities. The subject do-

mains are represented by the found identities. For each identities correspond

its domain such as for Administrator the Administrators domain as well as

the Professors and so on. As can be easily imagined, the found roles inside

the university are a hierarchy and one example is in the Figure 3.11. The Ad-

ministrators are at the top, the students are at the bottom and in the middle

we have a hierarchy based on the privileges and the responsibility where the

CHAPTER 3. THE POLICIES 32

professors have the researchers as children that in turn they have the students

as children.

Administator

lll
lll

lll
lll

ll

UUUU
UUUU

UUUU
UUUU

U

Professor AdministrativeStaff

Researcher

RRR
RRR

RRR
RRR

RR

lll
lll

lll
lll

ll
Secretary

BScStudent

RRR
RRR

RRR
RRR

R MScStudent PhdStudent

kkkk
kkkk

kkkk
kk

Student

Figure 3.11: University Role Hierarchy

The facilities which have to be controlled are seen as resources. In the our

university environment, we are interested in the Library, the Laboratories, the

Departments, the Research Offices and Administrative Offices. Obviously in a

university there are more of them that could be important but in the example

we choose just these.

The only interaction that can make sense in our model is the action of

Access. In fact, a subject can access to a facility.

Describing which interactions may or may not be made, could be quite

complicated but, since using a Deny All policy, we are just interested to the

interactions that CAN BE MADE. For example, students can access the li-

brary (but just between 8:00 and 23:00), the MSc Students can access the

laboratories, the Researchers can access the research office, the professor to

the department and the administrators can access the administrative offices.

Everything else not in the policy and is not admitted. Using the inheritability

that the Hierarchical RBAC provides, the professor can also access to the li-

brary as well as to the laboratory and so on. With all of these we have almost

created a complete model that satisfies our purposes.

Whereupon, we make some consideration about: how the ACs are issued,

the role’s attributes, and also who is the SOA. In our case, the ACs are issued

CHAPTER 3. THE POLICIES 33

by an internal SOA, called USOA (University Source Of Authority), that stores

everything in a LDAP directory system.

We have defined most of the things, and what we need to do now is to

write those things in the policy using the XML language and the schema as a

guide. A possible policy that we could have as result is the following:

<X.509 PMI RBAC Policy OID=” Univer i styPol icyExample ”>
< !−− The d e f i n i t i o n o f the s u b j e c t domains −−>

<Sub j ec tPo l i cy>
<SubjectDomainSpec ID=” student ”>

<Inc lude LDAPDN=”ou=student , o=Example , c=gb”/>
</SubjectDomainSpec>
<SubjectDomainSpec ID=”admin”>

<Inc lude LDAPDN=”ou=admin , o=Example , c=gb”/>
</SubjectDomainSpec>
<SubjectDomainSpec ID=” s t a f f ”>

<Inc lude LDAPDN=”ou=s t a f f , o=Example , c=gb”/>
</SubjectDomainSpec>

</ Sub j ec tPo l i cy>
< !−− The d e f i n i t i o n o f the r o l e h i e r a r c h y −−>

<RoleHierarchyPol i cy>
< !−− uniRole i s a r o l e type in ven t ed r i g h t now so i t s OID does not

have sense −−>
<RoleSpec OID=” 1 . 2 . 3 . 4 . 5 . 6 . 7 . 8 . 9 ” Type=” uniRole ”>

< !−− The h i e r a r c h y i s the same o f the d e s c r i p t i o n s −−>
< !−− The Student r o l e has no Subro le be ing i t a l e a f o f the

h i e r a r c h y t r e e −−>
<SupRole Value=” Student ”/>
<SupRole Value=”Admin”>

<SubRole Value=” P r o f e s s o r ”/>
<SubRole Value=”AdminStaff ”/>

</SupRole>
<SupRole Value=” Researcher ”>

<SubRole Value=”BSc”/>
<SubRole Value=”MSc”/>
<SubRole Value=”PHd”/>

</SupRole>
<SupRole Value=” P r o f e s s o r ”>

<SubRole Value=” Researcher ”/>
</SupRole>
<SupRole Value=”MSc”>

<SubRole Value=” Student ”/>
</SupRole>
<SupRole Value=”PHd”>

<SubRole Value=” Student ”/>
</SupRole>
<SupRole Value=”BSc”>

<SubRole Value=” Student ”/>

CHAPTER 3. THE POLICIES 34

</SupRole>
<SupRole Value=” Sec re ta ry ”/>
<SupRole Value=”AdminStaff ”>

<SubRole Value=” Sec re ta ry ”/>
</SupRole>

</ RoleSpec>
</ RoleHierarchyPol i cy>

< !−− The d e f i n i t i o n o f the SOAs −−>
<SOAPolicy>

< !−− Only one SOA i s d e f i n e d us ing j u s t the i n t e r n a l one to i s s u e
the ACs −−>

<SOASpec ID=”SOA” LDAPDN=”cn=USOA, ou=admin , o=Example , c=
gb”/>

</SOAPolicy>
<RoleAssignmentPol icy>

<RoleAssignment ID=” RoleAssignment1 ”>
<SubjectDomain ID=” student ”/>
<RoleL i s t>

<Role Type=” uniRole ” Value=” Student ”/>
<Role Type=” uniRole ” Value=”MSc”/>
<Role Type=” uniRole ” Value=”PHd”/>
<Role Type=” uniRole ” Value=”BSc”/>

</ Ro leL i s t>
< !−− No d e l e g a t i o n are d e f i n e d −−>

<Delegate />
<SOA ID=”SOA”/>

< !−− No v a l i d i t y r e s t r i c t i o n s are d e f i n e d −−>
<Va l id i t y />

</ RoleAssignment>
<RoleAssignment ID=” RoleAssignment2 ”>

<SubjectDomain ID=”admin”/>
<RoleL i s t>

<Role Type=” uniRole ” Value=”Admin”/>
<Role Type=” uniRole ” Value=”AdminStaff ”/>

</ Ro leL i s t>
<Delegate />
<SOA ID=”SOA”/>
<Va l id i t y />

</ RoleAssignment>
<RoleAssignment ID=” RoleAssignment3 ”>

<SubjectDomain ID=” s t a f f ”/>
<RoleL i s t>

<Role Type=” uniRole ” Value=” P r o f e s s o r ”/>
<Role Type=” uniRole ” Value=” Resercher ”/>
<Role Type=” uniRole ” Value=” Sec re ta ry ”/>

</ Ro leL i s t>
<Delegate />
<SOA ID=”SOA”/>
<Va l id i t y />

</ RoleAssignment>
</ RoleAssignmentPol icy>

CHAPTER 3. THE POLICIES 35

< !−− The d e f i n i t i o n o f the t a r g e t domains −−>
<TargetPol i cy>

<TargetDomainSpec ID=” Library ”>
<Inc lude LDAPDN=”ou=l i b r a r y , o=Example , c=gb”/>

</TargetDomainSpec>
<TargetDomainSpec ID=” Laboratory ”>

<Inc lude LDAPDN=”ou=laboratory , o=Example , c=gb”/>
</TargetDomainSpec>
<TargetDomainSpec ID=”Department”>

<Inc lude LDAPDN=”ou=department , o=Example , c=gb”/>
</TargetDomainSpec>
<TargetDomainSpec ID=” ResearchOf f i c e ”>

<Inc lude LDAPDN=”ou=r e s O f f i c e , o=Example , c=gb”/>
</TargetDomainSpec>
<TargetDomainSpec ID=” Admin i s t r a t i v eOf f i c e ”>

<Inc lude LDAPDN=”ou=adminOff ice , o=Example , c=gb”/>
</TargetDomainSpec>

</ TargetPol i cy>
<Act ionPol i cy>

<Action ID=” Access ” Name=” Access ”/>
</ Act ionPol i cy>

< !−− The d e f i n i t i o n o f the t a r g e t acc es s r u l e s −−>
<TargetAccessPol i cy>

<TargetAccess ID=” TargetAccess1 ”>
<RoleL i s t>

<Role Type=” uniRole ” Value=” Student ”/>
</ Ro leL i s t>
<TargetL i s t>

<Target>
< !−− With the t a r g e t i s d e f i n e d a l s o the a l l o w e d a c t i o n s −−>

<TargetDomain ID=” Library ”/>
<AllowedAction ID=” Access ”/>

</ Target>
</ TargetL i s t>

< !−−The a cce ss r e s t r i c t i o n i s s p e c i f i e d us ing the invironment
parameter ” time ” compared wi th a cons tant o f the same type
d e f i n e d wi th the wanted time . −−>

<IF>
<AND>

<GE>
<Environment Parameter=” time ” Type=”Time”/

>
<Constant Type=”Time” Value=”∗−∗−∗T08:00”/

>
</GE>
<LE>

<Environment Parameter=” time ” Type=”Time”/
>

<Constant Type=”Time” Value=”∗−∗−∗T23:00”/
>

</LE>

CHAPTER 3. THE POLICIES 36

</AND>
</IF>

</ TargetAccess>
<TargetAccess ID=” TargetAccess2 ”>

<RoleL i s t>
<Role Type=” uniRole ” Value=”MSc”/>

</ Ro leL i s t>
<TargetL i s t>

<Target>
<TargetDomain ID=” Laboratory ”/>
<AllowedAction ID=” Access ”/>

</ Target>
</ TargetL i s t>

</ TargetAccess>
<TargetAccess ID=” TargetAccess3 ”>

<RoleL i s t>
<Role Type=” uniRole ” Value=” Research ”/>

</ Ro leL i s t>
<TargetL i s t>

<Target>
<TargetDomain ID=” ResearchOffce ”/>
<AllowedAction ID=” Access ”/>

</ Target>
</ TargetL i s t>

</ TargetAccess>
<TargetAccess ID=” TargetAccess4 ”>

<RoleL i s t>
<Role Type=” uniRole ” Value=” P r o f e s s o r ”/>

</ Ro leL i s t>
<TargetL i s t>

<Target>
<TargetDomain ID=”Department”/>
<AllowedAction ID=” Access ”/>

</ Target>
</ TargetL i s t>

</ TargetAccess>
<TargetAccess ID=” TargetAccess5 ”>

<RoleL i s t>
<Role Type=” uniRole ” Value=”AdminStaff ”/>

</ Ro leL i s t>
<TargetL i s t>

<Target>
<TargetDomain ID=” Admin i s t r a t i v eOf f i c e ”/>
<AllowedAction ID=” Access ”/>

</ Target>
</ TargetL i s t>

</ TargetAccess>
</ TargetAccessPol i cy>

</X.509 PMI RBAC Policy>

Figure 3.12: University Policy Example

CHAPTER 3. THE POLICIES 37

This is an example of a policy that could be passed to PERMIS to make

access decisions and that can work perfectly in a real situation. But this is not

the only scope where the policy can be written. We can write the policy in the

same way to protect either files in the filesystem or printers in a department or

equipment in a factory. An interesting study case is the policy used to protect

web resources; A more detailed explanation of how to write a web resource

policy is given in Appendix A.

The policies are not written just for access controls, they are used by the

Credential Validation Service and by the Delegation Issuing Service. The poli-

cies are exactly the same but what matters to them two is, in particular,

the RoleAssignmentPolicy. With this particular part the CVS can check the

trusted SOAs and which attributes these SOAs ares trusted to issue. The DIS,

on the other hand, uses the policy to know which attributes can be delegated

and with which restrictions.

3.4 Policy Editor

Figure 3.13: Policy Editor Screen: Policy Name

PERMIS provides some tools to help the policy administrator to write a

CHAPTER 3. THE POLICIES 38

policy and to test it. One of these tools is the Policy Editor. It is a java ap-

plication written around the PERMIS code. It helps to write a policy guiding

the user through various steps. Of course it cannot replace the role of the

modeling but, with a good model behind, it can help to write down the policy.

It provides a graphical interface with two modes to create a policy: the

wizard and the normal mode. The wizard guides the user in a series of steps

where the user is asked questions to produce the policy. In the normal mode,

the user has a graphic tab for each policy part such as Subject Policy, Target

Policy, Target Access Policy etc. We will take in consideration just the normal

mode, as this is less intuitive.

Figure 3.14: Policy Editor Screen: Subject Policy

First of all, the Policy Editor (PE) asks you to give a name for the policy,

it will be the OID of the policy. The figure 3.13 shows the main screen when

the user inserts the name of the policy, and the figure also shows the other tabs

of the policy editor. In the red box is immediately specified that the policy is

DENY ALL, and everything is defined is also permitted.

The figure 3.14 represents the Subject Policy tab, in (1) the user defines the

subject domain and (2) lists the domains already defined. The Policy Editor

can be connected to an LDAP server to retrieve the LDAP DN automatically,

CHAPTER 3. THE POLICIES 39

without specifying it by hand. (3) provides a readable version of the policy, in

this case it puts in to words the admin domain. The readable version is always

present in each tab to help the user to understand better what he is writing.

Figure 3.15: Policy Editor Screen: Role Hierarchy

Figure 3.16: Policy Editor Screen: Target Policy

CHAPTER 3. THE POLICIES 40

In the figures 3.15 3.16 we can see the role hierarchy definition and the

Target Policy. In (4) is defined the type of the role, in (5) the name of the

role and in (6) its place in the hierarchy. The Target Policy tab has the same

structure as the Subject Policy tab: (7) defines new targets and (8) lists the

targets already defined.

Figure 3.17: Policy Editor Screen: Target Access Policy

The Target Access Policy is created using the tab showed in the figure 3.17.

This tab uses the information already inserted in the other tabs and creates

target access policy combining these information. There are 3 lists where in

(11) is the user chose the role, in (12) chose the action and (13) the target.

This tab provide a button (14) to add conditions in the target access policy.

These condition are the same specified with the IF statement in the XML

version of the policy. Of course more target access policies can be created by

just clicking on the add role’s privileges button, or removed by clicking on the

delete role’s privileges.

After going through all the tabs and completing all the steps we can ex-

amine the final version of the whole policy either in XML or in the readable

version. The screen where the policy is printed is showed in the figure3.18.

CHAPTER 3. THE POLICIES 41

Figure 3.18: Policy Editor Screen: Policy view

3.5 Policy Tester

Once we have created the policy we cannot be completely sure that what

we wrote respects the model and then that the policy does what we expect.

Obviously we need a method to test the policy, to check if, when it will be

applied in the real environment, it will work correctly. In fact, let’s keep in

mind that the policy is used to protect sensitive resources, so we cannot permit

to compromise these resources due for a policy misconfiguration.

In order to test a policy and to be sure that the results will be the ones

expected, PERMIS provides a software called Policy Tester. The Policy Tester

as well as the Policy Editor is a java application written around the PERMIS

code. This means that it uses the same methods and the same interfaces that

PERMIS will use in reality.

It takes a policy and then prepares different use cases with known results

with which to test the policy. If the policy tester, according with the policy,

returns the aspected results then the policy is correct for those use cases. The

correctness of the policy increases withe number of the use cases tested on it.

Consider an example of use case a request such as ”a student wants access to

the library”.

The policy tester interface provides four different tabs to create use cases.

CHAPTER 3. THE POLICIES 42

Figure 3.19: Policy Test Screen: Subjects Tab

The first one (Figure 3.19) the user can add a new subject providing the nick-

name and the LDAP DN in the same way of the policy editor. But adding this

information is not enough. The policy tester, for the subject, needs also either

an AC or a Role Text file. Clicking with the right button of the mouse on

the added subject, we can add one of them. The role text file has a particular

structure which specifies the role type, the holder of the role (the LDAP DN

of the subject which is associated with the role text file), the SOA and the

name of the role as described in the Listening 3.20. Each subject needs its

own Role Text File or AC.

HOLDER=ou=student , o=PERMIS, c=gb
ISSUER=cn=SOA, ou=admin , o=PERMIS, c=gb
ROLE=permisRole
VALUE=Student

Figure 3.20: Role Text File Example

In the second tab, we add the actions that we want to test and in the next

tab we add the targets. In the Environmental tab (Figure 3.21) we specify all

the environmental variables but the types of these have to be defined in the

configurations. The default types, already configured in the PT, are the time

and the date.

The last tab is the most important one because it is the one that actually

CHAPTER 3. THE POLICIES 43

Figure 3.21: Policy Test Screen: Environment Tab

performs the tests. As showed in the Figure 3.22, the user selects the policy

to test. The user then can select the subject, the action, the target and the

environment variable for the use case and in the end run the test. The result

of the test is printed in the section at the bottom, showing the response from

the PDP as well as the information of the test. The Run tab provides also

a button to perform all the tests in one go. The ”Run All” button combines

Figure 3.22: Policy Test Screen: Run Tab

all the subjects with all the actions with all the targets to create use cases

CHAPTER 3. THE POLICIES 44

with all possible combinations of requests. The user will then check the result

of each test to be sure that the policy provides correct responses even with

unexpected combinations.

This last feature is really useful because it can permit to find unexpected

behaviors of the policy with particular requests that the user would never have

thought to test.

Chapter 4

Whitelist and Blacklist

We are now entering in the main part of the thesis, where we will present the

actual research work that has been done. In this chapter, the whitelisting and

blacklisting conceptual models will be presented and used to express our types

of policies, in particular the exception rules. The rules will be written using a

natural language formalism instead of using the PERMIS one, with the aim

to provide an abstract interpretation of the rules.

4.1 Whitelist and Blacklist

Whitelist and Blacklist are lists of particular entries, whether account name,

email address, IP etc. These lists can be expressed in very different ways and

use very different languages. The main difference between the two is the way

the system uses them. If the system reads a list of entries considering only

those entries trusted, then that list is a whitelist. For the blacklist, it is the

other way around. The list is of entries which are not trusted and everything

else is trusted. This means that a single list can have two opposite meanings

(white or black) just changing the way how the system interpreters it.

The system denies access to all by default, except the entities in the

whitelist. This is useful if we have a few trusted entries and a lot of untrusted

ones.

Whitelist benefits:

• protection from unknown identities

CHAPTER 4. WHITELIST AND BLACKLIST 46

• fast decision making

Whitelist drawbacks:

• difficult to manage where there are a lot of exceptions from the norm

• time consuming to set up if there are a lot of trusted entities

Listing just the few things permitted, the system is protected from all the

unknown threats and the security administrator does not have to take care of

them. Unfortunately, it often happens that the permitted clauses are not easy

to write especially if they include exceptions or special cases. Also, a whitelist

policy may need a lot of study of the system in order to create an appropriate

model of everyone who is trusted.

In comparison, the Blacklist is made of a list of untrusted entities which

are not allowed access. The system denies access to everyone in the list. This

is useful if the unsafe entities are known and any others are considered to be

safe.

Blacklist benefits:

• protection from every known malicious identity

• easy to set up if only a few untrusted entities

Blacklist drawbacks:

• needs numerous updates

• lets unknown attackers have access

• can only be updated after an attacker is known, which may be too late

It is impossible to know all the malicious entities since you cannot enumer-

ate infinity. There will always be things that you do not know and therefore

cannot be included in the blacklist. This means that in a critical system it is

not advisable to use a blacklist.

CHAPTER 4. WHITELIST AND BLACKLIST 47

Particularly, the whitelisting and the blacklisting are used in antivirus,

IDS/IPS, spam filter ex.

Blacklisting was the standard de facto method for these systems until recently.

Now whitelisting has become the new solution to counteract the numerous

updates and 0-day attacks, which represent the main blacklisting problem.

The priority problem is that the blacklist databases are becoming too big to

be distributed or to be managed easily. In general, the trusted subjects are

less then the untrusted ones, so the whitelist is easier to manage.

There is not one best choice between white or black list. It all depends on

what you need. Probably a combination of the two is a good solution.

Example whitelist: the rule specifies who can access what.

”All students can access the Library, Computer Center and Dining

Room.”

”All administrators can access the Administrative Office and Sen-

ate.”

. . .
Student PERMIT ACCESS

@Library
@Computer Center
@Dining Room

Administrator PERMIT ACCESS
@Admin i s t ra t ive Of f i c e
@Senate

. . .

Example blacklist: the rule specifies who cannot access what.

”All students and staff cannot access the Administrative Office and

Senate.”

CHAPTER 4. WHITELIST AND BLACKLIST 48

. . .
Student , S t a f f DENY ACCESS

@Admin i s t ra t ive Of f i c e
@Senate

. . .

4.2 Exception rules

We now start to talk about the exception rules that are the subject of this

thesis.

To represent the exception rule we use the example of role hierarchy in

Figure 4.1 of a University system in which there are the Admin role at the top

of the graph and the Student role at the bottom. A superior role inherits all

the privileges allocated to its subordinate roles.

Admin

wwooo
ooo

ooo
ooo

''OO
OOO

OOO
OOO

O

Researcher

''NN
NNN

NNN
NNN

N Professor

wwppp
ppp

ppp
pp

Staff

wwooo
ooo

ooo
oo

�� ''OO
OOO

OOO
OOO

MScStudents

''OO
OOO

OOO
OOO

BScStudents

��

PHdStudents

wwooo
ooo

ooo
oo

Students

Figure 4.1: Example role hierarchy

As we already said, to write the rule we use the following components:

- Subject - this represents the user that executes the action. It belongs

at the Subject Domain

- Subject Domain - this specifies the domain of the users who may be

granted roles within the policy, only these may be authorized to access

resources.

CHAPTER 4. WHITELIST AND BLACKLIST 49

- Target - this represents the resource that is request by the subject.

- Action - this represents the action that the subject want to perform.

Along with the previous roles hierarchy, we use two Subject Domain: Kent

and Computing.

With this model we can give some examples of different types of excep-

tion policies, which depend on the target role or the subject domain for the

exception.

Exception from the domain of subject A set of permissions is given to

a domain of subjects and a subset or a single subject can be excluded.

”Everyone from Kent can access the library except staff from Com-

puting.”

The universal set, in this case is all the people of the University of Kent, and

they can access the library, but the subset of the Computing Department staff

cannot.

”Everyone from Kent can access to the library except Matteo.”

Or

”Everyone from Computing can access to the library except Mat-

teo.”

In this case a single subject is excluded.

Exception for superior role When we give a privilege to a role any supe-

rior role has the same privilege but we can exclude one or more superiors.

”All staff can access the laboratory, Admin cannot.”

With this rule the staff and all its superior can access at the laboratory except

the Admin.

CHAPTER 4. WHITELIST AND BLACKLIST 50

”All Students can access the library except PHdStudents.”

With this rule all students and all their superiors can access the laboratory

except the PHd Students. Even if staff is superior of PHdStudent and Student,

it inherits the union of the all subordinate roles, so the staff has permissions

to access the library.

Exception for subordinate role This type of rule does not make much

sense because if a privilege was given to a role, the subordinate role does not

have it or inherit it, so we cannot give an exception rule to a role that already

is excluded.

Exception for subject The target of the exception rule is not a role but a

subject. Action is denied to a subject even if its role can perform it.

”All staff can access the laboratory except Matteo.”

With this rule the staff and all its superiors roles can access the laboratory

but Matteo cannot.

”All Students can access the library except Matteo.”

All Students and all their superior roles can access the library but Matteo

cannot. The difference between this rule and the previous domain rule is that

in this one Student is a role while Computing is a subject domain in the other.

These types of rules are useful if the access must be denied to a particular

subject or group of subjects.

Above we have seen all the possible examples of exceptions that can be

made in our types of policies. But how can we represents these rules in PER-

MIS policies without violating the constraints of the actual policies and re-

specting the schema? This will be the content of the next chapter that will

explain the solutions we found and we developed to permit writing these par-

ticular exception rules in PERMIS.

Chapter 5

Blacklist PERMIS Policies

In this chapter we will describe in detail the problems for the representation of

exception rules and how we have solved it. More then one solution is presented

and for each one we will underline the benefits and the drawbacks. Most of

the work has been on an analysis of the problem and on researching the best

way to solve it. In the end, the implementation of the solution was quite easy.

The only big problem with the implementation phase was understanding the

complexity of PERMIS.

5.1 Introduction

Coming back to the beginning, the aim of this work was to find a way to

represent exception rules in PERMIS. In fact, PERMIS has a PDP (Policy

Decision Point) that is a monotonic decision engine, in that everyone is denied

access except for those that are allowed by the rules. This means that it uses

whitelist policies where adding more rules grants more people access and there

is no way of reducing access by adding more rules1. Its downside is that it can

make it difficult to represent certain clauses with exception rules, e.g. ”All

students are granted access except MSc students”.

There is not only one way to write such clauses in PERMIS but some of

them cannot permit the maximum expressivity and others use mechanisms

designed for different purposes. A good final solution has been developed and

1This is the big deal of respecting the monotony of the decision engine. Any deny rule
violates the monotony.

CHAPTER 5. BLACKLIST PERMIS POLICIES 52

it also extends the expressivity of the PERMIS policies in general. In the next

sections these different solutions to the problem will be presented and some

parts of the implementations will be shown.

5.2 Exception rule in PERMIS Policies

We now consider the examples of exception clauses from the previous chapter.

We actually take those examples and we try to find a way to represent them

changing the PERMIS code and the policy schema as little as possible. In

fact, PERMIS has a really big code based and it is really complex in how it

is structured and how it is written. The PDP is almost the core of PERMIS

and so it is a very delicate part of the system. Every single little change could

create big consequences in a lot of different parts of PERMIS, producing then

undesirable behaviors.

Because it so delicate and sensitive, we started considering solutions that

do not touch the core PERMIS code at all. Taking the first exception case

of the previous chapter: Exception from the domain of subjects. Con-

sidering the clause ”Everyone from Kent can access to the library except staff

from the Computing Department”, this can be easily represented in the exist-

ing PERMIS policy. According with the schema, in the subject domain can

be used the include/exclude statement. As we already saw, with the include

we specify the LDADN of the subjects in the domain, but on the other hand,

with the exclude statement we actually exclude the subjects from the domain.

Obviously we can use the exclude statement to represent the exception clause

in the policy. Figure 5.1 shows how the subject domain will appear for the

specified clause.

<Sub jec tPo l i cy>
<SubjectDomainSpec ID=” ExceptionKent ”>

<Inc lude LDAPDN=”dc=Kent , c=GB”/>
<Exclude LDAPDN=”ou=computing , dc=Kent , dc=GB”/>

</SubjectDomainSpec>
</ Sub j ec tPo l i cy>

Figure 5.1: Example of subject domain with the exclude statement.

CHAPTER 5. BLACKLIST PERMIS POLICIES 53

Different considerations come out from this example. Using an exclude

statement in the domain means that all the times that the domain Kent is

used, the Computing Departement will be always excluded. In fact, the subject

domain is valid for all the access rules in the policy. If we want to use the

Kent domain with the Computing Department included in another access rule

of the same policy, this solution wont provide the correct results. If we specify

a second domain with all the Kent personal without any exclusion statement,

this will take precedence over the first domain, since the union of all domains

is used by PERMIS. Hence the excluded subdomain will be ignored.

As we can see, this solution is not really flexible and also it is applicable

only for the exclusion of the subject from the domain for all access rules.

Indeed, if we have a more complicate rule we will need to adapt the policy to

represent the exception rule.

Theoretically when this type of rule is used the set subtraction operation

is needed, where the excluded subset is subtracted from the authorized set.

Let S set of students and B the subset of S of BSc Students:

B ⊂ S (5.1)

then the rule ”All student can access at the library except the BSc Student”

can be:

Library access permit to S\B. (5.2)

Or

∀x ∈ S\B LibraryAccess(x). (5.3)

Unfortunately, the set subtraction does not work at the moment because

the PERMIS policy does not have ”set” in the role representation and all the

valid domains are merged together (set union).

Looking at the schema, became natural to say that we could use the policy

statement IF. The IF statement specifies the conditions which must be satisfied

CHAPTER 5. BLACKLIST PERMIS POLICIES 54

in order for action be performed and uses the Environmental Information to

retrieve the information needed. Inside, the boolean operations (e.g. AND,

OR, NOT) can be used.

We can start by defining a new environmental parameter called subjectID

to represent the ID of the subject and then use this parameter when represent-

ing the rule ”All students can access the library, computer center and dining

room but Matteo cannot enter to the library”. In fact, the policy schema spec-

ifies that any attributes are allowed in the Environment clause. So the subject

id or the subject name or any other attribute we need to represent the clause

can be used. The rule could be:

. . .
<TargetAccess>

<RoleL i s t>
<Role Type=” permisRole ” Value=” Student ”/>

</ Ro leL i s t>
<TargetL i s t>

<Target>
<TargetDomain ID=” l i b r a r y−doors ”/>
<AllowedAction ID=”open−door ”/>

</ Target>
</ TargetL i s t>
<IF>

<NOT>
<EQ>

<Environment Parameter=”ID” Type=” St r ing ”/>
<Constant Type=” St r ing ” Value=”Matteo”/>

</EQ>
</NOT>

</IF>
</ TargetAccess>
<TargetAccess>

<RoleL i s t>
<Role Type=” permisRole ” Value=” Student ”/>

</ Ro leL i s t>
<TargetL i s t>

<Target>
<TargetDomain ID=”ComputerCenter−doors ”/>
<AllowedAction ID=”open−door ”/>

</ Target>
<Target>

<TargetDomain ID=”DiningRoom−doors ”/>
<AllowedAction ID=”open−door ”/>

</ Target>

CHAPTER 5. BLACKLIST PERMIS POLICIES 55

</ TargetL i s t>
</ TargetAccess>
. . .

Figure 5.2: Using IF statement to provide an Exception rule

This example explains a way to represent another case of the clause: Ex-

ception for subject.

The rule ”All students are granted access at the library except MSc students”

is not that different from the previous case. In this rule we have the role MSc

student, so we have to add the role to the possible Environmental parameters

and use the same previous technique. The more the rules are complicated,

the more complicated it is to represent them in PERMIS. For example, the

rule ” All student can access the library and the bedroom. Matteo is a student

but cannot access the library.” cannot be represented in only one PERMIS

rule. The target accesses in the policy are grouped for subject and not for

target, so it is necessary to group them by targets as required by PERMIS :

one for the library target and one for the bedroom target. In this way the usual

Environmental Parameters can be used without any change. As we can see,

every small change in the natural language rules could produce very different

PERMIS rules.

This solution uses the current PERMIS policy, but it is possible only if the

PEP is modified in order that it passes the role twice to the PDP (once in

the subject object and once in the environment) and it ensures the CVS first

pulls all the subject’s roles. This is acceptable if we have to use the present

PERMIS policy.

But, using the Environment Parameter to represent the exception rule is

not a clean solution. In fact, the way to bypass this rule is for a MSc student

to only claim the student role and not the MSc role. A user could simply

not send the negative attributes and would gain access. This is why negative

attributes (such as MSc student) must be pulled by the CVS. We cannot

trust the user to send them, because he might not do it. More then this, the

main issue is that the Environment now has a completely different purpose. It

should manage only the variables that concern the PEP and not the user.

CHAPTER 5. BLACKLIST PERMIS POLICIES 56

So the PEP must call the CVS for it to pull the user attributes, then

the PEP must copy the roles to the environment and subject fields, then call

the PDP, and this is not a clean solution. A better solution is to alter the

schema and allow conditions on roles without the PEP having to put the roles

in the environment i.e. the code will pick up the roles from the subject object

and uses them in the comparison. Unfortunately this creates several problems

when respecting the NIST RBAC standard.

The correct writing of these rules is strictly dependent on the role hierarchy.

It is therefore necessary to use a proper hierarchy of roles.

Suppose we now change the role hierarchy. Using the new hierarchy in

Figure 5.3, we try to write again the exception rule ”All students are granted

access to the library except MSc students”.

This now introduces some ambiguity into the exception policy. Is the ex-

ception meant to be for any user who has the MSc Student role explicitly or

implicity (by inheritance) or only for users who are explicitly MSc Students,

and not for those who inherit its privileges such as Professors and Admin. We

need to determine what the precise meaning of the exception rule should be

before determining if the IF clause works correctly or not. There are thus two

interpretations of this exception rule:

1. All students are granted access to the library except MSc students only

2. All students are granted access to the library except anyone who has the

role of MSc student or above.

If the second meaning is intended, then the correct way to implement this

would be to change the role hierarchy so that access to the library is given to

Students, and MSc students are not made superior to Students.

We therefore conclude that this exception rule should apply to MSc stu-

dents only and not to its superior roles and that the first meaning is the correct

one.

In fact, using the first semantics IF statement works correctly, because

the inheritance of the permissions is not effected. The behavior we aspect is

CHAPTER 5. BLACKLIST PERMIS POLICIES 57

Admin

zzuu
uu
uu
uu
u

%%KK
KKK

KKK
KK

Secretary

��

Professor

��
Staff

$$I
II

II
II

I
MScStudent

yysss
sss

sss
s

Students

Figure 5.3: Example of role hierarchy 2

that, if the student role has a permission say, delete file, all the superior roles

inherit the same permission. But if the MScStudent role is excluded one of its

permissions in the IF statement, say access the library, this does not stop the

superior roles from still inheriting this permission, and they are not excluded

by the IF statement. So the Professor will still have the permissions of the

Student and can enter the library. NOTE that in theory, the Admin should

have the student permissions, inheriting them from Secretary and Staff and

therefore should not be affected by the IF statement.

This same ambiguity will appear with the combination of the two policies

but it will be explained in detail in the next section.

To test all these new solutions we used the Policy Tester software. We

wrote different use cases and we wrote a couple of policies to represent different

scenarios. We applied these use cases and we received the expected behavior

from the Policy Tester. We also set up a PERMIS standalone server with

our policies and we made specific XACML and SOAP requests to it using

a software tool called soapUI [SOAPUI]. soapUI is a free and open source

Functional Testing solution. With an easy-to-use graphical interface, soapUI

allows to create and execute automated functional, regression, compliance, and

load tests. In our case, it makes easy to work with SOAP and REST -based

Web services.

The solutions we found so far are correct but they can cover just a small set

of cases, where the rules are simple. For example, the policy ”All student can

access the library except researchers and all their superiors” cannot be easily

CHAPTER 5. BLACKLIST PERMIS POLICIES 58

represented with the present PERMIS policy. To have a mechanism that could

be used to write every type of rule, adding then expressivity to the policy, it is

necessary to create a Grant All PDP and combine it with the already existing

Deny All PDP.

5.3 Grant-all PERMIS decision engine

After a series of tests and tries we realized that the modifications and the

adaptations of the policies are not enough to represent all the exception rules.

The rules we can express just using the existing policy are just a few. We

decided then to make enhancements and updates to the PERMIS PDP.

However, PERMIS implements the PDP not just as a single element but

instead with a complex system of classes woven together. The parser classes

are a part of them.

Figure 5.4: UML Classes Schema

First of all, we have selected just the classes that concern our purpose, and

then we have understood how they interact with others. Figure 5.4 represents

the class schema. The interesting classes are the following:

CHAPTER 5. BLACKLIST PERMIS POLICIES 59

• CreateRBAC : this class is used to create a PermisRBAC object ac-

cording to the PermisConfiguration object. It creates the correct policy

finder according to the type of the policy specified in the configuration.

• PermisConfiguration : contains all the information specified in the

configuration file. When the configuration file is read, this class is instan-

tiated and the attributes of the object are filled with all the information.

• PermisRBAC : this class represents the shell of the PDP. It is the class

that has the method getCreds that makes the credential validation and

it has the method authzDecision that takes the decisions. It uses the

policy finder passed by parameter.

• SimplePermisPolicyFinder : This class implements the PolicyFinder

interface, and it permits to load a policy from a plain text XML file. It

creates the XMLPolicyParser to parse the policy and the AccessPolicy,

the core of the PDP.

• SimplePermisACPolicyFinder : This is a simple Policy Finder that

can be instantiated from an instance of an X.509 Attribute Certificate.

It has almost the same function of the SimplePermisPolicyFinder but it

uses an X.509 instead of a simple XML file.

• XMLPolicyParser : is the parser for the XML policy.

• AccessPolicy : This is the class representing the Target Access Policy.

It delivers the decision on whether a user with a certain set of credentials

is allowed to access a target. It is the core of the PDP and it makes the

decisions.

• XMLTags : This class contains the names of the XML tags the XML-

Parser looks for.

Once this subset of classes were selected it became easy to find the work flow

of the decision making procedure and so understand how this works. This work

flow can be summarised in the following steps: the CreateRBAC creates the

CHAPTER 5. BLACKLIST PERMIS POLICIES 60

PermisRBAC, the getCreds method of the latter is used to validate credentials

and the authzDecision is used to make the decision; the policy finder is passed

to the PermisRBAC and it manages the parsing of the policy according to its

type; the authzDecision method checks the credentials of the subject and calls

the policy finder method getAccessPolicy to retrieve the AccessPolicy object

created by the parser; Once the authzDecision method has the AccessPolicy

object, it calls its method responce passing the credentials, action, and target

to make the decision; In the end the response is returned.

So what we need is to go through this work flow and make the needed

changes.

First of all, we start from the policy. It is necessary that the policy has

something to specify that it is a blacklist policy. In this way, the parser identi-

fies the right type of policy and so it knows the way to manage it. We decided

then to add in the first statement of the policy the attribute DenyBased. When

this attribute is not present, the policy is a whitelist. Figure 5.5 shows the use

of this attribute.

<X.509 PMI RBAC Policy OID=” P o l i c y T e s t B l a c k l i s t ” DenyBased=” true ”>

Figure 5.5: Use of the new DenyBased attribute in the policy.

After this change, the policy can remain the same, as what is important is

the meaning of it. The only other change that we made to the policy is adding

a new statement called DeniedAction to take the place of the AllowedAction

one. The reason is primarily cosmetic. In fact, being a blacklist policy it does

not make sense to have an AllowedAction statement when the meaning of it

is to deny that action. So we decided to require the use of that statement in

place of the AllowedAction one in the blacklist policy. An example of the use

of it is in Figure 5.6.

<TargetAccess ID=” TargetAccess2 ”>
<RoleL i s t>

<Role Type=” permisRole ” Value=”MSc”/>
</ Ro leL i s t>
<TargetL i s t>

<Target>

CHAPTER 5. BLACKLIST PERMIS POLICIES 61

<TargetDomain ID=” Library ”/>
<DeniedAction ID=” Access ”/>

</ Target>
</ TargetL i s t>

</ TargetAccess>

Figure 5.6: Use of the new DeniedAction statement in the policy.

Once the policy has been designed, we need to modify the PERMIS code

to accept this new policy and to change the way it makes decisions.

First of all the parser has to parse the new statements for the blacklist

policy. It is also necessary that the statement DeniedAction is not present in a

whitelist policy or the AllowedAction is not present in a blacklist policy. These

checks have to be made by the parser.

After that, the decision making part of PERMIS has to be modified to

manage the blacklist policies. A lot of little changes have been done along the

code but the big one is in the response. Figure 5.7 shows an effective piece of

code for the responses provided by the AccessPolicy.

/∗ Note o f the ac ces s r u l e s have granted ac ces s .
∗/
i f (except ionSoFar == null) {

// no e x c e p t i o n s occurred , so i t ’ s a Deny
i f (denyBasedPdp) {

return new PERMISResponse (true) ;
} else {

return new PERMISResponse (fa l se) ;
}

} else {
// propagate the e x c e p t i o n recorded
throw except ionSoFar ;

}

Figure 5.7: Modified Code for the response in the AccessPolicy file.

All the other changes concern the use of the PermisRBAC and the policy

finder. It is important to see that after the changes for the blacklist concept

are present in the code, the PDP knows that the new type of policy exists and

it knows how to make decisions according to it.

The new PDP, in the end, is the same as before but now it works with two

different types of policies. It recognises the policy type , it parses it correctly

CHAPTER 5. BLACKLIST PERMIS POLICIES 62

and it makes the right decisions. The table of the current decisions made in

relation with the previous ones are shown in the table 5.1. It provides the de-

cision when a Target Access Rule (TAR) that grants the request is ”Present”,

”NOT Present” or ”Not Sure” in the policy.

TAR Present TAR NOT Present TAR Not Sure
WhiteList PDP GRANT DENY NOT APPLICABLE

or INDETERMINATE
Blacklist PDP DENY GRANT NOT APPLICABLE

or INDETERMINATE

Table 5.1: Expected responses for a specific request.

Not Sure means that the policy does not have enough information to resolve

the request so the PDP returns NOT APPLICABLE or INDETERMINATE

accordingly with what is missing.

But this is not the end. In this way we just created a reversed PDP that

can manage the blacklist but this it is not enough for our purposes. Using just

this new PDP we can express negative rules but not our exception rules. To

reach this point, it is necessary to combine both of the two PDPs in one single

PDP, that acts like a single one that uses two policies.

5.4 Combination of grant-all and deny-all PER-

MIS decision engine

From having two separate deny all and grant all PDPs to have a single com-

bined PDP the step is small. It is just enough to create a wrapping PDP

around the two single PDPs that provides the same interface, being in this

way completely transparent for those who use it. The only problem is to

identify exactly where to create the wrapper, at which level.

The PermisRBAC that represent effectively the starting point of the PDP

takes in reality a policy finder as a parameter and this is linked to a single

policy, so it cannot be wrapped around by a combination class. It is almost

the same for the policy finder. It parses the policy and so it works with a

CHAPTER 5. BLACKLIST PERMIS POLICIES 63

single policy. At this point, it is too complicated to rewrite one of these two

class and also it is out of the scope of the current dissertation to make large

changes to PERMIS.

Changing the point of view, we can see that PERMIS uses mainly two types

of interfaces: XACML and SAML. These two interfaces handle the requests

respectively, and their classes take the PermisRBAC object to make decisions.

Particularly the SAML handler class is created starting from a XACML handler

class and the latter takes as parameter the PermisRBAC with the linked policy.

Accordingly, it follows the creation of a combination class of XACML han-

dlers that takes two different PermisRBAC with their policies. Inside this

combination class, the single XACML handlers are created with the correct

PermisRBAC objects. The class has to have the same structure and type

of the XACML handler class (Xacmlv2Handler.java) so it implements the

interface class XamlHandler. We called our class CombinationXmlHandler.

After that, we mainly overrode the method handleRequest that is the main

method and the one that returns the decision for the specific request. In order

to return the final response, the new combination entity needs to combine all

the possible combinations of responses of the handlers. Figure 5.2 shows the

responses combinations.

Whitelist Blacklist Combination
- DENY DENY
- INDETERMINATE INDETERMINATE

DENY GRANT or NOT APPLICABLE DENY
PERMIT GRANT or NOT APPLICABLE PERMIT

INDETERMINATE GRANT or NOT APPLICABLE INDETERMINATE
NOT APPLICABLE GRANT or NOT APPLICABLE NOT APPLICABLE

- means All possible responses.

Table 5.2: Table of the results of the combination of PDPs responses.

This table shows how we decided to manage the combination of the re-

sponses. First of all, it is clear that we gave priority to the blacklist PDP,

in fact only if the blacklist one returns NOT APPLICABLE or GRANT the

control is passed to the whitelist one. In an access control environment and

particularly when we are protecting a resource, for security matters is better to

CHAPTER 5. BLACKLIST PERMIS POLICIES 64

deny an access than permit the access to an unauthorised entity. The response

valuation rule is cerated respecting this concept. The INDETERMINATE re-

sponse from the blacklist PDP is returned as final response because this means

that an error is occurred during the processing of the request or something is

missing then for the same reason of before is better to return immediately the

problem to the caller and leave to this the duty to handle it. The NOT AP-

PLICABLE response instead has not the same behavior. Differently from the

single blacklist PDP, here the PDPs are combined so the policies are combined

too, meaning that if some domain is missing in the blacklist policy it is maybe

present in the whitelist one and so the handling of the request is passed to the

whitelist PDP that will provide the final response.

As we already introduced, there is another thing that works differently from

what we expected. In Section 5.2, we presented the role hierarchy in Figure 5.3

and we mentioned the fact that the inheritance of privileges using exception

rules. However, when we use our blacklist PDP the inheritance of exceptions

rules is enabled, so that even if theoretically the Admin role should have the

inherited student privileges, in our implementation this is no longer true. The

following example explains this issue fully.

Using the same hierarchy in Figure 5.3, say we want express, using the

combined PDP, the exception rule ”Students can access to the library except

MSc Students”.

We have to suppose also that both of the two policies define exactly the

same role hierarchy. At this point, if PERMIS receives a request from an

Admin to access the library, according to the policy and the combined PDP,

the response is deny. This is in contrast with what we said theoretically should

happen, but we consider this correct for the following reasons. The first one

is that if there is a conflict between the two PDPs we give the blacklist one

highest priority, for the same reason we said before about security matters: is

better to deny then permit if we want to protect a resource. The second reason

is a bit more sophisticated and is about the attributes (or roles) and privileges.

If an attribute (role) is in a hierarchy, it contains inside itself all the children

attributes (roles). A subject that claim a particular attribute can obviously

CHAPTER 5. BLACKLIST PERMIS POLICIES 65

. . .
<TargetAccess>
<RoleL i s t>
<Role Type=” permisRole ”

Value=” Student ”/>
</ Ro leL i s t>
<TargetL i s t>
<Target>
<TargetDomain ID=” Library ”

/>
<AllowedAction ID=” a c c e s s ”

/>
</ Target>

</ TargetL i s t>
</ TargetAccess>
. . .

Figure 5.8: TargetAccessPolicy in the
Whitelist Policy

. . .
<TargetAccess>
<RoleL i s t>
<Role Type=” permisRole ”

Value=”MScStudent”/>
</ Ro leL i s t>
<TargetL i s t>
<Target>

<TargetDomain ID=”
Library ”/>

<DeniedAction ID=”
a c c e s s ”/>

</ Target>
</ TargetL i s t>

</ TargetAccess>
. . .

Figure 5.9: TargetAccessPolicy in the
Blacklist Policy

Figure 5.10: The two policies handled by the combined PDP.

claim any children attributes. Accordingly, it follows that to gain the access

the subject has just to claim an attribute (role) lower in the hierarchy. In the

specific case, the subject can make the request with the attribute staff and

then PERMIS will grant the access. But if a professor requests access then he

will inherit the MSc student role and therefore be denied access. The solution

to this problem is to change the role hierarchy in the GrantAll PDP, so that

no roles are superior to the MSc student role, and then no roles will inherit

the exception to be denied access to the library.

Chapter 6

Validation

In this part we describe how the system was validated to prove that the sys-

tem is working correctly. Some validation tests will be shown as well as the

corresponding responses. We also describe the performance test we made for

the new combined PDP.

6.1 Correctness Tests

In the previous chapter all the found solutions have been presented and dis-

cussed, now is necessary to describe the ways we used to prove their correctness.

When the exception rules were expressed using just the Exclude/Include

statements, it was not necessary to write particular tests. To test these we

simply used the Policy Tester software. We wrote some use cases and a cou-

ple of policies to test and we submitted them to the PolicyTest. Finally, we

compared the results of the PolicyTester with the expected ones to check if

everything was right. The results were as expected.

Once we introduced the use of the IF statements to express exception rules,

we ran our tests with the soapUI. This is because it is not possible to use the

Policy Tester for these tests as it does not correctly create the environmental

attributes. The soapUI is a testing software that permits to create easily

SAML and XACML requests and then receive the respective responses. So we

prepared different requests to represent different situations and then checked

that PERMIS behaved correctly by the response returned. Of course to use

CHAPTER 6. VALIDATION 67

soupUI to make requests, a PERMIS standalone server needed to be set up.

Figures 6.1 and 6.2 show an example of an XACML request and the corre-

sponding response from PERMIS printed by the soapUI.

<soapenv:Envelope xmlns:soapenv=” h t tp : // schemas . xmlsoap . org / soap /
enve lope /” xmlns=” u r n : o a s i s : n a m e s : t c : x a c m l : 2 . 0
: c o n t e x t : s c h e m a : o s ”>

<soapenv:Header />
<soapenv:Body>
<Request>
<Subject>
<Attr ibute Att r ibute Id=” u r n : o i d : 1 . 2 . 8 2 6 . 0 . 1 . 3 3 4 4 8 1 0 . 1 . 1 . 1 4 ”

DataType=” h t t p : //www. w3 . org /2001/XMLSchema#s t r i n g ”>
<Attr ibuteValue>MSc</ Attr ibuteValue></ Att r ibute>
</ Subject>
<Resource>
<Attr ibute Att r ibute Id=” u r n : o a s i s : n a m e s : t c : x a c m l : 1 . 0

: r e s o u r c e : r e s o u r c e−id ” DataType=” h t tp : //www. w3 . org /2001/
XMLSchema#s t r i n g ”>

<Attr ibuteValue>ou=l ib−door , o=PERMIS, c=gb</ Attr ibuteValue>
</ Attr ibute>
</ Resource>
<Action>
<Attr ibute Att r ibute Id=” u r n : o a s i s : n a m e s : t c : x a c m l : 1 . 0 : a c t i o n : a c t i o n

−id ” DataType=” h t tp : //www. w3 . org /2001/XMLSchema#s t r i n g ”>
<Attr ibuteValue>Access</ Attr ibuteValue>
</ Attr ibute>
</ Action>
<Environment>
<Attr ibute Att r ibute Id=”ID” DataType=” h t t p : //www. w3 . org /2001/

XMLSchema#s t r i n g ”>
<Attr ibuteValue>Matteo</ Attr ibuteValue>
</ Attr ibute>
</Environment>
</ Request>
</ soapenv:Body>
</ soapenv:Envelope>

Figure 6.1: XACML Request in soapUI

<soapenv:Envelope xmlns:soapenv=” h t t p : // schemas . xmlsoap . org / soap
/ enve lope /”>

<soapenv:Body>
<urn:Response xmlns:urn=” u r n : o a s i s : n a m e s : t c : x a c m l : 2 . 0

: c o n t e x t : s c h e m a : o s ”>
<urn :Resu l t>
<urn :Dec i s i on>Permit</ urn :Dec i s i on>
<urn :S ta tus>
<urn:StatusCode Value=” u r n : o a s i s : n a m e s : t c : x a c m l : 1 . 0 : s t a t u s : o k ”/>

CHAPTER 6. VALIDATION 68

</ urn :S ta tus>
</ urn :Resu l t>
</ urn:Response>
</ soapenv:Body>
</ soapenv:Envelope>

Figure 6.2: XACML response in soapUI

Finally, it is necessary to test the last and more interesting but complex

solution we developed: the combined PDP. This one is plugged in the PERMIS

standalone server so we tested some examples of requests using soapUI.

All the PERMIS code is tested using junit so we chose to use this for

our combined PDP as well. junit runs the tests for the PERMIS code all

together, and if some tests fail, it means that our changes produce unexpected

behaviours in other parts of the code.

Using this type of test for our code , it will produce test cases for future

developments. Hence, we wrote some java test classes.

We prepared some regression tests using junit first of all to test if the pars-

ing process is correct and then if with particular requests PERMIS provides

the expected responses. In the first case, the parser should thrown an excep-

tion if there are any problems in the policy including the wrong use of the new

statement DeniedAction. Figure 6.3 shows the code that checks this in the

junit test class.

try {
eng ine = (new CreateRBAC(c o n f i g)) .

getPermisRBAC () ;
} catch (Po l i cyPars ingExcept ion e) {

asse r tTrue (fa l se) ;
}

Figure 6.3: junit code for the checking of a correct parsing.

Of course this code is just a piece of testing code in one of the testing class.

To test the corrrectness of the responses, we prepared different hand made

requests and then we submitted them to a standalone PDP set up with a

blacklist policy. Combining together legal and illegal requests with the PDP,

CHAPTER 6. VALIDATION 69

we tested the responses and compared them with the expected ones. Figure 6.4

is an example of a testing method for a specific request with a specific policy

where the request should be denied.

/∗∗
∗ Test b l a c k l i s t .
∗ Tests whether p a s s i n g a c o r r e c t b l a c k l i s t

p o l i c y and a proper reques t ,
∗ the engine r e c o g n i s e s the p o l i c y c o r r e c t l y and

makes a r i g h t d e c i s i o n .
∗/

@Test
public void te s tDeniedAccess () {

PERMISConfiguration c o n f i g =
getBaseConf igurat ion (true) ;

c reateEng ine (c o n f i g) ;

try {
Subject sub = getSubjec t2 () ;
a s s e r t F a l s e (eng ine . authzDec i s ion (sub , ACTION,

TARGET, null) . i sAuthor i s ed ()) ;
} catch (PbaException e) {

asse r tTrue (fa l se) ;
} catch (RFC2253ParsingException e) {

asse r tTrue (fa l se) ;
}

}

Figure 6.4: junit code that checks a response of the DPD with an unauthorised
request.

Running these tests, we have an idea of the behaviour of the system and

the changes we made, and then if the behaviour is as expected. If a test goes

wrong and it fails, it means that something in the process did not work as

expected. We made a good analysis of the problem and a good planning of the

solutions and this has permitted us to ensure that we have no fails in the tests.

Of course, in this way there is no assurance of 100% correctness, but adding

more tests will only show that the software can be considered more correct.

For our purposes, we are satisfied with the tests we made so far and with

their results.

CHAPTER 6. VALIDATION 70

6.2 Performance Test

In every project, it is important to know which are the benefits of any new

extensions, but also what are the costs of providing them. In our case, what

we could lose is performance. The new combined PDP could spend too much

time to make decisions and its benefits could be not enough compared to the

handicap of a longer time.

It was necessary to have an idea of the times of the PDPs, so we created

performance tests to calculate these times. The tests aimed to calculate the

time that the PDP requires to resolve a request. We used a Benchmark testing

framework called BB made by the Elliptic Group. It used a normal Whitelist

policy and a normal Blacklist policy and then they were used together. The

two policies are in Appendix B.

The results of the performance tests are shown in table 6.11.

Mean CI Deltas Confidence Level
Deny All PDP 128.480µ s −1.841µ s,+1.680µ s 0.95
Grant All PDP 128.985µ s −1.661µ s,+1.787µ s 0.95
Combined PDP 131.097µ s −1.800µ s,+1.495µ s 0.95
Combined PDP 1 130.231µ s −1.700µ s,+1.544µ s 0.95
1 Combined PDP with an empty blacklist policy. The policy has no Tar-

getAccessPolicy so it denies nothing. NOTE that this type of policy
is used only for this test as it is not compliant with the schema that
requires the TargetAccessPolicy statement.

Table 6.1: Table of the results of the performance tests.

The CI Deltas indicate the reliability of the mean. It is an interval calcu-

lated from the performance of each test, in principle different from sample to

sample, that frequently includes mean. How frequently the observed interval

contains the mean is determined by the confidence level.

As we can see from the results, we have good performances for both the

Grant All PDP that and the Deny All PDP. They use exactly the same policy

and they have almost the same performance. The Combined PDP has a really

1The tests are preformed on local system. The system has: Intel(R) Core(TM)2 Duo
CPU E6750 @ 2.66GHz with 4096 KB of cache and 4 GB of RAM.

CHAPTER 6. VALIDATION 71

good performance. There is only a slightly delay between the time of the

Combined PDP and the simple Deny All PDP and the reason is because most

of the time is spent to elaborate the request and the context and only a little

time is used to make the real decision.

With the good performance tests we conclude that the real gain of the new

feature is up to expectations.

Chapter 7

Conclusion

In this last chapter we review the results that were achieved with the project

and the related works. We also provide an overview of the possible future

developments.

7.1 Achievements

According to the requirements of the project, the work was focussed on a new

extension to express the exception rules, but it has involved more then just

the PERMIS software but other entities of the infrastructure as well. Even if

it is not strictly a part of PERMIS, the PolicyTester, for example, has been

modified in order to help the tests of the new PERMIS functionalities for the

exception rules. The new PolicyTester features permit us to make tests using

the two types of policies by them self or combined together.

The real gain of the PERMIS infrastructure is the new feature of the PDP.

The extension for the exception rules brought new interesting and useful abil-

ities to the PDP. The enhanced PERMIS PDP extends the PERMIS expres-

sivity, providing to the user the freedom to use either type of policy (Blacklist

or Whitelist) according to its needs. It is not dependent only on the whitelist

policies any more, but it can manage blacklists as well. This permits us to use

PERMIS in different environments where the whitelist policy is unsuitable.

Ultimately, the combined PDP concludes the extension of the expressivity

of the policies. It permits to use the whitelist and the blacklist policy at the

CHAPTER 7. CONCLUSION 73

same time combining together the meaning of the two and providing a complete

coverage from the threats. Even if before we had the same security from the

threats, now we can have the same level providing a simple way to express

it. In fact, combining the two policies, their writing process has a very lower

complexity. Moreover, of course, this new feature achieves our main target:

permit to write exception rules in the policy.

All of this has been achieved without losing anything on performance. The

new features, in fact, do not add any significant additional time during the

access control process.

7.2 Future Developments

The results that the project reached are good enough for the expressivity of

PERMIS policies. What han not been done so far, is the integration of these

new Grant All and Combined PDPs in all the extra features of PERMIS. In

fact, the new PDPs contain only the basic PERMIS requirements. The BTG

(Break The Glass) rules, Obligations as well as other extensions of the RBAC

model are not fully integrated with the our new features, accordingly they are

not supported in our model.

Possible future developments could be to increase the integration of the

new PDPs with all the other extensions that PERMIS has.

It could be also interesting to introduce the concept of exception rules in

the Policy Editor, especially in the part where a rule in natural language is

translated in a PERMIS rule.

Appendix A

PERMIS Policies for Web
Based Resources

PERMIS policies for web based resources are not different from any other

PERMIS policy. However, the web resource policy has to include the specifics

of the web-server protocol used by the browser (i.e. HTTP) and the specific

way that web resources are named. This effects the way how targets and

actions are specified in the policy.

A.1 Specifying Resources

Web servers refer their resources with URLs. The policy writer has to identify

these URLs and the related subdirectories that may have access restrictions.

Once he has done that, he has to group the resources in domains that have the

same restrictions. As a general principle, domains with stricter access controls

should be subordinate to domains with more relaxed access controls.

When we write the policy, we include these domains in the policy and for

each of them the related URLs. For example, we can specify three domains:

public domain, restricted domain and top secret domain. The public domain

includes the URL www.mysite.com that is the public page of the site. The

restricted domain includes the subdirectory www.mysite.com/restricted that

is the administration directory of the site. In the end, the top secret domain

includes the URL www.mysite.com/topsecret.php.

APPENDIX A. PERMIS POLICIES FOR WEB BASED RESOURCES 75

A.2 Specifying Actions

The actions are defined at the level of the web-browser to web server interaction

protocol, HTTP. There are 8 actions that directly correspond to the HTTP

methods, defined in the RFC 2616.

When the web server is configured to use PERMIS, for each request it

interrogates the PDP in order to determinate whether the request is allowed

or denied. Hence, the web server will pass the requested URL as target and

the requested HTTP method name as action.

Don’t forget that if an action is not mentioned in the PERMIS policy, it

will be denied to everyone.

A.3 Set up PERMIS policies for less secure

subordinate directories

As it stands, secure directories are subordinate to less secure directories but,

some times, could be necessary restrict access to a superior directory. In this

way, the exclude rule denies the access to a superior directory even if the one

of subdirectory can be accessed.

Using the previous example, if in the Restricted Domain we have a partic-

ular resource to protect from who can access to Top Secret we should exclude

these from the Restricted Domain.

Based on PERMIS policy schema, the Exclude and Include clause can be

used to exclude or include directory from a domain.

In the definition of the Target Domain policy, for each target domain, we

specify all the permitted resources with the Include clause and all the resources

not permitted with the Exclude clause.

A.3.1 Exclude the access to subdirectory

As we have seen, the directory with stricter access control is subordinated to

directory with more relaxed access control. In the policy, this is represented

APPENDIX A. PERMIS POLICIES FOR WEB BASED RESOURCES 76

including only the permitted directory in the domain and exclude the subdirc-

tory with denied access.

For example, if we have this role:

”Everyone can access http://www.mysite.com/ but not

http://www.mysite.com/restricted/ or http://www.mysite.com/cgi-

bin/”

”Staff can access http://www.mysite.com/restricted/ but not

http://www.mysite.com/restricted/secret”

the PERMIS policy could be:

. . .
<TargetPol i cy>

<TargetDomainSpec ID=”PublicDomain”>
<Inc lude URL=” h t tp : //www. mysite . com/”/>

<Exclude URL=” ht t p : //www. mysite . com/ r e s t r i c t e d ”/>
<Exclude URL=” ht t p : //www. mysite . com/ r e s t r i c t e d ”/>

</TargetDomainSpec>
<TargetDomainSpec ID=” RestrictedDomain ”>

<Inc lude URL=” h t t p : //www. mysite . com/ r e s t r i c t e d ”/>
<Exclude URL=” ht t p : //www. mysite . com/ r e s t r i c t e d /

s e c r e t ”/>
</TargetDomainSpec>

</ TargetPol i cy>
. . .

A.3.2 Exclude the access to superior directory

In the same way, exclude the access to superior directory can be possible using

Include/Exclude clause. The only difference is that all superior directory must

be excluded.

For example, if we have this role:

”Everyone can access http://www.mysite.com/TopSecret/restricted/public

but not http://www.mysite.com/TopSecret/restricted or

http://www.mysite.com/TopSecret”

”Staff can access http://www.mysite.com/TopSecret/restricted but

not http://www.mysite.com/TopSecret ”

”Admin can access http://www.mysite.com/TopSecret ”

APPENDIX A. PERMIS POLICIES FOR WEB BASED RESOURCES 77

the PERMIS policy could be:

. . .
<TargetPol i cy>

<TargetDomainSpec ID=”PublicDomain”>
<Inc lude URL=” h t tp : //www. mysite . com/ TopSecret / r e s t r i c t e d /

pub l i c ”/>
<Exclude URL=” ht t p : //www. mysite . com/ TopSecret /

r e s t r i c t e d ”/>
<Exclude URL=” ht t p : //www. mysite . com/ TopSecret ”/>

</TargetDomainSpec>
<TargetDomainSpec ID=” RestrictedDomain ”>

<Inc lude URL=” h t t p : //www. mysite . com/ TopSecret /
r e s t r i c t e d ”/>

<Exclude URL=” ht t p : //www. mysite . com/ TopSecret ”/>
</TargetDomainSpec>
<TargetDomainSpec ID=”TopSecretDomain”>

<Inc lude URL=” h t t p : //www. mysite . com/ TopSecret ”/>
</TargetDomainSpec>

</ TargetPol i cy>
. . .

Using the combination of Include/Exclude clause in the PERMIS policy,

the access control of the web based directory can be possible.

Then we have to use all the techniques we described in the thesis to repre-

sent the exception rules, so that we can write in PERMIS rules like:

”Student can access http://www.mysite.com/gallery/fairytale”

”BSc Student except Matteo can access http://www.mysite.com/gallery/”

Or,

”Staff except Researchers can access

http://www.mysite.com/projects/admin”

A complete description of this topic is provided in the paper ”How to Specify

PERMIS Policies for Controlling Access to Web Based Resources” available

on the PERMIS’s site.

Appendix B

Policies for the Benchmark tests

These two policies were used for the benchmark tests.

<?xml version=” 1 .0 ” encoding=”UTF−8”?>
<X.509 PMI RBAC Policy OID=” Po l i cyTes tWhi t e l i s t ”>

<Sub j ec tPo l i cy>
<SubjectDomainSpec ID=” student ”>

<Inc lude LDAPDN=”ou=student , o=PERMIS, c=gb”/>
<Inc lude LDAPDN=”cn=dis , ou=admin , o=PERMIS, c=gb”/>

</SubjectDomainSpec>
<SubjectDomainSpec ID=”admin”>

<Inc lude LDAPDN=”ou=admin , o=PERMIS, c=gb”/>
</SubjectDomainSpec>
<SubjectDomainSpec ID=” s t a f f ”>

<Inc lude LDAPDN=”ou=s t a f f , o=PERMIS, c=gb”/>
<Inc lude LDAPDN=”cn=dis , ou=admin , o=PERMIS, c=gb”/>

</SubjectDomainSpec>
</ Sub j ec tPo l i cy>
<RoleHierarchyPol i cy>

<RoleSpec OID=” 1 . 2 . 8 2 6 . 0 . 1 . 3 3 4 4 8 1 0 . 1 . 1 . 1 4 ” Type=”
permisRole ”>
<SupRole Value=” Student ”/>
<SupRole Value=”Admin”>

<SubRole Value=” P r o f e s s o r ”/>
<SubRole Value=” Research ”/>

</SupRole>
<SupRole Value=” S t a f f ”>

<SubRole Value=”BSc”/>
<SubRole Value=”MSc”/>
<SubRole Value=”PHd”/>

</SupRole>
<SupRole Value=” P r o f e s s o r ”>

<SubRole Value=” S t a f f ”/>
</SupRole>
<SupRole Value=”MSc”>

<SubRole Value=” Student ”/>
</SupRole>

APPENDIX B. POLICIES FOR THE BENCHMARK TESTS 79

<SupRole Value=”PHd”>
<SubRole Value=” Student ”/>

</SupRole>
<SupRole Value=”BSc”>

<SubRole Value=” Student ”/>
</SupRole>
<SupRole Value=” Research ”>

<SubRole Value=” S t a f f ”/>
</SupRole>

</ RoleSpec>
</ RoleHierarchyPol i cy>
<SOAPolicy>

<SOASpec ID=”SOA” LDAPDN=”cn=SOA, ou=admin , o=PERMIS, c=gb
”/>

</SOAPolicy>
<RoleAssignmentPol icy>

<RoleAssignment ID=” RoleAssignment1 ”>
<SubjectDomain ID=” student ”/>
<RoleL i s t>

<Role Type=” permisRole ” Value=” Student ”/>
</ Ro leL i s t>
<Delegate />
<SOA ID=”SOA”/>
<Va l id i t y />

</ RoleAssignment>
<RoleAssignment ID=” RoleAssignment2 ”>

<SubjectDomain ID=”admin”/>
<RoleL i s t>

<Role Type=” permisRole ” Value=”Admin”/>
</ Ro leL i s t>
<Delegate />
<SOA ID=”SOA”/>
<Va l id i t y />

</ RoleAssignment>
<RoleAssignment ID=” RoleAssignment3 ”>

<SubjectDomain ID=” s t a f f ”/>
<RoleL i s t>

<Role Type=” permisRole ” Value=” S t a f f ”/>
</ Ro leL i s t>
<Delegate />
<SOA ID=”SOA”/>
<Va l id i t y />

</ RoleAssignment>
</ RoleAssignmentPol icy>
<TargetPol i cy>

<TargetDomainSpec ID=”Door”>
<Inc lude LDAPDN=”ou=lab−door , o=PERMIS, c=gb”/>
<Inc lude LDAPDN=”ou=l ib−door , o=PERMIS, c=gb”/>
<Inc lude LDAPDN=”ou=c l a s s−door , o=PERMIS, c=gb”/>

</TargetDomainSpec>
<TargetDomainSpec ID=” Library ”>

APPENDIX B. POLICIES FOR THE BENCHMARK TESTS 80

<Inc lude LDAPDN=”ou=l ib−door , o=PERMIS, c=gb”/>
</TargetDomainSpec>
<TargetDomainSpec ID=” Laboratory ”>

<Inc lude LDAPDN=”ou=lab−door , o=PERMIS, c=gb”/>
</TargetDomainSpec>
<TargetDomainSpec ID=” Class ”>

<Inc lude LDAPDN=”ou=c l a s s−door , o=PERMIS, c=gb”/>
</TargetDomainSpec>

</ TargetPol i cy>
<Act ionPol i cy>

<Action ID=” Access ” Name=” Access ”/>
</ Act ionPol i cy>
<TargetAccessPol i cy>

<TargetAccess ID=” TargetAccess1 ”>
<RoleL i s t>

<Role Type=” permisRole ” Value=” Student ”/>
</ Ro leL i s t>
<TargetL i s t>

<Target>
<TargetDomain ID=”Door”/>
<AllowedAction ID=” Access ”/>

</ Target>
</ TargetL i s t>
<IF>

<AND>
<OR>

<NOT>
<EQ>

<Environment Parameter=”ID” Type=”
St r ing ”/>

<Constant Type=” St r ing ” Value=”
Matteo”/>

</EQ>
</NOT>

</OR>
</AND>

</IF>
</ TargetAccess>
<TargetAccess ID=” TargetAccess2 ”>

<RoleL i s t>
<Role Type=” permisRole ” Value=” Student ”/>

</ Ro leL i s t>
<TargetL i s t>

<Target>
<TargetDomain ID=” Library ”/>
<AllowedAction ID=” Access ”/>

</ Target>
</ TargetL i s t>

</ TargetAccess>
<TargetAccess ID=” TargetAccess3 ”>

<RoleL i s t>

APPENDIX B. POLICIES FOR THE BENCHMARK TESTS 81

<Role Type=” permisRole ” Value=” S t a f f ”/>
</ Ro leL i s t>
<TargetL i s t>

<Target>
<TargetDomain ID=” Laboratory ”/>
<AllowedAction ID=” Access ”/>

</ Target>
</ TargetL i s t>

</ TargetAccess>
<TargetAccess ID=” TargetAccess4 ”>

<RoleL i s t>
<Role Type=” permisRole ” Value=” Student ”/>

</ Ro leL i s t>
<TargetL i s t>

<Target>
<TargetDomain ID=” Class ”/>
<AllowedAction ID=” Access ”/>

</ Target>
</ TargetL i s t>

</ TargetAccess>
</ TargetAccessPol i cy>

</X.509 PMI RBAC Policy>

Figure 2.1: Whitelist Policy

<?xml version=” 1 .0 ” encoding=”UTF−8”?>
<X.509 PMI RBAC Policy OID=” P o l i c y T e s t B l a c k l i s t ” DenyBased=” true ”>

<Sub j ec tPo l i cy>
<SubjectDomainSpec ID=” student ”>

<Inc lude LDAPDN=”ou=student , o=PERMIS, c=gb”/>
<Inc lude LDAPDN=”cn=dis , ou=admin , o=PERMIS, c=gb”/>

</SubjectDomainSpec>
<SubjectDomainSpec ID=”admin”>

<Inc lude LDAPDN=”ou=admin , o=PERMIS, c=gb”/>
</SubjectDomainSpec>
<SubjectDomainSpec ID=” s t a f f ”>

<Inc lude LDAPDN=”ou=s t a f f , o=PERMIS, c=gb”/>
<Inc lude LDAPDN=”cn=dis , ou=admin , o=PERMIS, c=gb”/>

</SubjectDomainSpec>
</ Sub j ec tPo l i cy>
<RoleHierarchyPol i cy>

<RoleSpec OID=” 1 . 2 . 8 2 6 . 0 . 1 . 3 3 4 4 8 1 0 . 1 . 1 . 1 4 ” Type=”
permisRole ”>
<SupRole Value=” Student ”/>
<SupRole Value=”Admin”>

<SubRole Value=” P r o f e s s o r ”/>
<SubRole Value=” Research ”/>

</SupRole>
<SupRole Value=” S t a f f ”>

<SubRole Value=”BSc”/>
<SubRole Value=”MSc”/>
<SubRole Value=”PHd”/>

APPENDIX B. POLICIES FOR THE BENCHMARK TESTS 82

</SupRole>
<SupRole Value=” P r o f e s s o r ”>

<SubRole Value=” S t a f f ”/>
</SupRole>
<SupRole Value=”MSc”>

<SubRole Value=” Student ”/>
</SupRole>
<SupRole Value=”PHd”>

<SubRole Value=” Student ”/>
</SupRole>
<SupRole Value=”BSc”>

<SubRole Value=” Student ”/>
</SupRole>
<SupRole Value=” Research ”>

<SubRole Value=” S t a f f ”/>
</SupRole>

</ RoleSpec>
</ RoleHierarchyPol i cy>
<SOAPolicy>

<SOASpec ID=”SOA” LDAPDN=”cn=SOA, ou=admin , o=PERMIS, c=gb
”/>

</SOAPolicy>
<RoleAssignmentPol icy>

<RoleAssignment ID=” RoleAssignment1 ”>
<SubjectDomain ID=” student ”/>
<RoleL i s t>

<Role Type=” permisRole ” Value=” Student ”/>
</ Ro leL i s t>
<Delegate />
<SOA ID=”SOA”/>
<Va l id i t y />

</ RoleAssignment>
<RoleAssignment ID=” RoleAssignment2 ”>

<SubjectDomain ID=”admin”/>
<RoleL i s t>

<Role Type=” permisRole ” Value=”Admin”/>
</ Ro leL i s t>
<Delegate />
<SOA ID=”SOA”/>
<Va l id i t y />

</ RoleAssignment>
<RoleAssignment ID=” RoleAssignment3 ”>

<SubjectDomain ID=” s t a f f ”/>
<RoleL i s t>

<Role Type=” permisRole ” Value=” S t a f f ”/>
</ Ro leL i s t>
<Delegate />
<SOA ID=”SOA”/>
<Va l id i t y />

</ RoleAssignment>
</ RoleAssignmentPol icy>

APPENDIX B. POLICIES FOR THE BENCHMARK TESTS 83

<TargetPol i cy>
<TargetDomainSpec ID=”Door”>

<Inc lude LDAPDN=”ou=lab−door , o=PERMIS, c=gb”/>
<Inc lude LDAPDN=”ou=l ib−door , o=PERMIS, c=gb”/>
<Inc lude LDAPDN=”ou=c l a s s−door , o=PERMIS, c=gb”/>

</TargetDomainSpec>
<TargetDomainSpec ID=” Library ”>

<Inc lude LDAPDN=”ou=l ib−door , o=PERMIS, c=gb”/>
</TargetDomainSpec>
<TargetDomainSpec ID=” Laboratory ”>

<Inc lude LDAPDN=”ou=lab−door , o=PERMIS, c=gb”/>
</TargetDomainSpec>
<TargetDomainSpec ID=” Class ”>

<Inc lude LDAPDN=”ou=c l a s s−door , o=PERMIS, c=gb”/>
</TargetDomainSpec>

</ TargetPol i cy>
<Act ionPol i cy>

<Action ID=” Access ” Name=” Access ”/>
</ Act ionPol i cy>
<TargetAccessPol i cy>

<TargetAccess ID=” TargetAccess1 ”>
<RoleL i s t>

<Role Type=” permisRole ” Value=” Student ”/>
</ Ro leL i s t>
<TargetL i s t>

<Target>
<TargetDomain ID=”Door”/>
<DeniedAction ID=” Access ”/>

</ Target>
</ TargetL i s t>
<IF>

<AND>
<OR>

<NOT>
<EQ>

<Environment Parameter=”ID” Type=”
St r ing ”/>

<Constant Type=” St r ing ” Value=”
Matteo”/>

</EQ>
</NOT>

</OR>
</AND>

</IF>
</ TargetAccess>
<TargetAccess ID=” TargetAccess2 ”>

<RoleL i s t>
<Role Type=” permisRole ” Value=” Student ”/>

</ Ro leL i s t>
<TargetL i s t>

<Target>

APPENDIX B. POLICIES FOR THE BENCHMARK TESTS 84

<TargetDomain ID=” Library ”/>
<DeniedAction ID=” Access ”/>

</ Target>
</ TargetL i s t>

</ TargetAccess>
<TargetAccess ID=” TargetAccess3 ”>

<RoleL i s t>
<Role Type=” permisRole ” Value=” S t a f f ”/>

</ Ro leL i s t>
<TargetL i s t>

<Target>
<TargetDomain ID=” Laboratory ”/>
<DeniedAction ID=” Access ”/>

</ Target>
</ TargetL i s t>

</ TargetAccess>
<TargetAccess ID=” TargetAccess4 ”>

<RoleL i s t>
<Role Type=” permisRole ” Value=” Student ”/>

</ Ro leL i s t>
<TargetL i s t>

<Target>
<TargetDomain ID=” Class ”/>
<DeniedAction ID=” Access ”/>

</ Target>
</ TargetL i s t>

</ TargetAccess>
</ TargetAccessPol i cy>

</X.509 PMI RBAC Policy>

Figure 2.2: Whitelist Policy

Bibliography

[ACW] Access Control Models. www.wikipedia.com.

[X509] X.509. www.wikipedia.com.

[LDAP] Timothy A Howes An X.500 and LDAP Database: Design and Im-

plementation.

[SAMLW] SAML. www.wikipedia.com.

[SUNXACML] Sun’s XACML Implementation.

http://sunxacml.sourceforge.net/.

[IBMXACML] Manish Verma, IBM XML Security: Control information ac-

cess with XACML. http://www.ibm.com/developerworks/xml/library/x-

xacml/.

[OASISXACML] OASIS, eXtensible Access Control Markup Language

(XACML) Version 1.1 .

[NISTRBAC] Ravi Sandhu (LIST), David Ferraiola and Richard Kuhn (NIST)

The NIST Model For Role-Based Access Control: Towards A Unified Stan-

dard.

[RBAC] Ravi Sandhu (LIST), Edward J. Coyane, Hal L. Feinstein and Charles

E. Youman (1995) Role-Based Access Control Models. IEEE Computer,

Volume 29, Number 2, February 1996, pages 38-47.

[ABAC] ITU-T Rec X.812 (1995) — ISO/IEC 10181-3:1996 Security Frame-

works for open systems: Access Control framework.

APPENDIX B. BIBLIOGRAPHY 86

[SCHEMA] MAKOTO MURATA Makoto Murata (IBM Tokyo Research Lab),

Dongwon Lee (Penn State University), Murali Mani (Worcester Polytech-

nic Institute) and Kohsuke Kawaguchi (Sun Microsystems) Taxonomy of

XML Schema Languages using Formal Language Theory ACM Journal

Name, Vol. V, No. N, November 2004.

[ISOACF] ISO 10181-3 Access Control Framework. Information Technologies

- Open System Interconnection.

[SOAPUI] soapUI. The Swiss-Army Knife of Testing. http://www.soapui.org/.

	Introduction
	Overview
	The Access Control model
	Role-Based Access Control
	Flat RBAC
	Hierarchical RBAC
	Constrained RBAC

	Related Technologies

	PERMIS
	Introduction
	PERMIS Access Control Infrastructure
	The PERMIS delegation system
	The PDP

	The policies
	Introduction to Policies
	Policies structure
	Subject Policy
	SOA Policy
	Role Hierarchy Policy
	Role Assignment Policy
	Target Policy
	Action Policy
	Target Access Policy

	How write a new policy
	Policy Editor
	Policy Tester

	Whitelist and Blacklist
	Whitelist and Blacklist
	Exception rules

	Blacklist PERMIS Policies
	Introduction
	Exception rule in PERMIS Policies
	Grant-all PERMIS decision engine
	Combination of grant-all and deny-all PERMIS decision engine

	Validation
	Correctness Tests
	Performance Test

	Conclusion
	Achievements
	Future Developments

	PERMIS Policies for Web Based Resources
	Specifying Resources
	Specifying Actions
	Set up PERMIS policies for less secure subordinate directories
	Exclude the access to subdirectory
	Exclude the access to superior directory

	Policies for the Benchmark tests
	Bibliography

