Simple PERMIS Java APl Cookbook

Authors: Chadwick D., Laborde R., Otenko O, Zhao G.
Date: 16 January 2005
Version 1.0 _beta 2

Contents

Simple PERMIS Java APl COOKDOOK............. o eeeeeeieiiiiiiiiiiiieeeeee e 1

(7o) 01T 01 £ T PP PRRPPPPTT 1

1. Objective Of thiS OCUMENTccoiiiiieieeee e e 1

2. Overview of PERMIS & Simple PERMIS ... 1
a. PERMIS Decision Engine ArchiteCture.......cccooooioiiiiiiiiiiiiiiiiiciiieeeeeee 2
D. SIMPIEPERMISottt eeeeeaeans 3

3. Installation of SIMPIEPERMIS ... 4
Q. REQUITEMENIS ...uiiiiiiiiii e nmn ettt e e et e e e e e et e e e aeeenneanes 4
D, INStAllAtioN.......coeeeeee e 4

4. Play with SIMpPIEPERMIS e e e e e aaea 4

6. How to use SimplePERMIS in applications of yown?.............ccccoeeeveiiiiininnnne. 6

RETEIENCESttt ettt e a e e e 7

1. Objective of this document

This cookbook provides a step-by-step example singithe Simple PERMIS Java
API to the PERMIS decision engine. On completibthes tutorial, you will be able
to:

+ Install/Setup all necessary components for usiegSiimple PERMIS API.

« Run example code with the Simple PERMIS API.

« Understand how to use the Simple PERMIS API fohausation decision
making in applications of your own.

2. Overview of PERMIS & Simple PERMIS

PERMIS is a policy based authorisation system, a&il&ye Management
Infrastructure. It can work with any and every auftication system (Shibboleth,
PAPI, Kerberos, PKI, username/PW, etc.). Givenexname, a target and an action,
the PERMIS decision engine says whether the usgnaisted or denied access based
on the policy for the target. The policy is roléfaute based i.e. users are given
roles/attributes and roles/attributes are givemgesions to access targets. The policy
is written in XML, and it is similar to XACML butispler, and it can be produced
more easily using the PERMIS Policy Editor graphicsser interface.

The PERMIS decision engine can work in push mottelfates are sent to PERMIS

by the application) or pull mode (PERMIS fetchesnthitself given the distinguished
name of the user by the application).

a. PERMIS Decision Engine Architecture

The PERMIS decision engine is built using a modajgroach in order to be generic
(like when you want an ice cream and you ask tlecieam man for a double
chocolate banana in his special chocolate conejhab you can customise the
PERMIS decision engine to get your own privilegenagement infrastructure
specific to your own requirements (see Figure 1).

Your own
customised use
of PERMIS

via API SCEDS

Shibboleth Q PERMIS
I ntegration RBAC

Q

Apache
integration

Simple PERMIS

Behind-the-scenes
customisation

credential credential

discovery,

Attribute
Certificate

Protection from
tampering using digita
signatures and a X.50

PKI

Figure 1. PERMIS Decision Engine ar chitecture

The two main components that can be customisethareetrieval and processing of
credentials and access control policies.

Credentials are the roles/attributes assigned #osuly Attribute Authorities. The
value of the roles/attributes can be presentedffarent formats depending on the
application or the security technologies. The SerfpERMIS decision engine accepts
plain vanilla attributes without any security pmdten. Currently, the modular
PERMIS decision engine includes two extensions: tondecode SAML Attributes
Assertions and another to decode X.509 AttributedifiCates. These modules check
the validity, retrieve the role/attribute valuedareturn the credential in a PERMIS
standardized format. They provide the role valug tgpe, the role validity period and
also the sub-roles in the role hierarchy, whichsgecified in the RBAC policy. (Sub-
roles allow a user to benefit from inherited pesiaas).

In addition, the PERMIS decision engine can obtaedentials according to two
modes:
* Thepush mode where credentials are given to PERMIS by the appbn,
 The pull mode where PERMIS retrieves the credentials itself,egivhe
distinguished name of the user by the application..

In pull mode, the credentials need to be store@jpositories. The PERMIS decision
engine provides interfaces for retrieving the crdidds from any type of repository,
and comes built-in with implementations to acceB\AP repositories and local file
systems repositories.

Policies state who is trusted to allocate whiclesdlo whom, and what permissions
are assigned to the roles/attributes. Policiesbeaspecified in a plain XML file or in
an XML formatted attribute embedded in an X.50%iAtite Certificate to secure it
from being tampered with. Policies can be writted atored in an LDAP repository
or the local file system, or passed dynamicallythtmPERMIS API.

More information about the PERMIS architecture cdme found in
http://sec.cs.kent.ac.uk/permis/.

b. SimplePERMIS

SimplePERMIS represents the core of the PERMISsd&tiengine (the yellow
pieces in Figure 1). It provides the core acces#rabservice (i.e. authorisation
decision-making). It works in push mode only anel piolicy is stored in a plain XML
file. It can be considered as a lightweight PERMi&cision engine with the
decoupling of credential and policy protection igmpkentations.

In this case any security features — like the mtaia of the policy or the user
credentials - should be provided by external tetdgies (e.g. the file access control
mechanism or SSL). SimplePERMIS is not releaseti Wie credential and policy
protection implementations, but SimplePERMIS ke#ps interfaces for verifying

credentials and policies. Users can implement tbein protection mechanisms as
plug-ins for SimplePERMIS, which is a major feattwe SimplePERMIS to be agile
and generic. In this way, SimplePERMIS can be costed to fit in most of the

application scenarios and be aligned with the ah¢sehnologies by uses.

3. Installation of SimplePERMIS

a. Requirements

To run the example PERMIS gatekeeper applicatiag anly necessary to download
the Cookbook example:
» Cookbook Example — the example software used irs tbookbook.
[http://sec.cs.kent.ac.uk/pernjis/
e Java Runtime Environment (JRE) — needed to run SimaplePERMIS
example. Please note, if you wish to modify thevgaife, you will need the
Java SDK available frorttp://java.sun.com

To develop your own application using SimplePERNI& necessary to download
and install the following packages:
« Java SDK (version 1.5.0 or later) — needed to rumd anodify the
software. Note that Java SDK also includes JRHs T available from
http://java.sun.com

b. Installation

1. Download the SimplePERMIS cookbook example.
2. Download the example XML Policy .

4. Play with SimplePERMIS

The example policy (file testl.xml) is:

- users within the ‘O=PERMIS,C=GB’ domain who are assdjto the role
‘role0’ can do ‘Action0’ and ‘Action3’ on any targefrom the
‘O=PERMIS,C=GB’ domain,

- users within the ‘O=PERMIS,C=GB’ domain who are assdjto the role
‘rolel’ can do ‘Actionl’ and ‘Action3’ on any targefrom the
‘O=PERMIS,C=GB’ domain.

In addition, there is no role hierarchy. Documatisut the PERMIS XML policy can
be found in [1].

To launch the SimplePERMIS example, double cliclsionplePermis.bat.

The program will ask you if you want to run the riateractive example (typing
“automatic”), which is a pre-defined request using TEST1.XML policy file, or to
run the interactive example, where you can speh#ypolicy file and build your own
requests.

In interactive mode, the program will ask you teuhthe policy filename???, the
user’s DN, the user’s role and the target DN (tangene you want to access) and the
name of the action you want to perform. After yavé input appropriate names from
Table 1 below, PERMIS will tell you if the actios allowed or denied, or will report
any errors encountered. Then, the program willyaekif you want to build another
request. Using the entries in Table 1 below, yan test different combinations of
users, targets they are trying to access and tienadhey are attempting to perform
according to the TEST1.XML policy file.

User Role Target Action Result
Any DN from the Any DN from the . .
0=PERMIS,c=GB Role0 0=PERMIS,c=GB Actiondor | Action

. : Action3 succeeded
domain domain
Any DN from the Any DN from the . .
0=PERMIS,c=GB| Rolel 0=PERMIS c=GB Actionl or | Action

. : Action3 succeeded
domain domain
Others combinations of User*Role*Target*Action the action is

not allowed

Table 1. Policy for test program

For example, if you input the first entry from thelicy (in table 1):
uerDN: cn=user0,0=permis,c=gb
roleType: permisRole
roleValue: Role0
action : Action0
target DN: cn=0bject0, o=permis,c=gb

You should see the result ‘0O: Action succeeded’'staswn in the screenshot below

(Figure 2).

imple Permis example:

This is an example of using SimplePERMIS

Please dinput:

"interactive': for interactive example.

“automatic'”: for non—interactive example.

"exit': for terminating the example.

Otherwize: non—interactive example
interactive

Interactive mode
Policy File: TESTi.¥HML
The policy iz loaded
Construct the guery:

: cn=uzerf,.o=permiz,c=gh
roleType: permizHole
rolelalue: Role@

ion: Actiond

: en=chjectld, o=permiz.c=gh

Rezponse of the PDP: B: action succeeded

> De you want te construct ancther guery ? [yessnol: _

Figure 2. Screenshot of simple PERMIS example

However if you input:

Screen Promote I nput

userDN cn=User0,0=permis,c=gb
roleType PermisRole

roleValue Rolel

action Action0

| target DN | o=permis,c=gb |

Notice that after each input, you will need to grge “Enter” key on your keyboard.
You should now see the result ‘1: the action isallawed’.

You can quit the SimplePERMIS example program sipgithe commanekit.

6. How to use SimplePERMIS in applications of your
own?

SimplePERMIS works in push mode only, i.e. wherseruequests to do an action on
an object, the PEP give the credentials to the P¥hg the method
PermisRBAC.getCreds. This method assigns the standardised credent@lsa
principal, which is &ubject entity in PERMIS.

The user’s identifier and his role/attribute are@egi in your specific application
format. The first step is to recognize the userdentifier and his different
roles/attributes. The second step is to converuieg’s identifier into a distinguished
name. The clasSimplePERMISPrincipal is a simple example. You can use it to
create a java object for your own application.

The third step is to convert the different rolgsitatites into the PERMIS
authorisation token format (see the cld3sfaultParsedToken) in order to be
understandable by the SimplePERMIS decision engBecause the PERMIS
decision engine is an RBAC-Based Authorisation astiructure, the PERMIS
decision engine uses roles/attributes to make aco&strol decisions. Roles can be
hierarchically organised in the PERMIS policy. istcontext, a role is assigned to
the permissions that are explicitly specified ie tholicy and also to the permissions
assigned the sub-roles in the roles hierarchy. Ttiensub-roles should also be given
to the PERMIS decision engine for its decision mgkiprocess. The class
SmplePERMI STokenParser shows how credentials can be standardised intd\RER
authorisation tokens.

You can use this class. However, if you want to myod you should respect the
following rules:

1. Use the same name or modify in the methothit_ the class
CustomisePERMIS the java code line
“setAuthTokenParser("issrg.simplePERMIS.SimplePERMikenParser");”
by “setAuthTokenParsenrfbur _class name");”. The class

CustomisePERMIS can be considered like a configurdile where the name
of some classes used by PERMIS are defined. TheTAlkenParser class is
dynamically loaded by PERMIS using the method gétAakenParser().

2. Your AuthTokenParser class should have the samehadet as
SmplePERMISTokenParser with the same signatures (i.e. number of
parameters, type of the parameters, and ordeegidrameters ...).

Finally, you have to write a PEP. The PEP capttlresiser’s request and formats the
request into calls to the PERMIS PDP for decisidife classeSmpleAEF_A and
simpleAEF _| are two examples of PEPs.

All SimplePERMIS Java classes can be downloaded in
http://sec.cs.kent.ac.uk/permis/

References

[1] D.W.Chadwick, A. Otenko. “RBAC Policies in XMfor X.509 Based Privilege

Management” in Security in the Information Socie#ysions and Perspectives: IFIP
TC11 17 Int. Conf. On Information Security (SEC2002), M&9, 2002, Cairo,

Egypt. Ed. by M. A. Ghonaimy, M. T. El-Hadidi, HAslan, Kluwer Academic

Publishers, pp 39-53.

