
1

Standalone Server User Guide

Author Version Date Comments

George Inman 1 19/10/09 First Version

George Inman 1.1 07/12/09 Updated Version

George Inman 1.2 08/12/09 Added endorsed directory Instructions

Stijn Lievens 1.3 04/11/2010 Added installation inTomcat; how to enable BTG
functionality; how to configure obligations

Stijn Lievens 1.3.1 23/11/2010 Minor update to obligations

Stijn Lievens 1.4 05/04/2011 First version including the AipepConfiguration
element

Stijn Lievens 1.5 20/05/2011 Fixing the namespace problems on the stickypad
example. Introduced the „supportMultiResources‟

attribute. Some further clarifications.

Stijn Lievens 1.6 01/06/2011 Added section about trusted proxies. Added the
first version of the policy management interface.

Mark 1.7 03/04/2013 Clarification of OpenLDAP version, SSL and
services.xml in v0.3.x.

2

Table of Contents
Introduction .. 3

Overview of the Service .. 3

Installing the Service ... 3

Installation as a standalone service ... 3

Installation inside a servlet container. .. 5

Setting up an SSL connection within Tomcat. .. 6

Allowing only selected hosts to use the authorisation service ... 7

Setting up Logging ... 8

Server Configuration .. 8

The TCPConfiguration element .. 9

PDP and CVS Configuration ... 11

Configuring a PERMIS PDP and CVS ... 11

Configuring a Sun PDP .. 15

Configuring a Trust PDP... 16

Testing the Server .. 16

Configuring an Application Independent PEP (AI-PEP) .. 17

Protocol Information .. 20

Specifying a CVS policy when making a WS-Trust Request .. 20

Specifying an Authorisation Policy to use when making an XACMLAuthzRequest 21

Submitting Sticky Policies to Use for a Particular RID .. 23

Returning Sticky Policies from the AIPEP .. 25

The Policy Management Web Service ... 26

Available Operations... 27

References .. 28

Appendix 1. Server WSDL .. 28

3

Introduction

The standalone server is a network accessible application independent Authorisation server that can
be used as an application independent PEP or Credential Validation Service to respond to any
application's request for an authorisation decision.

The following instructions will teach you how to install and tailor the standalone server to allow
you to make authorisation requests across a network using standardised authorisation protocols
and receive authorisation responses for use in your application.

Overview of the Service

The standalone server is a Java[1] based application with an embedded Apache Axis2 [2]
service that accepts requests for authorisation using three standardised protocols messages sent
using SOAP[3]. As of version 0.2.0 the service can also be installed in a servlet container (like
Tomcat) using the Axis2 servlet. It is essential to install the standalone server in this way if it is
to be used with SSL.

The first of the supported protocol languages is XACML [4] which is implemented as a test
message handler and should not be used in production environments. The second handler is an
XACML over SAML 2.0 [5] message handler, this handler has been produced in accordance
with the constrained authorisation profile outlined in [6]. The final handler operates as a Ws-
Trust [7] CVS handler which provides the requestor with a SAML assertion containing valid
Attributes as specified in [8]. Currently the handlers that supports the use of multiple policies is
the XACML over SAML 2.0 message handler and the WS-Trust message handler.

Request messages should be sent to the server's endpoint which will determine the type of the
messages based on the XML namespace of the request message. Please note that only messages
that conform to the relevant message schemas will be accepted by the service.

Installing the Service

Prior to installation the standalone server has the following requirements:

• A Sun Java Runtime Environment – this should be a 1.6 release of the JRE. Older
versions are not supported.

• To pull attribute certificates from an LDAP server, OpenLDAP is required. The
standalone server has been tested with OpenLDAP version 2.4.23, but does not currently
support 2.4.3+ due to an incompatibility with the query responses in pull mode.

• (Optional) If you wish to make the server available over a network then a single
port number should be reserved for the service and this port should then be opened
in your firewall.

• (Optional) If you wish to run the server using SSL then you may wish to install OpenSSL
or similar for use when creating server certificates.

• (Optional) If you wish to deploy the service inside a servlet container, you will need a
servlet container as well as the Axis2 servlet. Version 5.5.12, 5.5.31 and 7.0.39 of Tomcat
together with Axis2 version 1.5.1, 1.5.4 and 1.6.2 have been tested.

Installation as a standalone service
In order to install the service you should download the latest release of the service from the
PERMIS website (http://sec.cs.kent.ac.uk/permis) and unzip the release package to a folder of
your choice. Once this folder has been unzipped you should open a new terminal window and

4

navigate into the newly unzipped directory. Before the server can be run you must endorse the
XML parsers contained in the endorsed directory of the release. This can be accomplished by
copying the endorsed directory in the release to the “lib/” directory of your Java runtime
environment installation.

For Windows users:

For Linux users:

Note: if you have not correctly endorsed the XML libraries, you will be confronted by a message
similar to the following when trying to start the software:

You can find more information about the Java endorsing mechanism at the following URL:
http://download.oracle.com/javase/1.5.0/docs/guide/standards/index.html

You should now be ready to test the service by running one of the two following commands:

For Windows users:

For Linux users:

At this point you should be able to verify that the service has been installed properly by navigating
to http://localhost:1104/ which should show a page similar to the one displayed below:

C:\...\standalone>: copy endorsed %JAVA_HOME%\lib\

...:~/standalone$ cp –R ./endorsed $JAVA_HOME/lib/

OpenSAML requires an xml parser that supports JAXP 1.3 and DOM3.
The JVM is currently configured to use the Sun XML parser, which is known to be buggy
and cannot be used with OpenSAML. Please endorse a functional JAXP library(ies) such
as Xerces and Xalan. For instructions on how to endorse a new parser see
http://java.sun.com/j2se/1.5.0/docs/guide/standards/index.html

C:\...\standalone>: standalone.bat

...:~/standalone$./standalone.sh

5

Please ensure that a service named AuthzService has been deployed and that it has
three separate operations SAML2XACMLAuthzRequest, XACMLAuthzRequest
and WsTrustAuthzRequest.

Please note: Occasionally when started additional operations are made available.
If this occurs please restart the server as there is a bug within the Axis WSDL
parsing code meaning that the schema is incorrectly loaded occasionally and we
are currently working to fix this bug.

At this stage you should have a fully operational standalone PERMIS Authorisation
server deployed with two default policies, one of which can be queried using the
example SOAP request messages included in the “./Example Request Messages” folder
of the release package using some form of Soap client such as SoapUI[9].

Installation inside a servlet container.

We assume that you have a servlet container like Tomcat installed in a directory

called $TOMCAT. First, you need to install the Axis2 servlet in the servlet container.

Download the Axis2 WAR (Web
Archive) from the Axis2 site: http://ws.apache.org/axis2/index.html. Simply copy the
WAR file into
the $TOMCAT/webapps directory. When you restart Tomcat you should have the Axis2
servlet available. You can check this by visiting http://localhost:8080/axis2/. [This
assumes that Tomcat is listening on port 8080.] Check that Axis2 has found all the
required libraries by visiting the
“Validate” link on this page.

In order to install the service you should download the latest release of the service
from the PERMIS website (http://sec.cs.kent.ac.uk/permis) and unzip the release
package to a folder of your choice.

Prior to installing the authorisation service, you will need to endorse the XML
parsing libraries in Tomcat. In Tomcat version 5.5.x this is done by creating

6

copying all the JAR files inside the distribution’s “endorsed” directory to the
directory $TOMCAT/common/endorsed. See http://tomcat.apache.org/tomcat-5.5-
doc/class-loader-howto.html for additional information. In Tomcat version 7.0.x
this is done by creating copying all the JAR files inside the distribution's
"endorsed" directory to the directory $TOMCAT/lib/. See
http://tomcat.apache.org/tomcat-7.0-doc/class-loader-howto.html for additional
information.

Note: if you haven’t done the endorsing correctly, you will be greeted by the same
message from OpenSAML as in the case of “Installation as a standalone service”.

Next you can install the authorisation service by simply copying the AuthzService-
webapp_x_y_z.aar file that is included in the distribution to
$TOMCAT/webapps/axis2/WEB- INF/services. You will need to edit the META-
INF/services.xml file in that AAR (Axis2 Archive) file to reflect the location of the
main configuration file of the service as well as the location of the log4j properties file.
The properties that need to be set are: “configFile” and “log4JConfigFile” respectively.
As of version 0.3.x, these parameters are no longer in the services.xml file of the AAR.
Instead, make sure that Tomcat is run from the directory containing the downloaded
standalone files. The permis.xml and log4j.properties files are located in this directory
and will be loaded when the service starts. An example of the parameters in the (pre
v0.3) AAR:

Remark: if your service is listed by Axis2 as a faulty service, then please check the
Tomcat log files and make sure that the main configuration file (permis.xml) is found.
Note that the current directory is the one from which Tomcat was started.

Remark: if you ever get an error message saying that a certain method in the
org.apache.commons.codec.Base64 class cannot be found then you need to replace the
commons- codec-1.3.jar in $TOMCAT/webapps/axis2/WEB-INF/lib with the
commons-codec-1.4.jar supplied with the software.

Setting up an SSL connection within Tomcat.

There are two ways to use the authz server with an SSL connection, the first
should be avoided as it is temperamental, and involves running the authz server in
standalone mode. The second (recommended) way is to use the authz server with
the SSL connection in Tomcat, as described in this section. When you want the
authz server to be available using an SSL connection, i.e. using HTTPS rather than
plain HTTP, you will need to do the following:

- Configure the SSL connector for your servlet container. This guide does not

explain how to do this. When using the AipepConfiguration element or
when using the service as a CVS, it is probably a good idea to require client
authentication as well. Note, if you change the default JKS location or
“changeit” password, remember to add these parameters to the configuration.

- Update the axis2.xml file to tell Axis2 to use HTTPS transport as well. In the
Transports In section, change the following:

<parameter name="configFile">permis.xml</parameter>

<parameter name="log4JConfigFile">log4j.properties</parameter>

<transportReceiver name="http”

class="org.apache.axis2.transport.http.AxisServletListener"/>

7

To:

This amounts to adding a “HTTPS” transport receiver, and specifying the port to use for
both the HTTP and HTTPS receiver. Be sure to use the same ports as the ones that your
servlet container is listening on.

Allowing only selected hosts to use the authorisation service

In some cases it may be useful to limit the possible clients of the authz service to a set
of known clients. A secure way of doing client authentication is via client SSL
certificates. This can be set up entirely using container managed security. You will
need to edit a couple of files.

Add the following to the webapps/axis2/WEB-INF/conf/axis2.xml file
(inside the

webapp element):

This basically says the clients must connect to the service using SSL, that they must
authenticate using a client certificate and that they must possess the authz-trusted-
proxy role in order to get access to the service. At this point in time nobody can call
the service as nobody has the authz- trusted-proxy role. Adding clients to this role in

<transportReceiver name="http"

class="org.apache.axis2.transport.http.AxisServletListener">

<parameter name="port">8080</parameter>

</transportReceiver>

<transportReceiver name="https"

class="org.apache.axis2.transport.http.AxisServletListener">

<parameter name="port">8443</parameter>

</transportReceiver>

<!-- This is the role we are using -->

<security-role>

<role-name>authz-trusted-proxy</role-name>

</security-role>

<security-constraint>

<!-- The URL pattern for the authz service -->

<web-resource-collection>

<web-resource-name>authz service</web-resource-name>

<url-pattern>/services/AuthzService</url-pattern>

</web-resource-collection>

<!-- Anyone accessing this URL must have the authz-trusted-proxy

role -->

<auth-constraint>

<role-name>authz-trusted-proxy</role-name>

</auth-constraint>

<!-- A connection to the authz service must be done over SSL -->

<user-data-constraint>

<transport-guarantee>CONFIDENTIAL</transport-guarantee>

</user-data-constraint>

</security-constraint>

<!-- client authentication is done using client certificates -->

<login-config>

<auth-method>CLIENT-CERT</auth-method>

</login-config>

8

done in the conf/tomcat-users.xml file:

Note: it is possible to retrieve the DN of the client as perceived by Tomcat by turning

SSL debugging on. This is done by setting JAVA_OPTS=-

Djavax.net.debug=ssl in bin/catalina.sh. This will cause debugging
output w.r.t the SSL connections to be logged in the Tomcat log file.

Setting up Logging

The software uses Log4J as its logging framework. The configuration is read in from a
Log4J properties file. A default properties file (log4j.properties) comes with the
software.

In general the authorisation service provides two types of logging:

- The first type is mainly aimed at programmers/developers who want to
understand in (too) great detail what the software is doing. The software uses
the convention that each class outputs its logging information to a logger
named after the fully qualified name of the class. This is common practice and
allows one to select only the logging output from a single class for instance.

- The second type is meant to provide a trail of the requests received and
responses sent by

the service. The name of the logger used for this is „access.log‟. By configuring
the appenders and log level for this particular logger you will get a clear picture
of the requests and responses sent to and by the service. The following log
levels are used: WARN: logs only requests (and responses) that reveal a serious
programming error; INFO: as above and also log the requests (and responses)
that fail to locate an appropriate policy (either because no default policy is
configured or because the request mentions a policy identifier that couldn‟t be
identified); DEBUG: as above but also logs all requests and corresponding
responses for which there was no problem.

Server Configuration

All server and policy configurations are defined in a single file in the root directory of
the release package called “permis.xml”. This file is consists of a single
<PERMISStandaloneConfiguration> element containing a single <TCPConfiguration>
element that is used to configure the axis server itself and multiple elements used to
configure each individual message handler type:
<PERMISConfiguration> elements that are used to configure individual instances of
PERMIS.
<SunPDPConfiguration> elements that are used to configure individual instances of
the XACML PDP.
<TrustPDPConfiguration> elements that are used to configure individual instances of
the TrustPDP and <TestService> elements that are used to configure GRANT all or
DENY all handlers.

<!-- define the authz-trusted-proxy role -->

<role rolename="authz-trusted-proxy"/>

<!-- Add the client to the authz-trusted-proxy role -->

<user username="DN of client" password="null" roles="authz-trusted-proxy"/>

<!--Optionally add more clients to the authz-trusted-proxy role -->

9

The TCPConfiguration element

Note: this element is ignored when installing inside a servlet container.

At its most basic the TCPConfiguration element defines the port number upon which
the server listens, the number of threads to use for requests and the protocol to use.
Where required additional configuration parameters are included in order to configure
the protocol listener e.g. for SSL. We specify below the possible parameters for this
service and their expected contents.

General Parameters

These parameters are required by all server configurations.

<ServerPort> - This element is used to specify the port number on which the server
should accept incoming requests. It takes a single numeric value. If a port has been
opened in your firewall to support this service then this value should match the value
of that port.

<ThreadCount> - The ThreadCount element is used to specify how may requests can
be handled in parallel by the server. The value placed here should be numeric and
should vary according to the resources allocated to the system.

<Protocol> - The Protocol element specifies the underlying protocol upon which
SOAP requests will be received by the server. This may currently contain a value of
either “http” or “https”. If the system cannot determine the type of the protocol then
it will default to “http”.

Table 1. Example HTTP Configuration

Using the above configuration you should be able to navigate to http://localhost:1104
and view the service as before.

SSL Specific Parameters

These parameters are only required when operating using the HTTPS server. As noted
above, it is recommended to install the authz server within Tomcat and use the
Tomcat SSL connection as it is more reliable.

<PrivateKey>- This element should contain a relative or absolute path that can be used
to determine a file containing a private key certificate. This certificate will be used to
secure the SSL server and may or may not be encrypted. If the file is encrypted,
however, the PrivateKeyPassword element must be present.

<PublicKey> - This element should contain a relative or absolute path that can be used
to determine a file containing a public key certificate(PKC). The contents of this file
must contain a PKC certificate that matches the details contained in the private key
file defined above.

<PrivateKeyPassword> - This element should contain a string representation of the

<TCPConfiguration>
<ServerPort>1104</ServerPort>
<ThreadCount>10</ThreadCount>
<Protocol>http</Protocol>

</TCPConfiguration>

10

password required to access the Private Key file. This element is only required when
the private key is protected by a password.

<KeyStore> - This element should contain a relative or absolute path that can be
used to create a Java KeyStore file containing the private and public key certificates
loaded from their respective files. Please note that this file should not exist prior to
service initialisation. If the file is found to exist it will be overwritten.

<TrustStore> - This element should contain a relative or absolute path that can be
used to locate a Java TrustStore file containing the certificates of server entities that
the service trusts. For more information please see Section 4.

<KeyStorePassword> - This optional element should contain a string representation of
the password that will be used to access the KeyStore file. If this element is not
present the KeyStore password will be assumed to be “password”.

<TrustStorePassword> - This optional element should contain a string representation
of the password required to access the TrustStore file. If this element is not present the
KeyStore password will be assumed to be “password”.

<RequireClientAuthentication> - This element specifies whether or not the server
should only accept requests from servers with whom it has a pre-existing trust
relationship i.e. their SSL certificate is in the TrustStore. A value of “true” specifies
that only trusted servers can access the service a value of “false” specifies that any
server may make authorisation requests.

Table 2. Example HTTPS Configuration

If you now navigate to https://localhost:1104/ you should be asked by your browser to
provide a certificate for authentication. The example trust store included in the release
should contain a single PKC that corresponds to a PKCS#12 file in the release named
trusted.p12, which has a password of “password”. You should now be able to see the
service as before.

Please Note : The SSL certificates provided with the release should not be used to
provide SSL support in deployed systems.

<TCPConfiguration>
<ServerPort>1104</ServerPort>
<ThreadCount>10</ThreadCount>
<Protocol>https</Protocol>
<!-- SSL only Configurations -->
<PublicKey>./server.crt</PublicKey>
<PrivateKey>./server.key</PrivateKey>
<PrivateKeyPassword>password</PrivateKeyPassword>
<KeyStore>./keystore.jks</KeyStore>
<KeyStorePassword>password</KeyStorePassword>
<RequireClientAuthentication>true</RequireClientAuthentication>
<TrustStore>./truststore.jks</TrustStore>
<TrustStorePassword>password</TrustStorePassword>
</TCPConfiguration>

11

PDP and CVS Configuration

The authorisation server offers support for several PDP implementations including
the PERMIS PdP/CVS [9], Sun‟s XACML PDP [10] and Eindhoven‟s Trust PDP.
Each of these configuration types utilise a different type of configuration element in
the main configuration file:

• <PERMISConfiguration> elements configure an instance of the PERMIS
PDP/CVS.

• <SunPDPConfiguration> elements configure an instance of the Sun XACML
PDP.

• <TrustPDPConfiguration> elements configure an instance of the Trust PDP.

If a error occurs whilst configuring these elements the element will be skipped
and appropriate error information will be outputted to the log file.

Please Note: At construction the server will attempt to determine a default PDP/CVS
for incoming requests. This default policy will be defined using the isDefault attribute
present on all the PDP configuration elements. Only one default policy may be
specified in any configuration file instance.

Configuring a PERMIS PDP and CVS

Each <PERMISConfiguration> element defined in the configuration file describes a
seperate instance of a PERMIS RBAC server that is accessible through the server's
authorisation endpoint. Whilst multiple policies can be configured via this
configuration file only one can be used to access the XACML only endpoint or be
used as for SAML2XACML and WS-TRUST requests that do not contain a policy
identifier. We call this policy the default policy and specify it as a boolean attribute
of the PERMISConfiguration element itself called “isDefault”.

The possible configuration elements defined for this configuration type are:

<PolicyLocation> - The PolicyLocation element specifies the location of the policy to
be used with this service. This may take the form of the URL of an LDAP server, a
WebDAV server URL, the path to an Attribute Certificate or the Path to an XML file.

<PolicyIssuer> - the Policy Issuer specifies the Policy writer. When accessing policies
which are stored in remote repositories this value is also used to determine the user
entry in which the policy is stored.

<PolicyIdentifier> - The Policy Identifier specifies a Unique identifier that can be used
to identify the correct policy to be used. This value must match the OID attribute
contained in the policy file itself. This value is then used to determine which policy to
load from repositories and later this identifier can be used when making both Ws-Trust
and SAML-XACML requests to determine which policy to use for credential
validation or authorisation.

<LDAPACAttribute> - This element specifies the LDAP attribute name that
is used to hold Attribute Certificates for authorisation.

<LDAPPKCAttribute> - This element specifies the LDAP attribute name that is

12

used to hold user PKCs for signature verification.

<CredentialLocation> - The Credential Location element is used in pull mode to define
the repositories from which user credentials should be pulled. This element should take
the value of an LDAP or WebDAV attribute repository's URL.

<RootPKC> - This element specifies the paths to certificate authoritys that can be used
when verifying user certificates and signed credentials.

<ObligationsServiceConfiguration> - Specifies an obligations service that will be
attached to the PDP. This element is discussed in more detail below.

<EngineIdentity> - Determines the value used as the Issuer of the assertion
embedded in the RequestSecurityTokenResponse. This value is thus only used
for the CVS functionality.

Table 3. PERMIS Policy Configuration Example

The PERMISConfiguration element supports the following attributes:

- isDefault: indicates whether or not this is the default policy for this server.
Default: false

- isBtgEnabled: when set to “true” then a BTG-wrapper will be used around the
stateless PDP. This enables the PDP to return the BTG-answer. This wrapper
will hold all the relevant state information for the BTG-protocol. Default:
false.

- btgMode: determines the “mode” in which the BTG-wrapper will work.
Valid values are: PRE_FETCH and FETCH_ON_DEMAND. Only
considered when the attribute isBtgEnabled is set to true. Default:
PRE_FETCH

- authenticateCaller: when true then the Issuer of the top level Assertion
used in a RequestSecurityToken message has to match the DN of the client
certificate used for the SSL connection. This parameter thus only

<!-- example Policy Configuration using XML and no Signature Verification.
This policy is the default policy as specified by the isDefault attribute-->
<PERMISConfiguration isDefault="true">
<!-- The location of the policy -->
<PolicyLocation>./policy.xml</PolicyLocation>
<!-- The issuer of the policy -->
<PolicyIssuer>cn=A Permis Test User,o=Permisv5, c=gb</PolicyIssuer>
<!-- For XML policies the Policy Identifier may have any unique value but MUST still be set -->
 <PolicyIdentifier>TestPolicy</PolicyIdentifier>
<!-- The LDAP attribute where the users policy/attributes are stored -->
 <LDAPACAttribute>attributeCertificateAttribute</LDAPACAttribute>
<!-- The LDAP attribute where the user's PK certificate is stored -->
<LDAPPKCAttribute>userCertificateAttribute</LDAPPKCAttribute>
<!-- The location of user credentials -->
<CredentialLocation>ldap://sec.cs.kent.ac.uk/c=gb</CredentialLocation>

</PERMISConfiguration>

13

influences the CVS functionality. When this attribute is set to true, then
the CVS can only be (meaningfully) called over SSL.

- supportMultiResources: when this is set to true then one can send multiple
resources in a single request. The xacml-context:Response will then contain
multiple xacml-context:Result elements, one for each resource in the request.
This is particularly useful when using the SAML profile of XACML. In this
case credential validation (i.e. fetching, parsing and validating the user‟s
credentials) will only be done once. This should result in a significant
performance improvement compared to making multiple calls, one for each
request. Default: false.

For additional policy configurations please refer to the example permis.xml
configuration file included in the release package.

Configuring an Obligations Service

Note: due to class loading issues configuring an obligations service does not work

with servlet container deployment when using a version smaller then 0.2.3. From

version 0.2.3 onwards you should be able to use an obligations service no matter how

you deploy the authorisation server.

The optional ObligationsServiceConfiguration element specifies an obligations
service that will be attached to the PDP. This is, if the XACML response contains
Obligations then some of them may be enforced by the specified obligations service.
The mechanism used is flexible and allows administrators to specify their own
obligations without having to change or recompile the code. The underlying
framework used is Spring version 3 [11]. The software distribution contains the
necessary libraries but the administrator will have to specify a Spring configuration
file.

An ObligationsServiceConfiguration element consists of zero or more Obligation
elements. Each Obligation element has a required ‘path’ attribute that gives the
location of a Spring configuration file. Further, each Obligation element needs to
have one or more ObligationIdentifier elements.

An example of an ObligationsServiceConfiguration element is given below:

The ObligationIdentifier elements specify the identifiers that this particular obligation
will be registered under in the obligations service. In other words, if this identifier
matches the ObligationId attribute on one of the returned obligations, then this
ObligationConstructor object (see later) will be used to construct the executable
obligation which will then be enforced.

The ObligationsServiceConfiguration element also has an attribute called
„processAll‟. If this is set to false, then the ObligationsService will simply return any

<ObligationsServiceConfiguration processAll="false">

<Obligation path="./obligations/AlwaysSucceedObligation.xml">

<ObligationIdentifier>AlwaysSucceedObligation</ObligationIdentifier>

</Obligation>

<Obligation path="./obligations/EmailObligation.xml">

<ObligationIdentifier>EmailObligation</ObligationIdentifier>

</Obligation>

</ObligationsServiceConfiguration>

14

unrecognised obligations (i.e. obligations for which no matching ObligationIdentifier
was found.) If it is set to true then if there are such unrecognised obligations, then
access will be denied. If you have configured additional

obligations service components in your system (e.g. to handle application specific
obligations), then you should set the processAll attribute to false.

In the example above the first obligation is an extremely simple one: this obligation just
prints a message on standard output to say that it has been called. The content of the
AlwaysSucceedObligation.xml is as follows:

The first five lines will be the same for every such file. Each file has to specify exactly

one bean which implements the
issrg.aipep.obligations.ObligationConstructor interface. This does not mean
that the configuration file may not contain additional beans (which are then probably
used to help in specifying the ObligationConstructor bean).
Another example is given by the EmailObligation.xml file where the
EmailObligationConstructor object is specified by using a constructor which uses an
object of type Properties. This object (bean) has been created as the bean with identifier
‘mailProperties’ and is referenced in the bean with identifier email-obligation. This is

the actual ObligationConstructor defined by this file.

More information on how to specify such a Spring Inversion of Control configuration
file can be found here:
http://static.springsource.org/spring/docs/3.0.3.RELEASE/spring-framework-
reference/html/beans.html

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns=http://www.springframework.org/schema/beans

xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance

xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd">

<bean id="always-succeed"

class="issrg.aipep.obligations.AlwaysSucceedObligationConstructor"/>

</beans>

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns=http://www.springframework.org/schema/beans

xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance

xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd">

<bean id="mailProperties"

class="org.springframework.beans.factory.config.PropertiesFactoryBean">

<property name="properties">

<props>

<prop key="mail.smtp.host">mx.cs.kent.ac.uk</prop>

<prop key="mail.transport.protocol">smtp</prop>

</props>

</property>

</bean>

<bean id="email-obligation"

class="issrg.aipep.obligations.EmailObligationConstructor">

<constructor-arg ref="mailProperties"/>

</bean>

</beans>

15

If you are interested in implementing your own obligations, then we refer to
Deliverable D7.1 [12] sections 2.5.1 and 2.5.2 for a description of the various classes
and interfaces involved. You could also look at the source code of existing obligations
[13].

Configuring a Sun PDP

Each <SunPDPConfiguration> element defined in the configuration file describes a
separate instance of a Sun XACML PDP, accessible through the server's authorisation
endpoint. We do not currently support Ws-Trust requests for this PDP type.

Please Note: In order to provide access to a Sun XACML PDP instance it MUST be
configured as the default policy.

The possible configuration elements defined for this configuration type are:

<PolicyLocation> - The PolicyLocation element specifies the absolute or relative path
location of the policy to be used with this service. This may only take the form of a
Path to an XML file containing an XACML 2.0 Policy construct. This element must
be present at least once, and may be used multiple times to specify multiple policies.
<PolicyIdentifier> - Gives a name to the PDP which must be used in the
SAML/XACML request when the PDP is not the default one.
<ObligationsServiceConfiguration> - This element is configured in the same way as
the corresponding element on the PERMISConfiguration element.

Table 4. XACML Policy Configuration Example

The SunPDPConfiguration element supports the following attributes, each with the
same meaning as in the PERMISConfiguration element.

- isDefault

- isBtgEnabled

- btgMode

- supportMultiResources

If you want this configuration to respond to WsTrust queries as well, then you need to
set the
‘isCVS’ attribute to true. If you do not mention the attribute it defaults to ‘false’ and
this element will not respond to WsTrust queries, hence you will not be able to use it
as a Credential Validation Service.

<!-- an example XACML Policy Configuration -->

<SunPDPConfiguration isDefault="false">

<!-- The location of the XACML Policy files -->

<PolicyLocation>xacmlpolicy.xml</PolicyLocation>

<PolicyLocation>xacmlpolicy-second.xml</PolicyLocation>

<PolicyIdentifier>My-PDP</PolicyIdentifier>

</SunPDPConfiguration>

16

Configuring a Trust PDP

Each <TrustPDPConfiguration> element defined in the configuration file describes a
separate instance of a Trust PDP, accessible through the server's authorisation endpoint.
We do not currently support SAML XACML or Ws-Trust requests for this PDP type
and whilst multiple policies can be configured via this configuration file only one can
be used to access the XACML only endpoint. We call this policy the default policy and
specify it as a boolean attribute of the TrustPDPConfiguration element itself called
“isDefault”.

Please Note: In order to provide access to a Trust PDP instance it MUST be
configured as the default policy.

The possible configuration elements defined for this configuration type are:

<PolicyConfigFile> - The PolicyConfigFile element is used to provide a relative or
absolute path to a TrustPDP policy configuration file that defines the policies required
to initalise the PDP instance. The element may only be defined once per
TrustPDPConfiguration instance.

<TrustServiceConfigFile> - The TrustServiceConfigFile is used to provide a relative
or absolute path to a Trust Service confiuration file which specifies the class names of
the required trust services.

Table 5. Trust PDP Configuration example

For more information on configuring a Trust PDP and the contents of the referenced
configuration files please refer to the trust PDP‟s installation documents.

Testing the Server

The standalone server also provides a testing mechanism that provides both XACML
and SAML XACML grant and deny handlers. This service means that as long as the
server receives correctly formatted requests then either grant or deny replies will
always be received from the default policy endpoints no matter the contents of the
request.

The test handlers can be initialised by adding a <TestService> element to the
permis.xml configuration file. This element should have a single attribute “handler”
which is used to specify whether the service returns GRANT or DENY responses. For
GRANT responses the attribute should have the value “permit” and for deny
responses “deny”.

Table 6. Test Service Configuration Example

<TrustPDPConfiguration isDefault="true">
<!-- The location of the Policy Configuration file -->
<PolicyConfigFile>./config.xml</PolicyConfigFile>
<!-- The location of the Trust Service Configuration file -->
<TrustServiceConfigFile>./config-trustservice.xml</TrustServiceConfigFile>

</TrustPDPConfiguration>

<!-- An example GRANT test handler -->
<TestService handler=”grant”/>

17

Please note: This handler overrides any other default policies configured in the
permis.xml configuration file and should be omitted in production services.

Configuring an Application Independent PEP (AI-PEP)

The authorisation server can also contain one (or more) AI-PEP instance(s). This is
done by using the AipepConfiguration element. The AipepConfiguration element
supports the following attributes:

- isDefault: indicates whether or not this is the default PDP of the server;
defaults to false when absent

- ID: gives an identifier for this PDP. Will be used to locate this PDP when
specifying a PDP

explicitly in the request as specified later in the document (see Specifying an
Authorisation Policy to use when making an XACMLAuthzRequest)

- submitAction: gives the name of the action to be used when submitting sticky
policies.

- deleteAction: gives the name of the action to be used for deleting a
particular resource identifier from the sticky store.

Note: when either of the ‘submitAction’ or ‘deleteAction’ has not been specified, then
submitting policies and deleting resource identifiers will not be possible through this
particular interface.

The following child elements are supported:

- <DatabaseConfiguration>

- <ObligationsServiceConfiguration>

- <MasterPDPConfiguration>

The ObligationsServiceConfiguration element is the same as for
instance the ObligationsServiceConfiguration element on the
PERMISConfiguration element.

The DatabaseConfiguration element is used to configure the storage for sticky policies
that were submitted to the AIPEP. You can choose to either use a file system backed
storage (easy for testing) or one can use a storage backed by a relational database.
When the DatabaseConfiguration element is absent then in-memory storage is used.
This means that sticky policies submitted to the authorisation server are lost when it

is stopped.

To use a file system backed storage the following two attributes have to be used:
‘directory’ and
‘filePath’. The directory attribute should give an existing (writable) folder on the file
system. New sticky policies will be stored inside this folder with a file name that is a
(SHA-1) hash of the sticky policy’s identifier. The filePath attribute should give a file
that contains the mapping between resource identifiers and sticky policies. An
example of such a configuration is given below:

<DatabaseConfiguration

filePath=”./policystore/stickystore.t

xt” directory=”./policystore”/>

18

It is also possible to use a relational database as the backend storage. In this case the
DatabaseConfiguration element simply points to a Spring configuration file, which
should define one bean of type javax.sql.DataSource. The springConfigurationFile
attribute should give the location of the Spring configuration file. One could thus have:

The file policy-store-spring.xml could contain something similar to:

Note that in this case we used a MySQL database, but in principle this should not
matter.

Remark: it may be necessary to put the library (jar file) providing access to the
database in the directory $TOMCAT/webapps/axis2/WEB-INF/lib folder so that it can
be located.

The DatabaseConfiguration element also supports the ‘ridAttributeIdentifier’ attribute
which gives the identifier of the XACML attribute in the request context that specifies
the resource identifier of the request. The default value for this attribute (when not
specified) is: urn:oasis:names:tc:xacml:1.0:resource:resource-id

Preparing the database. The implementation expects that certain tables are present in
the database. The easiest way to set up these tables is to use the
DatabaseConfigurationParser main program. This expects a Spring configuration file as
above as input on the command line, and will create the necessary tables for you. For
instance, you could run the following command from inside
$TOMCAT/webapps/axis2/WEB-INF/services/authz/lib:

Note that the actual database (store in this instance) is not created for you and needs
to exist prior to executing this statement. You may also need to use a different
username/password for table creation.

The MasterPDPConfiguration element allows configuring the actual PDP that will be
used by the AIPEP. It has the following child elements:

<DatabaseConfiguration springConfigurationPath="webapps/axis2/WEB-

INF/services/authz/conf/policy-store-spring.xml"/>

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns=http://www.springframework.org/schema/beans

xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance

xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd">

<bean id="dataSource"

class="org.springframework.jdbc.datasource.DriverManagerDataSource">

<property name="driverClassName" value="com.mysql.jdbc.Driver"/>

<property name="url" value="jdbc:mysql://localhost/store"/>

<property name="username" value="xxx"/>

<property name="password" value="yyy"/>

</bean>
</beans>

java -cp *:../../../lib/*

issrg.standalone.configuration.parser.DatabaseConfigurationParser

../conf/policy-store-spring.xml

19

- LawConflictResolutionPDP: specifies the conflict resolution PDP to used by the
law..

- LawPDP: specifies the law policies that will be used by the Master PDP.

- ControllerConflictResolutionPDP: the conflict resolution PDP that will
be used by the controller.

- ControllerPDP: specifies the policy that the controller/keeper of the data
would like to enforce.

- TrustPDP: specifies a system wide trust policy

All elements take a PERMISConfiguration, SunPDPConfiguration or
TrustPDPConfiguration element as its child to configure the actual PDP.

When the LawPDP or ControllerPDP element is missing, this is interpreted as having a
PDP that always returns NotApplicable.

The following conflict resolution strategies are currently supported

- permit-overrides

- deny-overrides

- first-applicable

The conflict resolution PDP indicates the conflict resolution strategy by having an
obligation on its response with an attribute identifier of
http://sec.cs.kent.ac.uk/masterpdp/conflictresolution/permit-overrides or
http://sec.cs.kent.ac.uk/masterpdp/conflictresolution/deny-overrides or
http://sec.cs.kent.ac.uk/masterpdp/conflictresolution/first-applicable.

When either the law or the controller are not interested in specifying a conflict
resolution strategy for a particular request, they should return NotAppplicable. When
no PDP is specified for a conflict resolution element then this is interpreted as
returning NotApplicable for every request.

Subjects (and issuers) can submit their own conflict resolution policy to use in the
same way as they can submit authorization policies. The policy type, however, must be
set to ‘ConflictResolution’, rather than ‘Authorization’.

An example of a complete AipepConfiguration element can be found below.

20

Protocol Information

Due the the proliferation of different standards and versions of standards we wish to
make clear that contrary to previous releases of this software we now only support
three distinct message types:

1. xacml-context:Request messages as defined in [4].

2. xacml-samlp:XACMLAuthzDecisionQuery messages as defined in [5].

3. wst:RequestSecurityToken messages as defined in [7] and constrained by [8].

In addition to the standard message types defined in these file we have also
implemented standards compliant but otherwise un-profiled means of specifying the
CVS or authorisation policies to use when making RequestSecurityToken and
XACMLAuthzDecisionQuery messages, we are currently in the process of profiling
these requests and standardising them and will make the full profiles available in the
near future.

Specifying a CVS policy when making a WS-Trust Request

In order to specify the CVS policy to use when making the WS-Trust Request a request
should be specified according to the profile described in [8]. Once this request has been
constructed a <wsp:PolicyReference> element should be added to the body of the
request. The URI attribute of this element should contain a policy OID that matches a

<AipepConfiguration isDefault="true" submitAction=”SUBMIT”

deleteAction=”DELETE” >

<DatabaseConfiguration

ridAttributeIdentifier="rid"

filePath=”./policystore/stickystore.txt”

directory=”./policystore”/>

<ObligationsServiceConfiguration processAll="false">

<Obligation path="./obligations/EmailObligation.xml">

<ObligationIdentifier>

http://sec.cs.kent.ac.uk/obligations/EmailObligation

</ObligationIdentifier>

</Obligation>

</ObligationsServiceConfiguration>

<MasterPDPConfiguration>

<LawConflictResolutionPDP>

<SunPDPConfiguration>

<PolicyLocation>always-permit-overrides.xacml</PolicyLocation>

<PolicyIdentifier>always-permit-overrides</PolicyIdentifier>

</SunPDPConfiguration>

</LawConflictResolutionPDP>

<LawPDP>

<PERMISConfiguration isDefault="true">

<PolicyLocation>./lawPolicy.xml</PolicyLocation>

<PolicyIssuer>cn=law,o=Permisv5, c=gb</PolicyIssuer>

<PolicyIdentifier>lawPolicyIdentifier</PolicyIdentifier>

</PERMISConfiguration>

</LawPDP>

<!—Note that ControllerConflictResolutionPDP and ControllerPDP elements

are missing. This is allowed.-->

</MasterPDPConfiguration>

</AipepConfiguration>

21

policy OID configured into the main configuration file of the server (permis.xml).

For example the request defined below would mean that a policy with the OID of
mysite-policy would be used to provide the credentials for this request.

Table 7. An Example WS-Trust Request, with referenced Policy Identifier

Specifying an Authorisation Policy to use when making an
XACMLAuthzRequest

In order to specify the policy to use when making an XACMLAuthzRequest a
request should be specified according to the profile described in [5]. Once this
request has been constructed a
<Policy> element of type “urn:oasis:names:tc:xacml:2.0:policy:schema:os” should be
added to the body of the request. The PolicyId attribute of this element should contain a
policy OID that matches a policy OID configured into the main configuration file of the
server (permis.xml). The RuleCombiningAlgId attribute of this message should be set
to “urn:oasis:names:tc:xacml:1.0:rule- combining-algorithm:permit-overrides" and an
empty target element should be included e.g.

Table 8. An example SAML-XACML Policy reference.

<wst:RequestSecurityToken xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wst="http://docs.oasis-open.org/ws-sx/ws-trust/200512/"
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy" >

<wst:TokenType>
urn:oasis:names:tc:SAML:2.0:profiles:attribute:XACML

</wst:TokenType>
<wst:RequestType>

http://schemas.xmlsoap.org/ws/2005/02/trust/validate
</wst:RequestType>

<wsp:PolicyReference uri=“mysite-policy” />
<wst:Claims Dialect="http://www.ogf.org/authz/2008/06/CVS/pull">

<saml:Assertion ID="Permis-Credential-Validation-Service-V1.0"
IssueInstant="Wed Oct 14 16:10:15 BST 2009" Version="2.0"

xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion">
 <saml:Issuer>

cn=A Permis Test User,o=PERMISv5,c=gb
</saml:Issuer>
<saml:Subject>

<saml:NameID Format="urn:oasis:names:tc:SAML:2.0:nameid- format:X509SubjectName">
CN=User0,o=PERMISv5,c=gb

</saml:NameID>
</saml:Subject>

</saml:Assertion>
 </wst:Claims>
</wst:RequestSecurityToken>

<Policy xmlns="urn:oasis:names:tc:xacml:2.0:policy:schema:os"

PolicyId="mysite-policy"

RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-

algorithm:permit- overrides">

<Target/>

</Policy>

22

For example the request defined below would mean that a policy with the OID of
mysite-policy would be used to provide the authorisation decision for this
request.

Table 9. An Example SAML-XACML Request, with referenced Policy
Identifier

<XACMLAuthzDecisionQuery

xmlns="urn:oasis:names:tc:xacml:2.0:profile:saml2.0:v2:schema:protocol:cd-01"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="urn:oasis:names:tc:xacml:2.0:profile:saml2.0:v2:schema:pro

tocol:cd-01

file:/home/sfl/work/issrg/oasis-documents/xacml3/XACML-3.0-cd-1-updated-

2009-May- 07/XSD/xacml-2.0-profile-saml2.0-v2-schema-protocol-cd-1.xsd"

ID="A2009-10-13T12.57.07"

Version="2.0"

IssueInstant="2009-10-13T12:58:12.209Z">

<xacml-context:Request xmlns:xacml-

context="urn:oasis:names:tc:xacml:2.0:context:schema:os">

<Subject xmlns="urn:oasis:names:tc:xacml:2.0:context:schema:os">

<Attribute AttributeId="urn:oid:1.2.826.0.1.3344810.1.1.14"

DataType="http://www.w3.org/2001/XMLSchema#string">

<AttributeValue>member</AttributeValue>

</Attribute>

</Subject>

<Resource xmlns="urn:oasis:names:tc:xacml:2.0:context:schema:os">

<Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"

DataType="http://www.w3.org/2001/XMLSchema#string">

<AttributeValue>http://www.mysite.com/members/</AttributeValue>

</Attribute>

</Resource>

<Action xmlns="urn:oasis:names:tc:xacml:2.0:context:schema:os">

<Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"

DataType="http://www.w3.org/2001/XMLSchema#string">

<AttributeValue>GET</AttributeValue>

</Attribute>

</Action>

<Environment xmlns="urn:oasis:names:tc:xacml:2.0:context:schema:os"/>

</xacml-context:Request>

<Policy xmlns="urn:oasis:names:tc:xacml:2.0:policy:schema:os"

PolicyId="mysite-policy"

RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-

algorithm:permit-overrides">

<Target/>

</Policy>

</XACMLAuthzDecisionQuery>

23

Submitting Sticky Policies to Use for a Particular RID

In the example below, we show how a „member‟ of a certain site/service provider
(presumably ou=some,o=service,c=gb) requests to submit some (personal) information,
known to the service provider with the RID rid-123. The member has a sticky policy
which only allows transfer of this data other providers within the UK and when this
happen he wants this policy to be attached to his data so that the other site can also
honour this policy. Note that the user‟s policy says nothing about submitting the data,
as in this case it is assumed that the organisation‟s policy determines who may submit
data.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

<soapenv:Header/>

<soapenv:Body>

<XACMLAuthzDecisionQuery

xmlns="urn:oasis:names:tc:xacml:2.0:profile:saml2.0:v2:schema:protocol:cd-01"

ID="A2010-12-13T12.58.12"

Version="2.0"

IssueInstant="2010-12-13T12:58:12.209Z">

<xacml-context:Request

xmlns:xacml-context="urn:oasis:names:tc:xacml:2.0:context:schema:os">

<Subject xmlns="urn:oasis:names:tc:xacml:2.0:context:schema:os">

<Attribute AttributeId="urn:oid:1.2.826.0.1.3344810.1.1.14"

DataType="http://www.w3.org/2001/XMLSchema#string">

<AttributeValue>member</AttributeValue>

</Attribute>

</Subject>

<Resource xmlns="urn:oasis:names:tc:xacml:2.0:context:schema:os">

<Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"

DataType="http://www.w3.org/2001/XMLSchema#string">

<AttributeValue>ou=some,o=service,c=gb</AttributeValue>

</Attribute>

<Attribute AttributeId="rid"

DataType="http://www.w3.org/2001/XMLSchema#string">

<AttributeValue>rid-123</AttributeValue>

</Attribute>

</Resource>

<Action xmlns="urn:oasis:names:tc:xacml:2.0:context:schema:os">

<Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"

DataType="http://www.w3.org/2001/XMLSchema#string">

<AttributeValue>SUBMIT</AttributeValue>

</Attribute>

</Action>

<Environment xmlns="urn:oasis:names:tc:xacml:2.0:context:schema:os"/>

</xacml-context:Request>

<Extensions ">

<sp:StickyPolicy
xmlns:sp=”http://sec.cs.kent.ac.uk/stickypolicy”

PolicyID="sticky-policy-1"

PolicyLanguage="PERMIS"

PolicyType="Authorization"

TimeOfCreation="2010-08-09T00:00:00Z">

<sp:PolicyAuthor>

<sp:AuthorType>DataSubject</sp:AuthorType>

</sp:PolicyAuthor>

<sp:PolicyResourceTypes>

<sp:ResourceType>personal:preferences</sp:ResourceType>

</sp:PolicyResourceTypes>

24

Note: it is very important that the Extensions element used is in the same XML

namespace as the XACMLAuthzDecisionQuery, otherwise your sticky policy

 <sp:PolicyContents><X.509_PMI_RBAC_Policy OID="sticky-policy-1">

<SubjectPolicy>

<SubjectDomainSpec ID="everywhere">

<Include LDAPDN=""/>

</SubjectDomainSpec>

</SubjectPolicy>

<RoleHierarchyPolicy>

 <RoleSpec Type="permisRole" OID="1.2.826.0.1.3344810.1.1.14">

<SupRole Value="UNSPECIFIED"/>

 </RoleSpec>

</RoleHierarchyPolicy>

 <SOAPolicy>

<SOASpec ID="anyone" LDAPDN=""/>

 </SOAPolicy>

 <RoleAssignmentPolicy>

<RoleAssignment>

<SubjectDomain ID="everywhere"/>

<RoleList>

<Role Type="permisRole"/>

</RoleList>

<Delegate Depth="0"/>

<SOA ID="anyone"/>

<Validity/>

</RoleAssignment>

</RoleAssignmentPolicy>

<TargetPolicy>

<TargetDomainSpec ID="UK">

<Include LDAPDN="c=gb"/>

</TargetDomainSpec>

</TargetPolicy>

<ActionPolicy>

<Action Name="TRANSFER" ID="TRANSFER"/>

</ActionPolicy>

<TargetAccessPolicy>

<TargetAccess>

<RoleList/>

<TargetList>

<Target>

<TargetDomain ID="UK"/>

<AllowedAction ID="TRANSFER"/>

</Target>

 </TargetList>

 <Obligations>

<Obligation

ObligationId=”http://sec.cs.kent.ac.uk/obligations/AttachStickyPolicy”

FulfillOn="Permit"/>

</Obligations>

</TargetAccess>

</TargetAccessPolicy>

</X.509_PMI_RBAC_Policy>

 </sp:PolicyContents>

</sp:StickyPolicy>

<Extensions>

</XACMLAuthzDecisionQuery>

</soapenv:Body>

</soapenv:Envelope>

25

will not be found and will hence not be stored.

Returning Sticky Policies from the AIPEP

Next, assume that a request comes in from another UK based site to transfer the data
with RID rid-123 to his site, then the response will come back as ‘Permit’ and the
user‟s policy will be included in it as shown below.

Thus, the request may be the following:

The response may then be as follows. Note how there is an obligation with identifier
http://sec.cs.kent.ac.uk/obligations/stickypolicyobligation returned. This one denotes
that this the policies mentioned as
http://sec.cs.kent.ac.uk/obligations/stickypolicyobligation/stickypolicy need to be
attached when the data is transferred to the other party.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

 <soapenv:Header/>

<soapenv:Body>

<XACMLAuthzDecisionQuery

xmlns="urn:oasis:names:tc:xacml:2.0:profile:saml2.0:v2:schema:protocol:cd-01"

ID="A2011-01-01T12:58:12.209Z" Version="2.0"

IssueInstant="2011-01-01T12:58:12.209Z">

<xacml-context:Request

xmlns:xacml-context="urn:oasis:names:tc:xacml:2.0:context:schema:os">

<Subject xmlns="urn:oasis:names:tc:xacml:2.0:context:schema:os">

</Subject>

<Resource xmlns="urn:oasis:names:tc:xacml:2.0:context:schema:os">

 <Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"

DataType="http://www.w3.org/2001/XMLSchema#string">

<AttributeValue>o=other service,c=gb</AttributeValue>

</Attribute>

<Attribute AttributeId="rid"

DataType="http://www.w3.org/2001/XMLSchema#string">

<AttributeValue>rid-123</AttributeValue>

</Attribute>

</Resource>

<Action xmlns="urn:oasis:names:tc:xacml:2.0:context:schema:os">

<Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"

DataType="http://www.w3.org/2001/XMLSchema#string">

<AttributeValue>TRANSFER</AttributeValue>

</Attribute>

</Action>

<Environment xmlns="urn:oasis:names:tc:xacml:2.0:context:schema:os"/>

</xacml-context:Request>

</XACMLAuthzDecisionQuery>

</soapenv:Body>

</soapenv:Envelope>

26

Note that in this case the returned policies are base64 encoded. This behaviour can be
changed by setting the ‘base64EncodeStickyPolicies’ attribute on the
AipepConfiguration element to false.

The Policy Management Web Service

It is possible to use a dedicated policy management interface for the authorization
server. This allows submitting, viewing and deleting of sticky policies.

Important Note: since manipulation of sticky policies is a sensitive subject it is very
much recommended that you only allow trusted proxies to contact the policy

management web service. Earlier in this document it is explained how to setup trusted
proxies for an Axis2 based web service.

The Axis2 services.xml file contains the necessary information to enable the policy
management interface. Simply uncomment the PolicyManagement service.

In order to use the Policy Management Web Service in conjunction with an AIPEP,
you must use a relational database backend for the sticky policies. This is the
(indirect) way in which the Policy Management Web Service and the AIPEP
communicate.

The Axis2 services.xml file contains a parameter called „configFile‟ whose value

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

<soapenv:Body>

<urn:Response IssueInstant="2011-01-01T12:58:13.209Z"

ID="_66149d3bc0c909eb607847edd65dc030" Version="2.0"

 InResponseTo=" A2011-01-01T12:58:12.209Z "

xmlns:urn="urn:oasis:names:tc:SAML:2.0:protocol">

<urn:Status>

<urn:StatusCode Value="urn:oasis:names:tc:SAML:2.0:status:Success"/>

</urn:Status>

<urn1:Assertion IssueInstant="2011-01-01T12:58:13.209Z"

 ID="_24c15e6bb46b2bc3aea05f9fdc53a068" Version="2.0"

xmlns:urn1="urn:oasis:names:tc:SAML:2.0:assertion">

<urn1:Statement xsi:type="urn:XACMLAuthzDecisionStatementType"

xmlns:urn="urn:oasis:names:tc:xacml:2.0:profile:saml2.0:v2:schema:assertion:cd-01"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<urn2:Response xmlns:urn2="urn:oasis:names:tc:xacml:2.0:context:schema:os">

<urn2:Result>

<urn2:Decision>Permit</urn2:Decision>

<urn2:Status>

<urn2:StatusCode Value="urn:oasis:names:tc:xacml:1.0:status:ok"/>

</urn2:Status>

<urn3:Obligations xmlns:urn3="urn:oasis:names:tc:xacml:2.0:policy:schema:os">

<urn3:Obligation

ObligationId="http://sec.cs.kent.ac.uk/obligations/stickypolicyobligation">

<urn3:AttributeAssignment

AttributeId="http://sec.cs.kent.ac.uk/obligations/stickypolicyobligation/sticky
policy"

DataType="http://www.w3.org/2001/XMLSchema#base64Binary">

PD94b remainder of base64 encoding cut</urn3:AttributeAssignment>

</urn3:Obligation>

</urn3:Obligations>

</urn2:Result>

</urn2:Response>

</urn1:Statement>

</urn1:Assertion>

 </urn:Response>

</soapenv:Body>

27

should point to the configuration file (typically called pm.xml) for the policy
management web service:

The content of this configuration file is fairly restricted. It consists of a top level
element called PolicyManagementConfiguration and a child element called
DatabaseConfiguration. An example is given below:

The DatabaseConfiguration element you use should be the same one as that used on
your AipepConfiguration element, as they need to share the same database backend.

Available Operations

The policy management web service has the following operations:

- storePolicy: takes a sticky policy and stores it in the database. After calling
this operation the policy is present in the system but it does not yet apply to
any resource.

- storePolicyBase64: has the same functionality as above but is useful for
clients that have problems to send complex elements to a web service. In this
case the sticky policy construct should be a base64 encoded string.

- removePolicy: takes a policy identifier. After calling this operation the
policy is no longer present in the system, which means that any resource
identifier to which this policy was applicable are no longer covered by this
policy.

- getPolicy: takes a policy identifier and returns the sticky policy with that
identifier.

- getPolicyBase64: as above but returns the sticky policy in a base64 encoded
string.

- associate: takes a policy identifier and a resource identifier. After calling this
method the policy referenced by the policy identifier applies to the given
resource identifier. Calling this method multiple times has no effect (it is
idempotent).

- disassociate: this is the reverse of the associate-method.

- getPolicyIdentifiers: takes a resource identifier and returns the list (possibly
empty) of the policy identifiers of the policies that are applicable to the
resource identifier.

- getResourceIdentifiers: takes a policy identifier and returns the list of
resource identifiers (possibly empty) that this policy identifier applies to

<parameter name="configFile">/path/to/pm.xml</parameter>

<PolicyManagementConfiguration>

<DatabaseConfiguration

ridAttributeIdentifier="rid"

SpringConfigurationPath="/path/to/policy-store-spring.xml"/>

</PolicyManagementConfiguration>

28

References

[1] Gosling, J., Joy, B., Steele, G., and Bracha, G. 2005 Java(Tm) Language
Specification, the (3rd Edition) (Java (Addison-Wesley)). Addison-Wesley
Professional.
[2] Apache Axis 2 project, see http://ws.apache.org/axis2/
[3] Gudgin, M., Hadley, M., Mendelsohn, M. et al. (2003), „SOAP Version 1.2 Part 1:
Messaging Framework‟, W3C Recommendation, 24th June (URL: http://
www.w3.org/TR/2003/REC-soap12- part1 – 20030624/).
[4] OASIS, “OASIS eXtensible Access Control Markup Language (XACML) Version
2.0”, OASIS Standard, 1 February 2005.
[5] OASIS, “SAML 2.0 Profile of XACML, Version 2”, Committee Draft 1, 16 April
2009
[6] David W Chadwick, Linying Su, Romain Laborde , “Use of XACML Request
Context to Obtain an Authorisation Decision”, OGSA Standard, September 2006.
[7] S. Anderson et al., “Web Services Trust Language (WS-Trust),” technical report,
2005.
[8] David Chadwick, Linying Su, Use of WS-TRUST and SAML to access a
Credential Validation Service, OGSA Draft, June 2009.
[9] PERMIS PDP/CVS, see http://sec.cs.kent.ac.uk/permis or
http://www.openpermis.org/
[10] Sun‟s XACML PDP, see http://sunxacml.sourceforge.net/
[11] Spring framework: http://www.springsource.org/
[12] Deliverable D7.1 of the TAS3 project:
http://www.tas3.eu/project/publications/download/wp7- identity-management-
authentication-authorization/TAS3_D07p1_IDM-Authn-
Authz_V2p1.pdf/at_download/file
[13] SVN repository of ISSRG source code:
http://projects.cs.kent.ac.uk/projects/permis/svn/trunk

Appendix 1. Server WSDL

This appendix contains a copy of the wsdl used to generate the Permis Standalone
server's message handling code. For additional schema information please refer the the
“resources” folder in the release package which contains a copy of this wsdl as well as
all the schema used to generate the service.

<wsdl:definitions targetNamespace="http://sec.cs.kent.ac.uk/authzservice"
xsi:schemaLocation="http://schemas.xmlsoap.org/wsdl/
http://schemas.xmlsoap.org/wsdl/wsdl.xsd http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema.xsd"
xmlns:xacml-policy="urn:oasis:names:tc:xacml:2.0:policy:schema:os"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"
xmlns:xacml-saml="urn:oasis:names:tc:xacml:2.0:profile:saml2.0:v2:schema:assertion:cd-01"
xmlns:xacml-context="urn:oasis:names:tc:xacml:2.0:context:schema:os"
xmlns:ws="http://www.example.com/webservice"

xmlns:wst="http://docs.oasis-open.org/ws-sx/ws-trust/200512/"

29

xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:tns="http://sec.cs.kent.ac.uk/authzservice"
xmlns:wsoap="http://www.w3.org/2004/08/wsdl/soap12"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xacml-samlp="urn:oasis:names:tc:xacml:2.0:profile:saml2.0:v2:schema:protocol:cd-01"
xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<wsdl:types>
<xsd:schema targetNamespace="urn:oasis:names:tc:xacml:2.0:policy:schema:os"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:import namespace="urn:oasis:names:tc:xacml:2.0:policy:schema:os"
schemaLocation="access_control-xacml-2.0-policy-schema-os.xsd"/>
</xsd:schema>
<xsd:schema targetNamespace="urn:oasis:names:tc:xacml:2.0:context:schema:os"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:import namespace="urn:oasis:names:tc:xacml:2.0:context:schema:os"
schemaLocation="access_control-xacml-2.0-context-schema-os.xsd"/>
</xsd:schema>
<xsd:schema targetNamespace="http://docs.oasis-open.org/ws-sx/ws-trust/200512/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:import namespace="http://docs.oasis-open.org/ws-sx/ws-trust/200512/"
schemaLocation="http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3.xsd"/>
</xsd:schema>
<xsd:schema targetNamespace="urn:oasis:names:tc:xacml:2.0:profile:saml2.0:v2:
schema:assertion:cd-01" xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:import namespace="urn:oasis:names:tc:xacml:2.0:profile:saml2.0:v2:schema:assertion:cd-01”
schemaLocation="xacml-2.0-profile-saml2.0-v2-schema-assertion-cd-1.xsd"/>
</xsd:schema>
<xsd:schema targetNamespace="urn:oasis:names:tc:xacml:2.0:profile:saml2.0:v2:
schema:protocol:cd-01" xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:import namespace="urn:oasis:names:tc:xacml:2.0:profile:saml2.0:v2:schema:protocol:cd-01"
schemaLocation="xacml-2.0-profile-saml2.0-v2-schema-protocol-cd-1.xsd"/>
</xsd:schema>
<xsd:schema targetNamespace="urn:oasis:names:tc:SAML:2.0:protocol"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:import namespace="urn:oasis:names:tc:SAML:2.0:protocol" schemaLocation="saml-
schema-protocol-2.0.xsd"/>
</xsd:schema>
<xsd:schema targetNamespace="urn:oasis:names:tc:SAML:2.0:assertion"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:import namespace="urn:oasis:names:tc:SAML:2.0:assertion" schemaLocation="saml-
schema-assertion-2.0.xsd"/>
</xsd:schema>
</wsdl:types>

30

<wsdl:message name="saml2XACMLAuthzRequestMessage">
<wsdl:part name="parameters" element="xacml-samlp:XACMLAuthzDecisionQuery">
</wsdl:part>
</wsdl:message>
<wsdl:message name="WsTrustAuthzResponseMessage">
<wsdl:part name="parameters" element="wst:RequestSecurityTokenResponse">
</wsdl:part>
</wsdl:message>
<wsdl:message name="WsTrustAuthzRequestMessage">
<wsdl:part name="parameters" element="wst:RequestSecurityToken">
</wsdl:part>
</wsdl:message>
<wsdl:message name="saml2XACMLAuthzResponseMessage">
<wsdl:part name="parameters" element="samlp:Response">
</wsdl:part>
</wsdl:message>
<wsdl:message name="xacmlAuthzRequestMessage">
<wsdl:part name="parameters" element="xacml-context:Request">
</wsdl:part>
</wsdl:message>
<wsdl:message name="xacmlAuthzResponseMessage">
<wsdl:part name="parameters" element="xacml-context:Response">
</wsdl:part>
</wsdl:message>
<wsdl:portType name="AuthzInterface">
<wsdl:operation name="XACMLAuthzRequest">
<wsdl:input message="tns:xacmlAuthzRequestMessage">
</wsdl:input>
<wsdl:output message="tns:xacmlAuthzResponseMessage">
</wsdl:output>
</wsdl:operation>
<wsdl:operation name="WsTrustAuthzRequest">
<wsdl:input message="tns:WsTrustAuthzRequestMessage">
</wsdl:input>
<wsdl:output message="tns:WsTrustAuthzResponseMessage">
</wsdl:output>
</wsdl:operation>
<wsdl:operation name="SAML2XACMLAuthzRequest">
<wsdl:input message="tns:saml2XACMLAuthzRequestMessage">
</wsdl:input>
<wsdl:output message="tns:saml2XACMLAuthzResponseMessage">
</wsdl:output>
</wsdl:operation>
</wsdl:portType>

31

<wsdl:binding name="AuthzSoapHttpBinding" type="tns:AuthzInterface">
<soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
<wsdl:operation name="XACMLAuthzRequest">
<soap:operation soapAction="urn:oasis:names:tc:xacml:2.0:policy:schema:os"/>
<wsdl:input>
<soap:body use="literal"/>
</wsdl:input>
<wsdl:output>
<soap:body use="literal"/>
</wsdl:output>
</wsdl:operation>
<wsdl:operation name="WsTrustAuthzRequest">
<soap:operation soapAction="http://schemas.xmlsoap.org/ws/2005/02/trust"/>
<wsdl:input>
<soap:body use="literal"/>
</wsdl:input>
<wsdl:output>
<soap:body use="literal"/>
</wsdl:output>
</wsdl:operation>
<wsdl:operation name="SAML2XACMLAuthzRequest">
<soap:operation
soapAction="urn:oasis:names:tc:xacml:2.0:profile:saml2.0:v2:schema:protocol:cd-01"/>
<wsdl:input>
<soap:body use="literal"/>
</wsdl:input>
<wsdl:output>
<soap:body use="literal"/>
</wsdl:output>
</wsdl:operation>
</wsdl:binding>
<wsdl:service name="AuthzService">
<wsdl:port name="AuthzEndpoint" binding="tns:AuthzSoapHttpBinding">
<soap:address
location="https://localhost:1104/axis2/services/AuthzService.AuthzEndpoint/"/>
</wsdl:port>
</wsdl:service>
</wsdl:definitions>

