

Simple PERMIS Java API Cookbook

Authors: Chadwick D., Laborde R., Otenko O, Zhao G.
Date: 16 January 2005
Version 1.0_beta_2

Contents
Simple PERMIS Java API Cookbook..1
Contents ...1
1. Objective of this document ..1
2. Overview of PERMIS & Simple PERMIS ..1

a. PERMIS Decision Engine Architecture...2
b. SimplePERMIS..3

3. Installation of SimplePERMIS ..4
a. Requirements ...4
b. Installation..4

4. Play with SimplePERMIS..4
6. How to use SimplePERMIS in applications of your own?..6
References..7

1. Objective of this document

This cookbook provides a step-by-step example for using the Simple PERMIS Java
API to the PERMIS decision engine. On completion of this tutorial, you will be able
to:

• Install/Setup all necessary components for using the Simple PERMIS API.
• Run example code with the Simple PERMIS API.
• Understand how to use the Simple PERMIS API for authorisation decision

making in applications of your own.

2. Overview of PERMIS & Simple PERMIS

PERMIS is a policy based authorisation system, a Privilege Management
Infrastructure. It can work with any and every authentication system (Shibboleth,
PAPI, Kerberos, PKI, username/PW, etc.). Given a username, a target and an action,
the PERMIS decision engine says whether the user is granted or denied access based
on the policy for the target. The policy is role/attribute based i.e. users are given
roles/attributes and roles/attributes are given permissions to access targets. The policy
is written in XML, and it is similar to XACML but simpler, and it can be produced
more easily using the PERMIS Policy Editor graphical user interface.

Apache
integration

X.509
PERMIS
RBAC

Shibboleth
Integration

Your own
customised use

of PERMIS
via API

Simple PERMIS

policy
loading

credential
discovery

credential
decoding

 LDAP

 File
system

 Push
mode Shibboleth

attributes

X.509
Attribute

Certificates

Plain
XML file

Policy
X.509 AC

Protection from
tampering using digital
signatures and a X.509

PKI

GT4

integration

Behind-the-scenes
customisation

The PERMIS decision engine can work in push mode (attributes are sent to PERMIS
by the application) or pull mode (PERMIS fetches them itself given the distinguished
name of the user by the application).

a. PERMIS Decision Engine Architecture
The PERMIS decision engine is built using a modular approach in order to be generic
(like when you want an ice cream and you ask the ice cream man for a double
chocolate banana in his special chocolate cone) so that you can customise the
PERMIS decision engine to get your own privilege management infrastructure
specific to your own requirements (see Figure 1).

Figure 1. PERMIS Decision Engine architecture

The two main components that can be customised are the retrieval and processing of
credentials and access control policies.

Credentials are the roles/attributes assigned to users by Attribute Authorities. The
value of the roles/attributes can be presented in different formats depending on the
application or the security technologies. The Simple PERMIS decision engine accepts
plain vanilla attributes without any security protection. Currently, the modular
PERMIS decision engine includes two extensions: one to decode SAML Attributes
Assertions and another to decode X.509 Attributes Certificates. These modules check
the validity, retrieve the role/attribute value, and return the credential in a PERMIS
standardized format. They provide the role value and type, the role validity period and
also the sub-roles in the role hierarchy, which are specified in the RBAC policy. (Sub-
roles allow a user to benefit from inherited permissions).

 In addition, the PERMIS decision engine can obtain credentials according to two
modes:

• The push mode where credentials are given to PERMIS by the application,
• The pull mode where PERMIS retrieves the credentials itself, given the

distinguished name of the user by the application..

In pull mode, the credentials need to be stored in repositories. The PERMIS decision
engine provides interfaces for retrieving the credentials from any type of repository,
and comes built-in with implementations to access LDAP repositories and local file
systems repositories.

Policies state who is trusted to allocate which roles to whom, and what permissions
are assigned to the roles/attributes. Policies can be specified in a plain XML file or in
an XML formatted attribute embedded in an X.509 Attribute Certificate to secure it
from being tampered with. Policies can be written and stored in an LDAP repository
or the local file system, or passed dynamically via the PERMIS API.

More information about the PERMIS architecture can be found in
http://sec.cs.kent.ac.uk/permis/.

b. SimplePERMIS
SimplePERMIS represents the core of the PERMIS decision engine (the yellow
pieces in Figure 1). It provides the core access control service (i.e. authorisation
decision-making). It works in push mode only and the policy is stored in a plain XML
file. It can be considered as a lightweight PERMIS decision engine with the
decoupling of credential and policy protection implementations.

In this case any security features – like the protection of the policy or the user
credentials - should be provided by external technologies (e.g. the file access control
mechanism or SSL). SimplePERMIS is not released with the credential and policy
protection implementations, but SimplePERMIS keeps the interfaces for verifying
credentials and policies. Users can implement their own protection mechanisms as
plug-ins for SimplePERMIS, which is a major feature for SimplePERMIS to be agile
and generic. In this way, SimplePERMIS can be customized to fit in most of the
application scenarios and be aligned with the chosen technologies by uses.

3. Installation of SimplePERMIS

a. Requirements
To run the example PERMIS gatekeeper application it is only necessary to download
the Cookbook example:

• Cookbook Example – the example software used in this cookbook.
[http://sec.cs.kent.ac.uk/permis/]

• Java Runtime Environment (JRE) – needed to run the SimplePERMIS
example. Please note, if you wish to modify the software, you will need the
Java SDK available from http://java.sun.com.

To develop your own application using SimplePERMIS it is necessary to download
and install the following packages:

• Java SDK (version 1.5.0 or later) – needed to run and modify the
software. Note that Java SDK also includes JRE. This is available from
http://java.sun.com

b. Installation
1. Download the SimplePERMIS cookbook example.
2. Download the example XML Policy .

4. Play with SimplePERMIS

The example policy (file test1.xml) is:

- users within the ‘O=PERMIS,C=GB’ domain who are assigned to the role
‘role0’ can do ‘Action0’ and ‘Action3’ on any target from the
‘O=PERMIS,C=GB’ domain,

- users within the ‘O=PERMIS,C=GB’ domain who are assigned to the role
‘role1’ can do ‘Action1’ and ‘Action3’ on any target from the
‘O=PERMIS,C=GB’ domain.

In addition, there is no role hierarchy. Documents about the PERMIS XML policy can
be found in [1].

To launch the SimplePERMIS example, double click on simplePermis.bat.

The program will ask you if you want to run the non-interactive example (typing
“automatic”), which is a pre-defined request using the TEST1.XML policy file, or to
run the interactive example, where you can specify the policy file and build your own
requests.

In interactive mode, the program will ask you to input the policy filename???, the
user’s DN, the user’s role and the target DN (target name you want to access) and the
name of the action you want to perform. After you have input appropriate names from
Table 1 below, PERMIS will tell you if the action is allowed or denied, or will report
any errors encountered. Then, the program will ask you if you want to build another
request. Using the entries in Table 1 below, you can test different combinations of
users, targets they are trying to access and the actions they are attempting to perform
according to the TEST1.XML policy file.

User Role Target Action Result
Any DN from the
o=PERMIS,c=GB
domain

Role0
Any DN from the
o=PERMIS,c=GB
domain

Action0 or
Action3

Action
succeeded

Any DN from the
o=PERMIS,c=GB
domain

Role1
Any DN from the
o=PERMIS,c=GB
domain

Action1 or
Action3

Action
succeeded

Others combinations of User*Role*Target*Action
the action is
not allowed

Table 1. Policy for test program

 For example, if you input the first entry from the policy (in table 1):
uerDN: cn=user0,o=permis,c=gb
roleType: permisRole
roleValue: Role0
action : Action0
target DN: cn=object0, o=permis,c=gb

You should see the result ‘0: Action succeeded’, as shown in the screenshot below
(Figure 2).

Figure 2. Screenshot of simple PERMIS example

However if you input:
Screen Promote Input
userDN cn=User0,o=permis,c=gb
roleType PermisRole
roleValue Role1
action Action0

target DN o=permis,c=gb

Notice that after each input, you will need to press the “Enter” key on your keyboard.

You should now see the result ‘1: the action is not allowed’.

You can quit the SimplePERMIS example program by using the command exit.

6. How to use SimplePERMIS in applications of your
own?

SimplePERMIS works in push mode only, i.e. when a user requests to do an action on
an object, the PEP give the credentials to the PDP using the method
PermisRBAC.getCreds. This method assigns the standardised credentials to a
principal, which is a Subject entity in PERMIS.

The user’s identifier and his role/attribute are given in your specific application
format. The first step is to recognize the user’s identifier and his different
roles/attributes. The second step is to convert the user’s identifier into a distinguished
name. The class SimplePERMISPrincipal is a simple example. You can use it to
create a java object for your own application.

The third step is to convert the different roles/attributes into the PERMIS
authorisation token format (see the class DefaultParsedToken) in order to be
understandable by the SimplePERMIS decision engine. Because the PERMIS
decision engine is an RBAC-Based Authorisation infrastructure, the PERMIS
decision engine uses roles/attributes to make access control decisions. Roles can be
hierarchically organised in the PERMIS policy. In this context, a role is assigned to
the permissions that are explicitly specified in the policy and also to the permissions
assigned the sub-roles in the roles hierarchy. Then, the sub-roles should also be given
to the PERMIS decision engine for its decision making process. The class
SimplePERMISTokenParser shows how credentials can be standardised into PERMIS
authorisation tokens.

You can use this class. However, if you want to modify it you should respect the
following rules:

1. Use the same name or modify in the method _init_ the class
CustomisePERMIS the java code line
“setAuthTokenParser("issrg.simplePERMIS.SimplePERMISTokenParser");”
by “setAuthTokenParser("your_class_name");”. The class

CustomisePERMIS can be considered like a configuration file where the name
of some classes used by PERMIS are defined. The AuthTokenParser class is
dynamically loaded by PERMIS using the method getAuthTokenParser().

2. Your AuthTokenParser class should have the same methods as
SimplePERMISTokenParser with the same signatures (i.e. number of
parameters, type of the parameters, and order of the parameters …).

Finally, you have to write a PEP. The PEP captures the user’s request and formats the
request into calls to the PERMIS PDP for decisions. The classes SimpleAEF_A and
simpleAEF_I are two examples of PEPs.

All SimplePERMIS Java classes can be downloaded in
http://sec.cs.kent.ac.uk/permis/

References
[1] D.W.Chadwick, A. Otenko. “RBAC Policies in XML for X.509 Based Privilege
Management” in Security in the Information Society: Visions and Perspectives: IFIP
TC11 17th Int. Conf. On Information Security (SEC2002), May 7-9, 2002, Cairo,
Egypt. Ed. by M. A. Ghonaimy, M. T. El-Hadidi, H.K.Aslan, Kluwer Academic
Publishers, pp 39-53.

