
Conceptual Model for Attribute Aggregation

David Chadwick1, George Inman1, Nate Klingenstein2

1University of Kent, UK. 2 Internet2 Consortium, USA

1Conceptual Model for Attribute Aggregation

2Abstract

21. Introduction

32. User Requirements

33. The Conceptual Model

43.1. High Level Overview

53.2. The IdP Linking Protocol

63.3 IdP-direct Attribute Aggregation Protocols

73.4. IdPviaLS Attribute Aggregation Protocol

83.5 IdP-direct vs. IdPviaLS models

93.6 Use of Level of Assurance/Authentication (LoA)

103.7 Preserving User Privacy

114. Trust Model

114.1 Trust Requirements During the Linking Protocol

114.2 Trust Requirements During Service Invocation

114.3 Implications of Lack of Trust

125. Implementation Notes

125.1. System Requirements

135.2. System Components

135.3 Database Schema for the Linking Service

146. Mapping to Standard Protocols

146.1 IdP Linking Protocol

156.2 Encoding the Referral

166.3 Service Request Protocols

177. The User’s PC as the Linking Service

188. Conclusions and Next Steps

18Acknowledgements

18References

Abstract

This paper describes a conceptual model for attribute aggregation that allows a service provider (SP) to authorise a user’s access request based on attributes from different identity providers (IdPs). The model employs a new component called a Linking Service (LS), which is a trusted third party under the control of the user, whose purpose is to link together the different IdPs that hold a user’s attributes. There are several possible interaction models for communications between the IdPs, SP, LS and the user, and each are described. The model is underpinned for a fully specified trust model, which also describes the implications when participants do not fully trust each other as required. Finally, the paper describes how the model can be mapped onto existing standard protocols based on SAMLv2.

1. Introduction

Many organisations are now experimenting with virtual organisations (VOs) and federations. Practical examples abound, such as the Tera-Grid VO [1] and the In-Common Federation [2]. Microsoft has added identity federation into its latest Vista operating system with Cardspace [3]. But all these systems currently suffer from the same limitation, namely, the lack of a standard approach to aggregating attributes from different Identity Providers (IdPs) for use by a single Service Provider (SP) in its access control decision making. Ad-hoc solutions are currently being experimented with, such as Grid-Shib [4] and myVocs [5]. On the surface, myVocs seems like an elegant solution, by placing a myVocs IdP-SP server in-between the real IdP and the real SP, and by holding a set of VO specific attributes which it can aggregate with the IdP’s attributes. But myVocs has severe limitations in its trust model. It requires the SP to trust the myVocs server to authenticate all of the user’s correctly, and to aggregate the user’s attributes correctly, without any assurances about the authentic sources of any of the attributes since myVocs appears to be the authoritative source of all of the attributes. In comparison, we are developing a standards based solution to the problem of attribute aggregation, based on a set of standard protocols that can aggregate attributes from any number of IdPs, whilst maintaining user privacy and SP assurance about the authoritative sources of the various attributes.

The user requirements for attribute aggregation were obtained from a widely circulated structured questionnaire
. The results were first presented in [6] and are summarised in section 2 below. Section 3 defines the conceptual model that satisfies most of these user requirements. Note that it is not possible to simultaneously satisfy all of the user requirements since some of them are mutually exclusive, such as the desire to support multi-hop proxying without knowing who the ultimate end-entity is, and the requirement to have attribute assertions digitally signed by their authoritative sources. Section 4 describes the trust model that the conceptual model requires. Section 5 provides a mapping of the conceptual model onto existing standard protocols based on SAML. Section 6 concludes and indicates our next steps in this project.

2. User Requirements

The following requirements were seen to be important for any new multi-source attribute authorisation system by the majority of the questionnaire respondents:

1. Attribute aggregation must be usable in a variety of ways: Humans via web browsers, Applications via APIs and Grid users via grid clients etc.

2. Privacy protection of user attributes is of high importance and this should be through the use of technical controls, which are independent of legal means.

3. Service Providers should be able to track users between sessions if required

4. Service Providers should be able to learn the true identity of users in exceptional circumstances, but only by contacting the user’s IdPs.

5. IdPs and SPs should only be able to communicate with each other to link together the attributes of a user with the user’s permission.

6. Service providers should only be able to query multiple IdPs, in order to pull additional attributes for authorisation purposes, with the user’s permission.

7. The protocols should be able to tunnel through firewalls using existing open ports (i.e. use http/https).

8. The system should use existing standard protocols and only extend them in a standard way if necessary. SAML is the most popular choice for the base protocol.

9. The proxying of information should be supported through multiple hops/proxies.

10. The optional ability to sign all assertions should be supported for all message exchanges.

11. The SP should be able to require that all assertions are signed by their authoritative sources.

12. It should be easy to use by end-users and require the minimum amount of user interaction

3. The Conceptual Model

Attribute aggregation is based on the following assumptions:

· The user has already registered with a number of IdPs, and has been assigned various attributes by each of them. The user will usually be known by a different identifier at each IdP, which either the IdP or the user may have chosen.

· Each SP and IdP has a bilateral trust relationships which allows them to communicate successfully with each other. The SP trusts the IdP to correctly authenticate the user to a particular Level of Authentication (LoA) and that the returned attributes belong to the user. The IdP trusts the SP not to misuse the attributes it is given.

3.1. High Level Overview

The first step in attribute aggregation is for the user to explicitly link his various identities/attributes together. This satisfies requirement 5 (user’s permission). We had a design choice as to whether the linking process should be dynamic or static, and transient or permanent. Dynamic and transient means that the linking is done during each service request and is forgotten immediately after the service has been performed. Static and permanent means that the linking is performed prior to any service request and can then be used by any number of subsequent service requests. Dynamic and permanent means that the linking is established during a service request, but is remembered for use in subsequent service requests. Static and transient is an oxymoron and will not be considered further.
Linking IdPs together necessarily requires the user to authenticate to each of the IdPs (or some mutually trusted intermediary) during the linking process. Dynamic and transient can be implemented today by Service Providers (SPs) using existing standard protocols such as Shibboleth [7]. The SP simply has to ask the user to authenticate to multiple IdPs during the same session, and obtain attributes from each of them, so this model wont be considered further.

If the linking process is modular and self contained, then it should be able to be performed either before a service request is made or midway through processing a service request, in which case we can implement both static permanent and dynamic permanent using the same model and protocols. There is however another dimension to consider for any permanently linked identities and this is session activation. A user may link several identities together before any service request is made, but then dynamically determine which of these links to activate in any given session. Thus in order to satisfy requirement 6 the user should be consulted during a service request which of his linked identities he wishes to use.
In order to have (semi-)permanently linked identities which are under the control of the user, we require a new identity component to be conceived, which we call a Linking Service (LS)
, which is a trusted third party (TTP) used to link a user’s IdPs together. Note that the LS does not link the actual identities or the user attributes together, but rather links together the IdPs that hold the attributes. In this way trust in the LS is minimised since the LS has no knowledge of which identities and attributes each linked IdP holds, thereby maximising protection of the user’s privacy. During the linking process the user authenticates to the IdPs that he wishes to link together, indirectly informing them that he wishes to link the attributes they hold to those held by other IdPs. After linking has been established via the LS, the user contacts a SP with a service request. The SP redirects the user to his chosen IdP for authentication as now (e.g. by using a Where Are You From service, or by proprietary means). The redirection may be direct to the chosen IdP (called IdP-direct), or indirectly via the LS (called IdPviaLS).

After authentication, the various components (IdPs, LS and SP) communicate directly with each other to aggregate the user’s attributes. Aggregation can be performed by either the SP (SP aggregation) or the LS (LS aggregation). Either way, the SP ends up with an authentication statement about the user from the chosen IdP, plus a set of attribute assertions, each signed by the authoritative IdP, in which the user is identified by a random identifier. This maximises privacy protection of the user, and ensures that a user need not be tracked between sessions
. This satisfies requirements 2, 3, 4, 10, 11 and 12.
3.2. The IdP Linking Protocol

The linking protocol takes place between the user, the LS and one or more IdPs. The user contacts a trusted LS with his web browser, and views a welcome page which may display a predefined picking list of trusted IdPs (see section 4), or the LS may have an open (trust all) policy, allowing the user to specify any IdP. The user is redirected to his chosen IdP, the IdP authenticates the user by one of its usual mechanisms, and then redirects the user back to the LS, returning an authentication assertion in which the user is identified with a permanent ID (PId) chosen by the IdP. The PId is any attribute type and value with the property that the IdP will always use this PId to refer to this user each time it communicates with the LS about this user, and also the IdP will not generate and use the same PId for identifying different users. The PId, when concatenated with the URL of the IdP, is thus a globally unique identifier for the user. Note that the conceptual model does not suppose that different IdPs will collaborate and generate the same PId for a given user, since this will weaken the user’s privacy, but neither does (or can) the model forbid it. Some organisations e.g. government departments, may prefer to use the same PId for each user when aggregating the user’s attributes. Either way, the PId is regarded as a secret between the LS and IdP and therefore must be encrypted with the public key of the recipient when being transferred between them. The authentication assertion must also be digitally signed by the sender to guarantee its authenticity.

The authentication assertion may optionally contain the LoA of the user. This may be stored as the user’s registration LoA by the LS in order to improve the performance of subsequent user-SP sessions (see Section 3.5).
When the LS receives the authentication assertion it validates the signature and decrypts the PId. It stores the PId-IdP tuple, and optionally the registration LoA, in its database entry for this user.

The user may then be invited to choose another IdP, in which case the above procedure is repeated and the LS will now have two PId-IdP tuples in its database entry for this user. This procedure is repeated as often as the user wishes to link more IdPs together. If the user terminates his session with the LS, and then wishes to link further IdPs at a later stage, the user must first pick an existing linked IdP from the LS’s list, authenticate to it, and this will allow the LS to locate the user’s entry in its internal database. The user may then add a further IdP to its linked set, by selecting one, being redirected to it by the LS, authenticating to it, and the IdP returning its PId to the LS.

The LS may optionally ask the user to complete a (static) Link Release Policy, indicating which SPs these links should be used with. In the simplest case, the user will indicate that all links should be used with all SPs. This will normally be the default policy for each LS. In the most complex case, the user will require a different set of linked IdPs to be used with each SP. The protocol interactions for managing the LRP is outside the scope of this conceptual model.

The LS may allow the user to dynamically activate her link preferences in the middle of a user-SP session, by asking the user which of the existing linked IdPs the user actually wants to use in the current session. Whilst the actual protocol for this interaction is implementation specific and not specified in the conceptual model, it is likely to be a http based interaction.
3.3 IdP-direct Attribute Aggregation Protocols

The user contacts a SP and is redirected to his chosen authenticating IdP. The SP sends a combined Authentication Request and Attribute Query to the IdP. The IdP authenticates the user in its normal way, and in addition will ask the user if she wants to use attribute aggregation in this session. The IdP knows to ask this question if it already has established links with one or more LSs for this user. If no links have been established, the IdP and SP behave as now without attribute aggregation and nothing further needs to be described. If one or more links exists, the IdP will ask the user which of these links she wishes to use, and assuming the user answers yes to one or more of them aggregation will take place as follows.
The IdP prepares an authentication assertion containing the session LoA, and may use any random identifier to refer to the user (as for example the “handle” in Shibboleth [7]). The IdP consults its Attribute Release Policy, and produces an attribute assertion commensurate with this and the received request. Finally, the IdP produces one or more Referrals to linked LSs (one for each link that the user has indicated she wishes to use). The Referral is a new conceptual message that points to another entity (IdP or LS) that may hold additional attributes for the identified user. The user identity in a Referral is the PId of the user, shared between the LS and the IdP. Since a Referral contains a different user ID to that in the attribute and authentication assertions, the Referral also contains a pointer to the authentication assertion so that the recipient knows that the two data structures are bound together and refer to the same user. All linked IdPs will eventually return their attribute assertions to the SP using the same random identifier as initially allocated by the authenticating IdP in the authentication assertion, and they will all be signed by their authoritative sources (requirement 11).

The two assertions and the set of Referrals are returned to the SP, whereupon the SP retains the attribute and authentication assertions and forwards the authentication assertion, a Referral, and an Attribute Query to each LS. The Attribute Query informs the LS which set of attributes it still requires for the user identified by the same random identifier as in the authentication assertion. The LS validates all three data constructs, and after decrypting the user’s PId from the Referral, looks it up in its internal database and finds the other IdPs that are linked to the authenticating IdP. The LS consults the user’s Link Release Policy which says which of the links should be used for which SPs (a default policy is likely to be use all links for all SPs) and creates Referrals to each linked IdP. The LS may optionally further filter the Referrals based on the session LoA and the registration LoAs of the linked IdPs (see section 3.5). The LS uses the public keys of the linked IdPs, obtained from its meta-data, to perform the encryption of the PIds. Each Referral is then digitally signed by the LS.

If the LS supports Attribute Aggregation it forwards each newly minted Referral, the Authentication Assertion and a new Attribute Query to each linked IdP. If it does not, it returns the set of Referrals to the SP, whereupon the SP combines each Referral with the Authentication Assertion it received from the authenticating IdP, and an Attribute Query, and forwards these to each linked IdP.

Each linked IdP now receives: a Referral, the Authentication Assertion and an Attribute Query. The contents are the same regardless of the delivery path that was taken. The response will also be the same in both cases. The IdP extracts the PId of the user from the Referral and validates that the Referral was signed by the LS. The IdP uses the PId/LS pair to locate the set of user attributes in its database and its meta-data to determine the public key of the recipient SP, and uses these to generate an encrypted and signed attribute assertion comprising:

· the user ID copied from the authentication assertion;

· a subset of the attributes that were requested in the Attribute Query. The subset is the intersection of the set that was requested, the set that is held by the IdP, and the set that passes the Attribute Retrieval Policies of both the IdP and the user;

· the attributes are encrypted to the public key of the recipient SP. This ensures that only the recipient SP can read the user’s attributes thereby protecting the privacy of the user, and ensuring that the LS or any other intermediary cannot read the contents if the message is relayed.
If attribute aggregation is being performed by the LS, it will receive a set of responses from the linked IdPs, merge these together and forward them to the SP. Otherwise the SP will receive a set of responses from the linked IdPs. In both cases, the SP will receive a set of attribute assertions encrypted to itself and digitally signed by their authoritative IdP sources. They will all contain the same subject identifier as that in the authentication assertion initially received from the authenticating IdP. Based on the session LoA and the set of attribute assertions, the SP is now able to authorise the user’s service request.

3.4. IdPviaLS Attribute Aggregation Protocol

The user contacts a SP and this time chooses a Linking Service (LS) rather than an IdP for authentication. The advantage to the user of this interaction mode is that she can dynamically determine which linked IdPs to use for each service session, whereas in the IdP-direct mode she had to rely on a previously established Link Release Policy at the LS. The user is redirected to her chosen LS, and the SP sends an authentication query and attribute query. The LS displays a list of its trusted IdPs to the user and the user chooses one of them. The user is then redirected to that IdP to authenticate, and the IdP is sent a combined authentication and attribute query by the LS. The disadvantage of this interaction mode to the user, is that the user first has to choose the LS and then choose an IdP.

The IdP authenticates the user, and this time does not need to ask the user if attribute aggregation is to be used, since the IdP knows that it is, since the user has been redirected to it from a LS. The IdP consults its Attribute Release Policy to determine which attributes may be sent to the SP, and returns to the LS:

· an authentication assertion containing a random session ID and session LoA

· a Referral holding the encrypted PId of the user that is shared with the LS
· an attribute assertion containing attributes encrypted with the SP’s public key.
The LS temporarily stores the later whilst processing the Referral from the IdP. The LS decrypts the PId, looks it up in its database and finds the other PId/IdP pairs that are linked to this one. Depending upon whether a Link Release Policy already exists or not, the LS may now optionally dynamically interact with the user asking him which of these linked IdPs he wishes to use in this session (and creating a Link Release Policy from the answer if none already exists). The list of linked IdPs may be further filtered based on the user’s Link Release Policy and the session LoA (as described in section 3.5).

The LS creates Referrals to each of the linked IdPs remaining in the filtered list. If the LS supports LS aggregation it will forward each of these to the linked IdPs, along with the Attribute Query and Authentication Assertion. If it does not, it will return the set of Referrals to the SP along with the authentication and attribute assertions from the authenticating IdP. Each linked IdP will then receive a Referral, Attribute Query and Authentication Assertion and processing will continue as in section 3.3 above.
3.5 IdP-direct vs. IdPviaLS models

IdP-direct SP aggregation places most of the burden on the SP. It has to contact the authenticating IdP first, followed by the LS, and finally the linked IdPs. One can argue that this is where the bulk of the additional work should be, since it is the SP that requires multiple aggregated attributes in order to provide differentiated services to the user.

The IdPviaLS model places least burden on the SP, since the LS does the bulk of the extra processing itself. IdP-direct LS aggregation is intermediate between the two other models, placing a small amount of extra burden on the SP, and a medium amount of extra work on the LS.

All 3 models require IdPs to be extended to the same extent. IdPs have to be prepared to initially share links with a linking service, and then during user-sessions to either authenticate users and return Referrals to the LS, or receive authentication assertions, attribute queries and Referrals from the LS (either directly or via the SP), process them and return attribute assertions encrypted to the SP.

3.6 Use of Level of Assurance/Authentication (LoA)
Level of assurance, or level of authentication, indicates the strength of authentication that has been used to authenticate the user. NIST in [11] describe four levels, ranging from 1 to 4, with 4 being the strongest. An LoA of zero would indicate that no authentication has been carried out. IdPs should use the LoA as follows. When each IdP initially registers a user, it will do so at a particular LoA value (which we call the registration LoA). When a user authenticates to an IdP during a service session, she will be authenticated using a particular authentication mechanism, and allocated a session LoA appropriate to this. The registration LoA is the maximum value of LoA that can be assigned to a session LoA. In other words, a user can never claim attributes at a higher LoA in a user-SP session than that which was used during her initial registration with the IdP. However, a session LoA can be lower than the registration LoA, and can be zero.

The LS may use the LoA as follows. During initial linking, each IdP may tell the LS the session LoA for the user in the returned authentication assertion. The LS may store this value as the user’s linked LoA, in order to improve the performance of subsequent user-SP sessions. During a user’s service session, the LS will only contact linked IdPs that have linked LoAs that are higher than or equal to the current session LoA. This prevents a user from creating links with low levels of assurance, and subsequently using them at higher session LoAs. A user is allowed to be assigned attributes at high registration LoAs, and create links at high linked LoAs, and then subsequently use them on lower session LoAs, since the SP will know that the attributes can only be trusted up to the level of the current session LoA.

If the LS has stored the user’s linked LoA, then if a subsequent user-SP session is authenticated by another IdP at a lower LoA than this, the LS should forward Referrals to the linked IdP. (Note that the linked IdP still has the option to refuse to return any attributes for the user at this low session LoA.) If the subsequent user-SP session is authenticated by another IdP at a higher LoA than the linked LoA, the LS should not forward Referrals to the linked IdP, since the linked IdP should always refuse to return any attributes for the user in this high session LoA, since its attributes have not been assured to such a high level.

If the LS has not stored the user’s linked LoAs, the LS will need to forward Referrals to the linked IdPs in all subsequent user-SP sessions even if the session LoA is higher than the (unknown) registration LoAs of these IdPs.

When an IdP receives an Attribute Query and Authentication Assertion containing a session LoA, the IdP validates the authentication assertion and extracts the session LoA. If the session LoA is not greater than the IdP’s registration LoA, or too low according to local policy, and it trusts the authenticating IdP to authenticate to the stated session LoA, then it continues, otherwise it returns an error message (e.g. User Authentication too strong, Authenticating IdP not trusted or Insufficient user authentication).

3.7 Preserving User Privacy

In all of the above protocol exchanges the user’s attributes are only made visible to the SP even if they were relayed via the LS. This is achieved by each IdP encrypting their attributes to the SP’s public key. Furthermore, the user’s true identity at each IdP is not made available to any of the other IdPs or to the SP or to the LS. Only the Linking Service is aware of a set of random permanent identifiers (PIds) that are being used by a set of linked IdPs for a given user. This is achieved as follows.

When the user initially contacts the LS at linking time, the LS redirects the user to his chosen IdP in order to be authenticated. (This choice could be made for example from a picking list of IdPs with which the LS has prearranged trust relationships.) The IdP knows that the requestor is actually a linking service, and that the only attribute the LS requires to be returned is a permanent identifier (PId) that will always be used by the IdP when it communicates with the LS about this user (and vice-versa). This PId can be a random number generated by the IdP, or a pre-existing attribute such as the EduPersonTargetedID. Conceptually it is simply any attribute type and value, chosen by the IdP, with the property that the IdP (or LS) will always use this PId to refer to this user each time it communicates with the LS (or IdP) about this user. The minimum information the LS needs to hold is the IdP-PId tuple for each IdP the user has linked together.

During user-SP sessions, IdPs may return Referrals along with attribute assertions. Referrals tell the receiver where other attribute assertions may be obtained from. Referrals do not hold user PIds in the clear (unless they are regarded as public IDs) as this would leak information to an attacker who was monitoring the communications between the SP, LS and IdPs. Instead, the user identity carried in the Referral is the PId of the user encrypted (directly or indirectly) to the public key of the recipient (IdP or LS) to ensure the encrypted PId is different each time. This means that the identity of the same user will be seen to be different by an attacker for each communication between the same pair of communicating parties about the same user. It also means that the only party that is able to determine the subject of the Referral is the recipient of the Referral, since the user identity was encrypted to its public key.

4 Trus.t Model

Trust forms a core building block of all federations and VOs. It is important that each party knows what trust it is expected to have in all the other parties that it is interacting with. It is also important to know what the implications are when a communicating party decides that it does not trust the other communicating party. The trust requirements of and implications of lack of trust in the entities in our conceptual model are presented below.

4.1 Trust Requirements During the Linking Protocol

1. All IdPs must trust the LS to hold their PIds securely, and to hold the links between the PIds securely and with integrity. The LS is trusted to not release the linked information for a user (PId-IdP tuples) to anyone without good cause e.g. legal requirement, or a linked IdP requests this via a Referral.

2. The LS trusts each linked IdP to authenticate the user correctly to the stated linked LoA, and to return a PId that is unique to this user and that will only be used for subsequent interactions about this user.

4.2 Trust Requirements During Service Invocation

1. The SP must trust the LS to hold the established links securely and with integrity, and to release the correct links when requested to (directly or indirectly) by the user.

2. The LS trusts each linked IdP to authenticate the user correctly to the stated session LoA, and to only send Referrals to it as a direct result of a user service request that was authenticated by that IdP. (Note that each Referral is accompanied by an authentication assertion signed by that IdP, so the LS can check this dynamically with each Referral request).

3. All linked IdPs must trust the authenticating IdP to authenticate the user correctly to the stated session LoA. (Note that each Referral is accompanied by an authentication assertion containing the session LoA, signed by the authenticating IdP, so each linked IdP can check this dynamically with each Referral request that it receives).

4. The SP must trust the authenticating IdP to authenticate the user correctly to the stated session LoA.

5. The SP must trust each IdP to correctly generate and process Referrals, and to only send attribute assertions that are valid for the authenticated user at the stated session LoA, and for which they are authoritative. (Note that each attribute assertion should be signed by the sending IdP, so that the SP can dynamically validate this on receipt).

4.3 Implications of Lack of Trust

1. If an SP does not trust an IdP that is the target of a Referral or the sender of a signed attribute assertion, it can simply discard the Referral or attribute assertion and not aggregate the attributes from that IdP.

2. If the SP does not trust the authenticating IdP then the user will be denied service.

3. If the SP does not trust the LS, it will simply discard the Referral to the LS and grant or deny the user access based on the attributes obtained from the authenticating IdP only.

4. If the LS does not trust the authenticating IdP then no link will be stored to that IdP and no Referrals will ever be sent from the authenticating IdP to the LS.

5. If the LS does not trust the SP then it will return an empty set of Referrals to it and the user will be granted or denied access based on the attributes obtained from the authenticating IdP only.

6. If the LS does not trust an IdP then no link will be stored to that IdP and no Referrals will ever be generated to that IdP.

7. If the authenticating IdP does not trust the LS, then it will not return a PId to it at linking time, and no link will be stored by the LS. No Referrals will ever be generated by the authenticating IdP for the LS.

8. If the authenticating IdP does not trust the SP, then it will not authenticate the user or send any attributes to the SP.

9. If the authenticating IdP does not trust one of the other linked IdPs, this does not matter, since the authenticating IdP does not have to rely on the other linked IdP for anything, and cannot be damaged by it.

10. If an IdP does not trust the authenticating IdP then it will not return any attributes to the SP in response to the Referral that accompanies the authentication assertion from that IdP.

11. If an IdP does not trust the SP then it will not return any attributes in response to the Attribute Query from that SP.

12. If an IdP does not trust the LS then it will not return a PId to it at Linking time, and no link will be stored by the LS. No Referrals will ever be generated by the LS to the IdP.

5. Implementation Notes

5.1. System Requirements

Clearly IdPs and SPs cannot participate in attribute aggregation without changing their software and supporting system configurations. These changes must be minimised if the conceptual model proposed here is going to be successfully deployed. The requirements placed on the IdPs and SPs are as follows.

1. IdPs will need to increase their internal storage to record for each user which LS they are using and the PId to be used with it. This can be minimised if an IdP decides to use just one LS for all its users, in which case the name of the LS only needs to be held once. Furthermore, some IdPs may already store permanent identifiers for their users which they are willing to share with the LS, in which case no additional storage will be required.

2. IdPs will need to hold meta-data about each LS they trust, comprising such things as: the public key certificate of the LS, communications related information, security mechanisms to employ etc.

3. IdPs will need to have software that is capable of: creating outgoing Referrals to LSs after they have authenticated users, and processing incoming Referrals from LSs. We will endeavour to make these standard SAML assertions if at all possible so that the amount of new code that is needed is minimised.

4. In SP aggregation, SPs will need to understand Referrals returned from IdPs and LSs, and be capable of forwarding them to their destinations.

5. SPs will need to be capable of validating digital signatures and decrypting attribute assertions.

6. IdPs will need to be capable of encrypting attribute assertions and signing them.

The LS is a separate standalone service, which can be implemented and put into service without affecting existing IdPs and SPs, so the construction of this service will not be considered further here. Clearly the more aggregation functionality that can be provided by the LS on its own, the less additional functionality will be required from the IdPs and SPs.

5.2. System Components

An IdMapping Module could be created for IdPs that will perform the following functions:

· Process incoming Referrals, authentication assertions and Attribute Queries, and forward standard attribute queries to the IdP. The tasks involved in this include: receive the incoming message, either relayed via the SP or received directly from the LS. Check if the SP is trusted to receive the attributes. Validate the Authentication Assertion, and if the Authenticating IdP is trusted extract the user’s random ID and store it. Validate the Referral (i.e. check the signature and decrypt the PID). Create an Attribute Request for the user identified by the PId and forward this to the existing IdP code.

· Process outgoing attribute assertions. The tasks involved in this include: replacing the PID with the user’s random ID obtained from the corresponding incoming Authentication Assertion. Encrypt (to the SP’s public key) and Sign the resulting attribute assertion, and forward the modified attribute assertion to the requestor.

A Referrals Service could be created for authenticating IdPs that will create outgoing Referrals as follows:

· Retrieve the user’s PId and the name of the LS from the IdP’s database.

· Encrypt the PID to the LS’s public key using meta-data for the LS.

· Create the Referral protocol element, link it to the authentication assertion, and digitally sign it.

· Return the Referral to the IdP.

5.3 Database Schema for the Linking Service

One design is for the LS to hold two new relational database tables, the Linking table which holds the list of IdPs, PIds and registration LoAs (optional) for each user, and the Link Release Policy table which holds the list of IdPs that should be linked for each SP contacted by the user. Table 1 is an example of (part of) a Linking table, which shows that user Fred wishes to link his attributes from three different IdPs, whilst Mary wishes to link the attributes from two different IdPs. Airmiles.com should only release attributes in user-SP sessions which have an LoA less than or equal to 1, whilst Cardbank.com may release their attributes on user-SP sessions which have an LoA less than or equal to 3. XYX.co.uk did not specify their registration LoA at linking time and therefore they will be forwarded Referrals in all user-SP linked sessions regardless of the session LoA. XYZ.co.uk may return its attributes on user sessions with LoAs less than or equal to their registration LoA but should not return them on user sessions with LoAs greater than their registration LoA (otherwise the attributes will be given a higher assurance by the SP than they deserve).

	User Account ID
	PId
	IdP
	Registration LoA

	Fred
	A=123
	Airmiles.com
	1

	Fred
	EduX=u23@kent.ac.uk
	Kent.ac.uk
	2

	Mary
	ABC=456
	XYX.co.uk
	-

	Fred
	uid=123345
	Cardbank.com
	3

	 Mary
	 EduX=s36@kent.ac.uk
	 Kent.ac.uk
	2

Table 1. Example Linking Table for the Linking Service

Table 2 is an example of (part of) a Link Release Policy table, which shows that user Fred wishes his attributes from the IdPs Kent.ac.uk and Cardbank.com to be linked when he contacts the Books.co.uk SP, the attributes from all his IdPs to be linked when he contacts the Cardbank.com SP, his attributes from Cardbank.com and Airmiles.com to be linked when he contacts the Compstore.com SP, and the attributes from Kent.ac.uk and Airmiles.com to be used when he talks to any other SP.

	User Account ID
	SP
	IdP

	Fred
	Books.co.uk
	Kent.ac.uk

	Fred
	Books.co.uk
	Cardbank.com

	Fred
	Cardbank.com
	*

	Fred
	Compstore.com
	Cardbank.com

	Fred
	Compstore.com
	Airmiles.com

	Fred
	 *
	Kent.ac.uk

	Fred
	 *
	Airmiles.com

	Mary
	Books.co.uk
	XYX.co.uk

	
	
	

6. Mapping to Standard Protocols
All the proposed protocols are based on SAML V2.0 and a summary of each is presented below.

6.1 IdP Linking Protocol

The identity provider linking protocol defines a protocol for linking attribute sets at separate IdPs into a single user account at a linking service. We use the standard SAML V2.0 authentication request [8] for this. The LS issues the SAML authentication request to query an IdP for authentication details. The LS sets the <NameIDPolicy> Format attribute to “persistent”, the AllowCreate attribute to “true” and the SPNameQualifier attribute to the name of the LS. These tell the IdP to create a persistent ID for the user if one does not already exist for her with the LS. The name identifier returned in the AuthnStatement is then used by the LS as the PId to either map the user to a pre-existing user account or to create a new user account if the IdP/PId does not exist. Since the combination of IdP name and PId is globally unique, the LS will know if this combination already exists in its database or not. After the response from the first IdP has been processed, if the user wishes to link to another IdP, then a new authentication request is issued to the second IdP and the name identifier returned in this AuthnStatement is linked to the same user account containing the PId returned in the initial authentication response. The user can repeat this process as often as required, thereby linking an arbitrary number of IdPs together in one linking account. If the user is linking to an existing account at the linking service then the initial authentication request to determine the identity of the principal should request a persistent identifier valid at the LS but should set the AllowCreate attribute to “false”, indicating that only existing persistent identifiers should be returned, thereby ensuring that the IdP can only return the predetermined identifier created in the initial linking request.
6.2 Encoding the Referral

The Referral is conceptually a data structure, created by one linked partner (the IdP or the LS), that points to the user’s account at the other linked partner. It is sent both as a response to an Attribute Query (meaning “further attributes may be found here”) and a parameter of an Attribute Query (meaning “you will know the subject by the identity in here”). We thus require a certain amount of symmetry when sending a Referral in a request and receiving a Referral in a response.
We can use a suitably adapted Liberty Alliance ID-WSF Endpoint Reference [12] to encode the fields of a Referral in an Attribute Response, by using a full SAML assertion as the <sec:Token> in which the Issuer is set to the linked partner that issues the Referral, the Subject is set to <encryptedID> and contains the PId of the user encrypted to the public key of the entity identified by the assertions <AudienceRestriction> element. The <AudienceRestriction> is set to the name of the other linked partner and <Advice> <AssertionIDRef> points to the authentication assertion that authenticated the user. The Endpoint Reference can then be returned as an attribute in an attribute assertion signed by the Issuer. This allows the Referral to be returned either as <sec:Token> element in a Identity Mapping Response message or in response to any SAMLv2 Attribute Query.
We can use the Liberty Alliance ID-WSF Identity Mapping Request [12] to encode the Referral when it accompanies an Attribute Query. This message will request the recipient to map the identity of the user from the PId (which it knows) into the random id in the authentication assertion (which it does not know). An ID-WSF Identity Mapping Request comprises a <sec:Token> which identifies the entity for whom new identity tokens are required, and a <sec:TokenPolicy> which specifies the characteristics of the identity token that is to be returned. Consequently the <sec:Token> from the WS-Addressing Endpoint Reference can be used as the <sec:Token> for the Identity Mapping Request. <sec:TokenPolicy> is defined in [13] as a series of optional attributes and any optional elements. This liberal encoding recognises the fact that policies can be just about anything. Consequently we can use the <AssertionIDRef> of the authentication assertion as the element of our <sec:TokenPolicy>, meaning that we require the new tokens to use the subject identifier taken from the authentication assertion.
6.3 Service Request Protocols
The user initially contacts a service provider asking for a particular service. The user is redirected to either an IdP or LS (by some proprietary means), and the redirection message contains a standard SAML2 Authentication Request <samlp:AuthnRequest>. The AttributeConsumingServiceIndex attribute of the request is used to specify that both user attributes and referrals (endpoint reference attributes) should also be returned in the response.
The SP will receive in response a standard SAML2 response <samlp:Response> message containing: a signed authentication assertion with a random handle as the Subject element; one or more attribute assertions containing the user’s attributes, each signed by their authoritative sources; and one or more attribute assertions containing Liberty Alliance ID-WSF Endpoint References that represent Referrals to one or more LSs or IdPs.

For each ID-WSF Endpoint Reference it receives, the SP will construct a new SOAP message containing an Identity Mapping Request as described in 5.2 above, the signed authentication assertion it received, and a SAML2 Attribute Query in which the subject is identified by the same random identifier as in the authentication assertion.
If the recipient of the above request is the LS, it will extract the Identity Mapping Request, decrypt then look up the PId in its database, and find the set of linked IdPs. If the LS support LS aggregation, it will send out equivalent SOAP messages to each of the linked IdPs in which the Identity Mapping Request has been replaced by one that refers to the PId held by the respective IdP. The IdP will decrypt then lookup the PId in its database. Once the subject has been located, the IdP will return both an empty but successful digitally signed Identity Mapping Response message and a digitally signed SAML2 response message in a single SOAP message. The SAML V2.0 response message should contain one or more attribute assertions representing the subject’s attributes, in which the subject is identified by the random ID used in the attribute query and which matches the name identifier used in the authentication assertion linked to the Identity Mapping Request. Note that it is important that the attributes are encrypted for the SP so that the LS cannot view them. In order to achieve this we needed to extend the Attribute Query message by adding the equivalent of the AssertionConsumerServiceURL that SAML2 defines for Authentication Requests. This tells the recipient who the ultimate consumer of the assertion will be. No such field is currently standardised for Attribute Queries, so we needed to create it.
If the LS does not support aggregation itself, it must return a set of Referrals to the SP, for the latter to process as in the paragraph above. This is done by returning both an Identity Mapping Response message and an empty SAML v2.0 Response message in a single SOAP message. The <sec:Token> element of the Identity Mapping Response is a new SAML V2.0 attribute assertion containing a set of ID-WSF Endpoint References, one reference for each linked IdP. The SP can then process this set of Endpoint References in the same way that it processed the original ones from the authenticating IdP.

If the LS was the destination of the original redirection from the SP (ie. IdPviaLS mode) then it must ask the user which IdP is to be used for authentication. Once chosen, the LS will send a standard SAML2 Authentication Request <samlp:AuthnRequest> to the IdP in which the AttributeConsumingServiceIndex attribute is used to specify that both user attributes and referrals (endpoint reference attributes) should be returned in the response. The AssertionConsumingServiceIndex and RequesterID attributes should also be used to specify that the SP is both the ultimate requester and consumer of the attributes. Once the LS has this response, it can then continue in the same way as IDP-direct mode, since the response from the IdP contains essentially the same information as the SOAP message from the SP in the IDP-direct mode.
7. The User’s PC as the Linking Service

This potential variant of the conceptual model discussed above mirror’s Microsoft’s Cardspace. The user’s PC is the linking service and it has a trusted communications link to the user of the PC. The LS displays a logo (card) of each “linked” IdP on the user’s PC. This uses a different trust model to before because the LS can no longer be trusted by the IdPs and SPs, since it is under the direct control of the user. Hence the user and LS are treated as being the same entity by the IdPs and SPs. The user must prove to each IdP who he is in order to be given attribute assertions, and that he is in possession of the random handle that he wants them to be attached to. This is done by the LS generating a new key pair for every SP session.

The LS/user trusts each of the IdPs to hold its attributes securely, and the IdP’s trust that the LS/user will hold the PId securely. The IdPs do not need to trust each other to authenticate the user correctly, since they each authenticate the user themselves for each session. The SP needs to trust each IdP is authoritative for the returned attributes or it will discard them. The IdPs need to trust the SP or they wont return the attributes to it.

The user/LS contacts the SP, and the SP asks him who he wants to authenticate with. The user answers by giving the URL of his local LS. The SP redirects him to his collocated LS, and the reply says that after you have authenticated send your assertions back to this SP URL. The LS displays the set of IdPs (cards) to the user and generates a new key pair. The user clicks on the cards he wants to link together. The LS redirects the user to the first IdP and the request asks for an authentication assertion for the user to be assigned to the Id of the hash of the newly minted public key. The request is signed by the newly minted private key, proving to the IdP that the sender is the owner of the public key. The user authenticates to the IdP, proving he is the owner of the public key, and the IdP returns the authentication assertion and the user’s attributes attached to the hash of the pubic key as the user’s identifier. The assertion is optionally encrypted for the SP. The LS stores these assertions then repeats the exchange with the next IdP that the user has selected. Once all the IdPs have been contacted, and the user has authenticated to each one, the LS collects together the signed assertions and forwards them to the SP’s URL that was presented at the start of the session. This model has the advantage that the user is in control of his own digital identity and does not have to trust a third party to store tokens that could be used to access his attributes, however it is possible that this model may present SSO and usability issues when being used by individuals with large numbers of linked identity providers. The usability issues, namely the fact that the user must authenticate to multiple IdPs to complete a single attribute query could be negated via the use of pre-existing authentication data, stored as cookies by the browser and IdP but this could present a security risk in itself. This model also relies entirely on the browser client used to access the resource, tying the user to a single configured computer which may not be practical in some environments.
8. Conclusions and Next Steps

We have produced a conceptual model for attribute aggregation in federations, in which the user is in total control of linking his various identities and attributes together, whilst retaining a high degree of privacy protection. None of the identity providers know the other identities of the user, even when he has linked them together, since this is done via a trusted third party called a linking service. Furthermore the linking service does not know the attributes or identity of the user, it only knows that a user has various accounts at various identity providers, but it does not know any of the account ids. Finally, the service provider gets full assurance that the user is the genuine holder of the various asserted attributes, since the authentication assertion and all the attribute assertions contain the same user identifier, and they are all signed by their authoritative sources.
Underpinning the conceptual model is a fully worked out trust model that indicates the amount of trust that the various parties must have in each other, but none of these are more onerous that those required by the trust models of today’s existing federations.

We have now started to implement the linking service and will release it as open source software under a BSD type license. We have published our protocol mapping specification on the web and are soliciting comments from all interested parties. The protocol is fully conformant to SAMLv2 but has a few minor extensions to it. Once we have received a wide consensus on these extensions, then we plan to take it to a standards body such as OASIS or Liberty Alliance for publication as a SAML profile for attribute aggregation.
Acknowledgements

The authors would like to acknowledge the UK JISC for supporting this work under the Shintau project grant.

References

[1] Catlett, C. “The Philosophy of TeraGrid: Building an Open, Extensible, Distributed TeraScale Facility.” 2nd IEEE/ACM International Symposium on Cluster Computing and the Grid, 21-24 May 2002

[2] see http://www.incommonfederation.org/

[3] See http://msdn2.microsoft.com/en-us/netframework/aa663320.aspx

[4] Tom Barton, Jim Basney, Tim Freeman, Tom Scavo, Frank Siebenlist, Von Welch,

Rachana Ananthakrishnan, Bill Baker, Kate Keahey. “Identity Federation and Attribute-based Authorization through the Globus Toolkit, Shibboleth, GridShib, and MyProxy”. NIST PKI Workshop, April 2006

[5] Robinson, John-Paul. “MyVOCS: A Distributed Collaboration System”. Presentation available from http://www.stonesoup.org/Meetings/0609/vo.pres/robinson.pdf
[6] George Inman, David Chadwick, Nate Klingenstein. “Authorisation using Attributes from Multiple Authorities – A Study of Requirements”. Presented at HCSIT Summit - ePortfolio International Conference,16-19 October 2007, Maastricht, The Netherlands. Available from http://sec.cs.kent.ac.uk/shintau/pages/publications.html
[7] Scott Cantor. “Shibboleth Architecture, Protocols and Profiles, Working Draft 10 September 2005, see http://shibboleth.internet2.edu/shibboleth-documents.html

[8] OASIS. “Assertions and Protocol for the OASIS Security Assertion Markup Language (SAML) V2.0”, OASIS Standard, 15 March 2005

[9] Liberty Alliance. “Liberty ID-WSF Authentication, Single Sign-On, and Identity Mapping Services Specification”, Version 2.0.

[10] Liberty Alliance. “Liberty ID-WSF Security Mechanisms Core” Version 2.0

[11] W. E. Burr, et al. “Electronic Authentication Guideline”, NIST Special Publication 800-63, Sept. 2004

[12] Liberty Alliance. “Liberty ID-WSF Authentication, Single Sign-On, and Identity Mapping Services Specification”, Version 2.0.

[13] Liberty Alliance. “Liberty ID-WSF Security Mechanisms Core” Version 2.0

� Questionnaire is available at http://sec.cs.kent.ac.uk/shintau/pages/requirements.html

� This last requirement was not part of the user requirements questionnaire, but was mentioned by at least one respondent as additional requirements. In our opinion it should be a “given” for any system that is to gain wide acceptability.

� Whilst the LS is conceived as an independent trusted third party, implementations may choose to integrate the functionality of the LS in their IdP or SP software, in which case the communications between the LS and the integrated component would be internal to the application (and trusted). This would simplify both the trust model and network communications that are needed, but would increase the trust that others would need to place in the combined entity.

� If any of the user’s attributes are personally identifying ones, then the user can always be tracked between sessions and uniquely identified, but this is outside the scope of the model.

PAGE
2

