

University of Kent

Integrating VOMS and PERMIS for Superior Secure
Grid Management (VPman)

Deliverable 1.1

Requirements and information gathering

Version <1.0>

VPMan WP 1.1

Revision History
Date Version Description Author

5/April/2007 0.1 Initial draft Bassem Nasser

5 April 0.2 revisions David Chadwick

20 April 0.3 updates Bassem Nasser

18 June 0.4 updates David Chadwick

19 June 0.5 updates Richard Sinnott

20 June 0.6 Updates David Martin

23 June 0.7 Updates Bassem Nasser

11 July 1.0 Final update David Chadwick

 ©University of Kent, 2008 Page 2 of 30

VPMan WP 1.1

Table of Contents

1. Introduction 4

1.1 Purpose 4
1.2 Definitions, Acronyms, and Abbreviations 4
1.3 Overview 5

2. Background 5
2.1 Background to PERMIS 5

2.1.1 Security policy 6
2.1.2 Dynamic delegation 6
2.1.3 Separation of duty 7
2.1.4 PERMIS user’s attributes 7

2.2 Background to VOMS 7
2.2.1 Globus Security Infrastructure GSI 7
2.2.2 VOMS server 8
2.2.3 VOMS Architecture 8
2.2.4 VOMS user management 9

2.3 Related projects and middleware infrastructure 12
2.3.1 OMII-UK 12
2.3.2 Globus Toolkit 13
2.3.3 gLite 13
2.3.4 Shebangs 14
2.3.5 ShibGrid 15
2.3.6 OGF SAML AuthZ Grid API 15
2.3.7 SIPS 15
2.3.8 GridShibPERMIS 15
2.3.9 NeSC Glasgow Shibboleth work 15

3. Complementary security system components 15
3.1 User side infrastructure components 15

3.1.1 VOMS UI 15
3.1.2 MyProxy 16
3.1.3 Acacia 16
3.1.4 Gridsite 18

3.2 Resource side infrastructure components 18
3.2.1 VOMS and GT4 18
3.2.2 Grid map file 20
3.2.3 PRIvilege Management and Authorization (PRIMA) 20
3.2.4 LCAS and LCMAPS 21

3.3 VOMS administration 25
3.3.1 VOMS-ADMIN 25
3.3.2 VOMRS 25
3.3.3 Grid User Management Systems (GUMS) 26

4. Requirements 27

5. Conclusion 28

6. References 28

 ©University of Kent, 2008 Page 3 of 30

VPMan WP 1.1

VPman background and literature overview

1. Introduction

1.1 Purpose
The Virtual Organization Membership Service (VOMS) was originally developed in the framework
of EDG and DataTAG [39] collaborations to solve the problems of granting users authorization to
access the resources at VO level, providing support for group membership and roles. It is now
maintained within the EU project Enabling Grid for E-SciencE (EGEE). In addition to finer grain
security, VOMS benefits EGEE by reducing the maintenance load on sites in respect of authorized
user lists and also in the future by providing a handle for allocating Quality of Service (QoS) to jobs.

PERMIS is an authorisation system developed by the ISSR-Group at the University of Kent.
PERMIS makes the access control decisions based on a role-based access control policy. Moreover,
PERMIS has many features such as enabling dynamic delegation of authority, obligation policies and
separation of duty enforcement.

Both VOMS [1] and PERMIS [2] provide security management infrastructures for Grids but are
predominantly used by different groups of Grid users. Each has its strengths and weaknesses and
their combination would be a powerful solution to Grid security management as described below.
Currently however they are not integrated and the benefits of a combined system cannot be enjoyed.
This project proposes to address this directly. Specifically the objectives of this project are to:

• integrate VOMS and PERMIS, more specifically the VOMS user management and attribute

assignment function with the PERMIS policy based authorisation decision function;
• ensure they seamlessly inter-work with latest Grid technologies including Globus toolkit version

4 (GT4)[3], the Open Middleware Infrastructure Institute UK (OMII-UK) [4] software release
and Shibboleth [5];

• validate the results in several representative major pilot applications run by the National e-
Science Centre (NeSC) at the University of Glasgow;

• evaluate the combined software from user, administrator and Grid developer perspectives;
• integrate the combined infrastructure with the National Grid Service (NGS) at SciTech (formerly

CCLRC);
• distribute the integrated software as open source code as part of either Globus Toolkit, or the

OMII-UK Repository, or the US-NMI, or a combination of them.

This document is part of WP1. It provides a literature overview of the background to the integration
work to de done in this project.

1.2 Definitions, Acronyms, and Abbreviations
AA Attribute Authority
AC Attribute Certificate
ACL Access Control List
CA Certification Authority
DN X.500/LDAP Distinguished Name
GA VOMS Generic Attribute
GACL Grid ACL
GT Globus Toolkit
Gums Grid User Management System

 ©University of Kent, 2008 Page 4 of 30

VPMan WP 1.1

IdP Identity Provider
LCAS Local Centre Authorization Service
LCMAPS Local Credential Mapping Service
LDAP Lightweight Directory Access Protocol
OMII-UK Open Middleware Infrastructure Institute UK
PDP Policy Decision Point
PERMIS Policy-basEd pRivilege Management InfraStructure
PIP Policy Information Point
SP Service Provider
VO Virtual Organisation
VOMRS Virtual Organisation Management Registration Service
VOMS Virtual Organisation Membership Service

1.3 Overview
Managing grids from a security perspective comprises two main functions: the privilege assignment
function in which users are assigned to roles and the authorisation decision function in which
policies are set for which roles should have access to which grid resources. These functions typically
take place in different systems at different locations. These functions are carried out by the Identity
Provider (IdP) and Service Provider (SP) in Shibboleth terminology, and by the VO Manager and
grid service provider in grid terminology.

More generally, privileges are assigned to users as a mixture of attributes and roles, by one or more
attribute authorities (AAs) or IdPs. Attributes (such as login id and department) are assigned by a
user’s home institution; virtual organisation (VO) roles are assigned by a VO management authority,
and potentially by professional memberships and learned societies such as IEEE and ACM. These
attributes are then transferred to the grid SP, where the authorisation decision function is carried out
based on the policy set by the resource’s owner. If a user’s grid jobs are sent to multiple resources at
multiple sites, then the authorisation decision function may take place several times at several
different resource sites using different policies in each case. The Virtual Organisation Management
Service (VOMS) [1] provides a well utilised privilege assignment function which is carried out by
the VO manager. It is the chosen VO management function of Grid projects such as EGEE, and it is
planned to integrate it into the National Grid Service (NGS) at SciTech (formerly CCLRC).

However, its authorization decision function is intentionally missing by design (it relies on LCMAPS
and LCAS, see later). PERMIS on the other hand provides a feature rich, modular authorisation
decision function, with a user friendly policy management interface; it is already integrated into
Shibboleth and is currently being integrated into the OMII-UK software environment by the London
E-Science Centre (LeSC). But it has a less well developed privilege assignment function.

This project proposes to integrate the privilege assignment function of VOMS with the authorisation
decision function of PERMIS, so that the management of grids becomes easier, whilst
simultaneously allowing finer grained more feature rich authorisation infrastructures to be designed
and built. We expect the combination of these technologies to have a significant impact across the
UK and international e-Science communities.

2. Background

2.1 Background to PERMIS
The main strength of PERMIS, and the primary focus in its development, has been its modular

 ©University of Kent, 2008 Page 5 of 30

VPMan WP 1.1

construction [16] and compliance with standards. It supports X.509 attribute certificates [7], policies
in XML, Shibboleth attribute assertions, the OGSA Authz protocol [17], LDAP repositories and has
an optional XACML interface [15].

Figure 1. PERMIS infrastructure

PERMIS’s authorisation decision function comprises two components: a credential validation service
(CVS), and a policy decision point (PDP). Both components are policy driven. CVS policies are of
the form “this authority is trusted to assign these attributes to this group of users, and delegation to
depth n is allowed”. PDP policies are of the form “users with this set of attributes are allowed this
type of access to this resource, providing that the following conditions are met”. The PERMIS PDP
provides similar functionality to the XACML PDP (although both have features the other does not
support). XACML has no equivalent functionality to the CVS [18]. Some of the more notable
features of PERMIS include:

2.1.1 Security policy
Authorization policies can be created via a user friendly GUI [19] and a new Policy Wizard. This
policy is written in XML and may be inserted in an attribute certificate to ensure integrity.
Certificates may be stored on LDAP or WebDAV servers [37]. As indicated above, the policy is
role-based indicating that “users having certain roles are authorized to do actions on resource(s)”.
Arbitrary conditions can be set on policy rules such as the time of day and the user’s request e.g.
only grant access if requested storage is less than 30 GB or the local time is after 8pm. Moreover,
Obligation policies are also supported by PERMIS. This feature allows resource owners to insert
obligations into their access control policies, requiring the application to enforce obligations on the
user's access request prior to or after granting access to the resource e.g. run this job under username
xdp12, or debit the user’s account with 24 units.

2.1.2 Dynamic delegation
Users may be allowed to dynamically delegate their privilege attributes to other users for a specific
period of time e.g. a researcher may delegate the “guest of project X” attribute to a colleague to
allow the latter to run a series of experiments for one week. A Delegation Issuing Service (DIS) [11]
is implemented supporting these kinds of scenario. The DIS delegates attribute certificates to
delegatees on behalf of users (delegators) whilst simultaneously enforcing the role allocation (or
delegation) policy of the delegating site. Note that neither SAML [20] nor XACML[21] are able to

 ©University of Kent, 2008 Page 6 of 30

VPMan WP 1.1

support this feature since issuers and subjects are specified differently, hence chaining credentials
together cannot be supported.

2.1.3 Separation of duty
Separation of duties (SoD) is a key security requirement for many business and information systems.
PERMIS goes beyond traditional RBAC session based Separation of Duty (SoD). It proposes a
multi-session SoD (MSoD) policies for business processes which include multiple tasks enacted by
multiple users over many user access control sessions. Users can be forbidden from performing
multiple tasks or holding conflicting roles that would allow mistakes or fraud to occur, e.g. it can
require that two different scientists validate a set of results before they are released to the public
domain. MSoD policies are expressed via multi-session mutually exclusive roles (MMER) and
multi-session mutually exclusive privileges (MMEP). PERMIS enforces this policy since its PDP is
rendered stateful using history-based authorization decisions (an authorization decision depends on
past ones). The publicly available XACML PDP cannot do this as it is a stateless PDP.

2.1.4 PERMIS user’s attributes
PERMIS has concentrated much less on the way that attributes are assigned to users. Indeed the
PERMIS decision engine does not care how this is done, and assumes it can be done in many
different ways. Consequently, PERMIS supports a set of policy rules (in the CVS) to constrain which
attribute assignments are trusted/allowed to take place. PERMIS can let other software assign
attributes, for example, organisations may assign attributes to users using SIGNET and GROUPER
[22], as is supported in the PERMIS-Shibboleth integration. PERMIS also provides its own tools to
make attribute assignments (as digitally signed X.509 attribute certificates (ACs)) and these are
stored in LDAP directories. The Delegation Issuing Service of PERMIS [11] uses these digitally
signed ACs to allow users to dynamically assign (a subset of their) attributes to other users. In all
cases the PERMIS CVS uses its policy rules to validate the attribute assignments, regardless of
which software produced them.

2.2 Background to VOMS
To understand the environment in which VOMS is meant to operate, it is necessary to introduce
Globus-based Grid Security Infrastructure (GSI) an enabling infrastructure to use VOMS credentials.

2.2.1 Globus Security Infrastructure GSI
The Grid has requirements for long-running collaborations that federate the use of many distributed
resources. Consequently, it is necessary for (remote) programs to operate on a user’s behalf without
the user being present. The user must be prepared to delegate authority to a program and the program
must be able to authenticate itself as an entity having that authority. Globus GSI specialises in this
aspect of delegation. It has been set up to accept proxy-certificates as authenticating the user who
issued them. So, a user wishing to delegate authority, acts like a CA and issues a public key
certificate signed by themselves using their own public key certificate. A proxy-certificate is short
lived (a few hours, typically) but gives the program possessing it access to resources with the
authority of the user that signed it. Recursive delegation is of course possible. Note that proxy
certificate delegation is fundamentally different to PERMIS delegation of authority. With proxy
certificate delegation a user delegates a public key certificate effectively to himself (actually to his
grid job) so that it can authenticate as the user’s proxy. With PERMIS delegation, one user delegates
privileges to another user, in the form of attribute certificates, and the delegate then authenticates as
himself using his own public key certificate (or other mechanism). PERMIS delegation does not
have to be short lived. It can be for as long as the delegator requires.

 ©University of Kent, 2008 Page 7 of 30

VPMan WP 1.1

2.2.2 VOMS server
VOMS, in its own words is “basically a simple account database, which serves information (VOMs
credentials) to insert in a user proxy certificate. The VO manager can administrate VOMS remotely
using command line tools or a web interface [6]. Even though it is only a simple account database,
nevertheless the account management is well developed and has the concepts of groups, subgroups,
roles and capabilities (although capabilities are now deprecated). Groups may contain subgroups
nested to any depth, with the most superior group being the VO. A member of any subgroup is also a
member of all the superior encapsulating groups up to that of the VO. Roles are assigned to VO
members within a group context. Roles signify the roles a user has within a group context.
Capabilities used to signify permissions to perform certain tasks within a group context, but
capabilities are now deprecated and therefore no longer need to be considered by this project. When
a user runs a grid job, all their group memberships are automatically included in their credentials that
accompany the request, but the user can choose which roles to include in these credentials. Roles are
encoded as free format strings, and so in principle can contain anything that the authorization
decision function will understand.

The user credentials are actually encoded as X.509 attribute certificates [12, 13] containing fully
qualified attribute names (FQAN) in the following format:

/VO[/group[/subgroup(s)]][/Role=role][/Capability=NULL]

VOMS is attempting to rectify some of its deficiencies with the G-PBOX work [14], which is
producing a set of tools for policy management that will allow XACML policies and VOMS
attributes to be used for authorising Grid jobs. The interface between the Grid application and the
XACML PDP is an XACML request/response context, but it is not known at this time what protocol
will be used to carry the XACML contexts. In parallel with (but separate from) the G-PBOX work,
the OGF OGSA_AuthZ group is defining an XACML profile to be used for carrying the XACML
request/response context between a PEP and a PDP for grids [15]. PERMIS is migrating to this
protocol. The VOMS architects have been invited to join in this work so that a common standard for
this interaction can be defined. It is proposed to use this OGF profile in this work.

2.2.3 VOMS Architecture
VOMS allocates unsigned plain attributes to users and stores these in its VOMS database. VOMS
requires the VO Manager to delegate attributes to users. ACs (possibly with multiple attributes),
signed by the VOMS server, are then created on demand when a user initiates a grid job. The client
software embeds the user’s AC in a proprietary certificate extension [38]. Since the embedded AC is
signed by a VOMS server, a VOMS enabled service can parse and verify this extra certificate and
treat the data therein as extra information about the client to use in an authorization decision. The
components of the system [24] are:

• A VOMS server, typically a VO-specific service, contains information about users who are

identified by their DNs.
• The VOMS server, when requested, will digitally sign an assertion stating that a particular DN

has some particular attributes
• A client may embed this in its own proxy certificate to "push" it to the service when accessing

resources.
• The service, trusting a particular set of VOMS servers for any attribute information, can use the

attributes to make authorization decisions

 ©University of Kent, 2008 Page 8 of 30

VPMan WP 1.1

Figure 2. VOMS system

In a slightly more low-level view, it may be noticed that the components described are not the only
ones that are present. Chief among the previously omitted ones, there is an administration interface,
used to edit the database contents. This interface can be accessed through a browser or through a perl
Command Line Interface. Also supported are a set of APIs, in C, C++ and Java, which are capable
both of interpreting the attributes certificates when they are encountered and of contacting the server
to create a new AC.

Technically speaking, the VOMS client (voms-proxy-init) enables VOMS credentials to be inserted
into client proxy certificates. Thus after VOMS has been setup, users are supposed to replace the use
of grid-proxy-init with voms-proxy-init to generate their proxy certificates, which are backward-
compatible with the ones generated by the grid-proxy-init command and in addition contain extra
information about the user and the VOs he belongs to. The user interface also offers some ancillary
utilities such as voms-proxy-info, voms-proxy-destroy, voms-proxy-list.

VOMS supports multiple VO authorities allowing users to include multiple attribute certificates from
multiple VOMS servers in their proxy certificates, providing a user has the same distinguished name
at each server.

Finally, for backwards compatibility reasons, there is a mkgridmap service capable of creating
gridmap-files (see below) from a VOMS server instead of from an LDAP server. However, as more
and more services shy away from gridmapfiles and move to VOMS-based authorization, this feature
will be removed.

2.2.4 VOMS user management
Members of a Virtual Organization can be organized into groups [28]. These groups can then be
directly represented as voms groups. Groups are organized in a hierarchical tree, where each group
may have zero, one or more subgroups, with no limitation on tree depth. The root of the tree is fixed,
and is the VO itself.

A group name contains the representation of the path leading to it from the root. For example, if a
user were member of the subgroup “CS” of the group “Kent” in the VO called “VPMan”, the group
name as represented by VOMS will be /VPMan/Kent/CS.

 ©University of Kent, 2008 Page 9 of 30

VPMan WP 1.1

- Groups
VOMS Groups are used to represent special communities within a VO, by putting them into sub-
groups. There are no effective limits on the length of a group name, except those enforced by the
underlying DB in which the name is stored. However, only alphanumeric characters plus ‘-‘, ’_’and
’.’ are allowed in group names.

Membership in a subgroup requires membership in a parent group. From this it should be evident
that all users must at least be members of the root group i.e. members of the VO.

- Roles
Not all members of a group are necessarily equal, but some may occasionally have some special
rights that, while not always needed, may indeed be necessary for the execution of special tasks. A
simple example of this is the software manager or sgm role that supports privileges necessary for
installing software on the grid nodes of the VO. This need is represented by VOMS Roles. A VOMS
Role is always associated to a specific group, e.g., holding the role sgm in the /VPMan/Kent group is
a different thing to holding the same role in the /VPMan group.

Q. Which provides most privileges? Being the sgm for the VO or for a subgroup in the VO?

In order to answer this question, recall that the process of populating the VOMS database is first to
create a group, then add the user to the group, then create a role. The role at this level is an
independent entity (not related to the VO level or any specific group level). Finally, the role can be
assigned to a user in the context of a group. Of course this group may be the VO or any subgroup. So
from VOMS’ perspective, these are just relations among a role, group, and user. Talking about
privileges here is a bit tricky since it is the authorization policy that specifies the privileges and
decides whether to:

- differentiate between the roles at the different levels or not, and
- give some role at a certain level different privileges from the same role at another level, or not.
So these semantics are out of scope from VOMS’ point of view.

Note that when a user is removed from a group, all his roles within this specific group are revoked as
well.

Restrictions on role names are the same as restrictions on group names. Furthermore, Role names
starting with VOMS are reserved for use by VOMS itself.

The special name NULL is used to indicate that a user may not hold any specific roles or
capabilities. On the face of it, this seems to be rather pointless. Why would the VOMS server need to
tell the grid resource that the user does not have a roles, when it can simply be omitted?, This is due
to a current limitation in VOMS implementations. VOMS defines two forms of FQAN: long forms
(where Role=xxx Cap=NULL is mandatory) and short forms (where the Role and Cap may be
omitted). For now VOMS implementations only work with the long format so the system has to use
the special name NULL to indicate no roles and capabilities. In the future the short format may be
adopted.

- Generic Attributes (GA)
It should be noted that not all the characteristics of a user can be represented by a combination of
groups and roles. For example, consider the need for registering the guarantor of a user. For these
cases, generic attributes are used. They consist of the triple (name, value, qualifier), with the
qualifier being optional. As an example, the guarantor of a user could be represented by the

 ©University of Kent, 2008 Page 10 of 30

VPMan WP 1.1

following tuple: (guarantor, “George Smith”). There are no hardcoded limits on the number, length
and characters that are usable in generic attributes.

Generic attributes (or tags [38]), from the point of view of applications, are attribute (name, value)
pairs that can be assigned to VO users and that end up in the attribute certificate issued by voms (i.e.,
when a user issues a voms-proxy-init command). From the point of view of the application
developer, a GA has a name, a description, a value and a context (or qualifier, described later on).

1. The name is the unique ID for the attribute.

2. The description may be used to provide information about the meaning and use of the
attribute, and is bound to the attribute name.

3. The value is the actual value of the attribute for a specific user, and may be different
for each user.

An example of a GA name and description could be:

attributeName attributeDescription
emailAddress This attribute contains the email address for a user

While the values of such an attribute may be different for each user:

userName attributeName attributeValue
andrea emailAddress andrea.ceccanti@cnaf.infn.it
valerio emailAddress valerio.venturi@cnaf.infn.it
vincenzo emailAddress NULL

In the current implementation, Voms-Admin (VA) provides the tools and interfaces to assign GAs to
VO users. When a GA is assigned to a user, it ends up in the VOMS certificate generated for that
user.

However it could be time-consuming and tedious for an administrator to assign attributes on a user-
by-user basis. For this reason, VA and VOMS provide some "shortcuts", e.g. GAs may be assigned
to VO groups and roles. When a GA is assigned to a group, it ends up in the VOMS credentials of all
the users who are members of that group. Likewise, when a GA is assigned to a role within a group,
it ends in the proxy of all the users who have that role in that group.

To avoid potential ambiguities when GAs with the same name, and even values, are defined in
multiple contexts for a specific user (e.g. assigned by different administrators at different group
hierarchy levels), VOMS provides a context qualifier to distinguish the different attributes.

For example, suppose an administrator assigns the GA (A, 'aValueForAndrea') to user andrea, and
the GA (A ,'aValueForGroupTestG1') to group /test/g1. This leads to user andrea having two GAs
with the same name assigned to her, one assigned directly to the user herself and one assigned to her
as a member of group /test/g1. VOMS provides a context qualifier to distinguish these two attributes.
More specifically, Andrea's proxy certificate will contain the triples,

('', A, 'aValueForAndrea'), ('/test/g1',A,'aValueForGroupTestG1')

 ©University of Kent, 2008 Page 11 of 30

http://littleblue.cnaf.infn.it/twiki/bin/view/VOMS/VomsGenericAttributes?sortcol=0;table=1;up=0#sorted_table
http://littleblue.cnaf.infn.it/twiki/bin/view/VOMS/VomsGenericAttributes?sortcol=1;table=1;up=0#sorted_table
http://littleblue.cnaf.infn.it/twiki/bin/view/VOMS/VomsGenericAttributes?sortcol=0;table=2;up=0#sorted_table
http://littleblue.cnaf.infn.it/twiki/bin/view/VOMS/VomsGenericAttributes?sortcol=1;table=2;up=0#sorted_table
http://littleblue.cnaf.infn.it/twiki/bin/view/VOMS/VomsGenericAttributes?sortcol=2;table=2;up=0#sorted_table
mailto:andrea.ceccanti@cnaf.infn.it
mailto:valerio.venturi@cnaf.infn.it

VPMan WP 1.1

where the first field is the qualifier, in which ' ' is the default used to mean "attribute assigned
directly to user". The understanding of GA names and values is left to the applications that are
willing to use this feature, i.e. VOMS does not infer any semantic meaning of a GA’s content. In the
context of this project, it means that if required, PERMIS policies could place some specific
semantics or lack of semantics on GAs, for example, PERMIS could decide to always ignore the
qualifier since it already supports and can distinguish between the values of multi-valued attributes.

- FQAN
A Fully Qualified Attribute Name (FQAN for short) is a compact way to represent a user’s
membership in a group, along with their role memberships, if any. Its general syntax is:

 <groupname>/Role=<rolename>/Capability=NULL

where the /Capability=NULL may be omitted since capabilities are now a deprecated feature of
VOMS.

For example, belonging to the group /test/italian may be represented by the following FQAN:
/test/italian/Role=NULL/Capability=NULL, (or possibly by /test/italian/ in the future) while holding
the role sgm in the same group will be represented by the following FQAN:
/test/italian/Role=sgm/Capability=NULL or simply /test/italian/Role=sgm

2.3 Related projects and middleware infrastructure
The VPMan project should be seen as an essential complement to work being carried out in several
Grid middleware development projects. We consider the following projects to be of special interest:
OMII-UK, gLite and Globus Toolkitv4. We provide a brief introduction of these other projects here.

2.3.1 OMII-UK
OMII-UK aims to provide software and support to enable a sustained future for the UK e-Science
community and its international collaborators. OMII-UK aims to be the principal source for reliable,
interoperable and open-source Grid middleware components, services and tools to support advanced
Grid-enabled solutions in academia and industry.

For this reason, OMII-UK supports open-source software development by investing in community
developers to produce the functionality required by the user community.

Drawing upon this software and other packages from the open-source developer community, OMII-
UK provides a secure web service hosting environment, web services and the necessary tools and
environments to access these services. The latest version of the OMII-UK software is OMII 3.4.0.

The OMII software focuses on the needs of distinct yet important stakeholders within Grid
computing: the Service Provider and the Client.

The OMII server stack comprises mainly a secure web services container, in addition to other
optional software component services. Users can interact with the OMII grid using either a command
line tool or through any application using the supplied Java programming interface.

 ©University of Kent, 2008 Page 12 of 30

VPMan WP 1.1

Figure 3. OMII-UK architecture

OMII-UK security is based on WS-Security. Developers can write standard web-services and benefit
from the security and authorisation model of the OMII service provider.

An optional authorisation module - Process-Based Access Control (PBAC) can be used to enforce a
finer grained security models. PBAC determines who can do what, and under what circumstances
based on history of usage of a service.

OMII Authorization Service (OMII-AuthZ) [9] is a project at LeSC integrating PERMIS with the
OMII-UK software environment. It aims at providing an access control mechanism for Web Services
with per-operation/per-service granularity.

2.3.2 Globus Toolkit
The Globus Toolkit is an open source software toolkit used for building Grid systems and
applications. It is being developed by the Globus Alliance and many others all over the world. A
growing number of projects and companies are using the Globus Toolkit to unlock the potential of
grids for their cause. Globus is arguably the de facto technology for Grids today with the latest
release GT version 4 now based on web service technologies and standards.

PERMIS has been integrated into Globus Toolkit as an authorization decision entity within the
project Grid API. VOMS has been integrated into Globus Toolkit as well (see section 4.2). This
makes Globus a good starting point to integrate PERMIS and VOMS.

2.3.3 gLite
The gLite middleware comes from a number of Grid projects including: DataGrid [5]; DataTag [6];
Globus [7]; GriPhyN [8]; iVDGL [9]; EGEE and LCG. Currently, the glite middleware is maintained
and developed in the context of the EGEE project that has a main goal of providing researchers with
production level access to geographically distributed computing Grid resources.

The current release version is glite version 3 and comprises security services, information and
monitoring services, data services, job management services, and helper services. These services

 ©University of Kent, 2008 Page 13 of 30

VPMan WP 1.1

were developed to follow a service oriented approach, mostly based on web-services. They provide
an open source implementation of the foundation services that are application independent and need
to be deployed at all sites connected to the infrastructure.

On top of this foundation, an open-ended set of application specific higher-level services that can be
deployed on-demand at specific sites are either provided directly by the project or can be integrated
from other sources and projects

The figure below shows the relationship of Applications, Grid Services, and Grid Foundation
Middleware. The Grid Foundation Middleware, in turn, is based on basic Grid tools like Condor and
the Globus toolkit [42].

Figure 4. gLite levels

As indicated before, VOMS is part of the gLite security infrastructure. The authorisation of a user on
a specific Grid resource can be done in two different ways. The first relies on the grid-mapfile
mechanism. The Grid resource has a local grid-mapfile which maps users to local accounts. The
second way relies on the Virtual Organisation Membership Service (VOMS) and the
LCAS/LCMAPS mechanism, which allows for a more detailed definition of user privileges (more
details below).

2.3.4 Shebangs
The Shebangs project is one of the projects which have demonstrated how the Shibboleth and Grid
worlds can be harmonised. Shibboleth is standards-based, open source middleware software which
provides Web Single SignOn (SSO) across or within organizational boundaries. The Shibboleth
software implements the OASIS SAML v1.1 specification, providing a federated Single-SignOn and
attribute exchange framework.

 ©University of Kent, 2008 Page 14 of 30

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security

VPMan WP 1.1

The SHEBANGS project provides Shibboleth Based Authentication for Grid Infrastructures by
translating the credentials obtained by Shibboleth to Grid Security (GSI/VOMS) credentials
understood by the National Grid Service (NGS) [10].

Users asking for VOMS credentials are redirected to an IdP be authenticated. The created VOMS
credentials are stored in a MyProxy server to be used later by a portal to access resources.

2.3.5 GridShib
The GridShib project [46] is being carried out by the Globus team to integrate Shibboleth with the
Grid, specifically proxy certificate based authentication with attribute based authorisation where the
user’s attributes are retrieved from their Shibboleth IdP. This will allow grid users who have used
their proxy certificates to submit their jobs to the grid, to also pick up their attributes held by their
local Shibbolized institution.

2.3.6 ShibGrid

The ShibGrid project is attacking Shibboleth integration with the Grid from the opposite end to
GridShib. ShibGrid will allow NGS users, including those without UK e-Science X.509 public key
certificates, to securely access the NGS resources, through the integration of Shibboleth, GSI and
myProxy for user authentication. Users will then be able to access internal and external resources
seamlessly using a single institutionally controlled identity [11].

2.3.7 OGF SAML AuthZ Grid API

The project integrated PERMIS with GT3 and GT4 [6] using the OGF SAML profile [17]. This
SAML profile is the one being used by OMII UK as well. However, the SAML protocol has been
shown to be deficient, and will need replacing by the GridAPI v2 based on XAMCL and WS-Trust

2.3.8 SIPS

This project integrated PERMIS with Shibboleth and Apache [7].

2.3.9 GridShibPERMIS

This project integrated PERMIS with GridShib [8] so that the attributes retrieved from the Shibboleth
IdP can be used to authorise the user when the resource is controlled by a PERMIS policy.

2.3.10 NeSC Glasgow Shibboleth work
The National e-Science Centre at the University of Glasgow has shown through a variety of projects
including DyVOSE, GLASS and ESPGrid how Grids can be accessed and used via Shibboleth where
fine grained security is enforced through Shibboleth or portal configuration technologies. One recent
project OMII SPAM-GP is developing a family of JSR-168 compliant portlets to scope attribute
acceptance policies; attribute release policies; for dynamic portal content configuration and for
pushing attributes to remote parties. This project has just started and will run for 1 year.

3. Complementary security system components

3.1 User side infrastructure components

3.1.1 VOMS UI
As indicated above, VOMS offers a User Interface that comprises a client (voms-proxy-init) and
some ancillary utilities (voms-proxy-info, voms-proxy-destroy, voms-proxy-list). to generate a proxy

 ©University of Kent, 2008 Page 15 of 30

http://shibboleth.internet2.edu/

VPMan WP 1.1

certificate that contains extra information about the user and the VOs they belong to.

Moreover, the user may consult (after being authenticated), through the web interface, their available
roles on a VOMS server in the VOs they are involved in.

3.1.2 MyProxy
A significant enabling mechanism for GSI, that provides user mobility, is the availability of a service
to manage user certificates. The MyProxy service [40] is open source software for managing X.509
Public Key Infrastructure (PKI) security credentials (certificates and private keys). In order to free
the user from only operating from the workstation on which their private key is installed. MyProxy
combines an online credential repository with an online certificate authority to allow users to
securely obtain credentials when and where needed.

Storing credentials in a MyProxy repository allows users to easily obtain RFC 3820 proxy
credentials, without worrying about managing the associated private key and certificate files. Users
can use MyProxy to delegate credentials to services acting on their behalf (like a grid portal) by
storing credentials in the MyProxy repository and sending the MyProxy passphrase to the service.

They can also use MyProxy to renew their credentials, so, for example, long-running jobs don't fail
because of expired credentials. The MyProxy server can provide a more secure storage location for
private keys than typical end-user systems. It can be configured to encrypt all private keys in the
repository with user-chosen passphrases, with server-enforced policies for passphrase quality. By
using a proxy credential delegation protocol, MyProxy allows users to obtain proxy credentials when
needed without ever transferring private keys over the network.

However, MyProxy had not been completely adapted for VOMS support. Grix is a project that has
now dealt with this issue [41]. Grix is a Java GUI application that enables, amongst other things, the
creation of a MyProxy credential with or without a VOMS certificate.

3.1.3 Acacia
Acacia provides a Java implementation of various Attribute Certificate (AC) functionalities. In
particular, it provides various client interfaces to the VOMS system, as well as an AC server that can
act as a VOMS Server. It is currently maintained as a SourceForge project. Future developments for
this project include supplying a command line interface to VOMS and the possibility of storing the
produced proxy certificate (including VOMS credentials) in a MyProxy server.

At this time a Java WebStart interface is the only user interface supplied and it allows a user to
upload a proxy certificate (including VOMS credentials) to a portal so that the VOMS attributes for
that user can be extracted and used for authorisation purposes. The WebStart solution exists because
currently proxy certificate support in browsers is minimal. This client allows a user to interact with
the VOMS system as follows:

 ©University of Kent, 2008 Page 16 of 30

VPMan WP 1.1

1
2

3

4

5

6
7

Figure 5. Acacia tool

The typical scenario of using Acacia is as follows:

 (1) The grid users authenticate themselves to the portal using a grid certificate loaded into
their browser.

 (2) The portal allows the user to launch a Java web start application to create a proxy
certificate (or to check its current validity) if they have been successfully authenticated.

 (3) The user chooses their grid credential file to be used with the VOMS server along with a
group, role and VO. This credential file (.p12) holds the both the users grid certificate and
key. This file is loaded into a truststore so that it can be used to create a normal grid proxy
certificate. This normal proxy is then used to identify the user to the VOMS server.

(4) The VOMS server sends back a VOMS Attribute Certificate in an appropriate X509
extension (VOMS proxy) to the Web Start application.

(5) Using Axis set up in Tomcat the VOMS proxy is uploaded to a server (to a given
endpoint) via a secure web service attachment

(6) A proxy delegation service is available on the server.

(7) The extracted users VO, group and role can be used for authorization purposes within the
portals local authorization mechanism in this case PERMIS.

 ©University of Kent, 2008 Page 17 of 30

VPMan WP 1.1

There is an agreement between the Grix project and Acacia that MyProxy functionality can be
integrated into the Acacia project so that Acacia will be able to push a generated user proxy to a
variety of service end points, e.g. a Tomcat Axis web-service and MyProxy server.

3.1.4 Gridsite
The Gridsite solution doesn’t require sending the proxy certificate via the browser; however, the web
server has to fetch a "DN List" of authorised people, available from the VOMS server via HTTPS.
Each of these DN lists define a group so if a persons’ DN is within a certain list then they can be
authorised as being part of that group. This GridSite system for example allows definition of access
groups on www.gridpp.ac.uk. This fetching of lists has to be done usually between once per hour and
once per day. A working VOMs solution that is based on the Gridsite framework depends on an
Apache server and specifically the Apache module mod_ssl-gridsite.

3.2 Resource side infrastructure components
Many authorisation components are used in addition to PERMIS by grid infrastructures today. Here
our focus is on GT4 authorization framework.

3.2.1 VOMS and GT4
GT4 introduces its own authorization framework [25]. The GT4 Java Web Services runtime invokes
a series of message interceptors to process each message when it is first received (i.e., before it
reaches the application). Two types of interceptors are of interest from an authorization perspective:
Policy Information Points (PIPs) and Policy Decisions Points (PDPs).

Figure 6. GT authorization framework

VOMS is integrated with the Globus Toolkit so that the user’s credentials can be passed around with

 ©University of Kent, 2008 Page 18 of 30

http://www.gridpp.ac.uk/

VPMan WP 1.1

the grid job, embedded inside the user’s proxy certificate.

A GT4 VOMS PIP and PDP allow GT4 to access and process VOMS attribute certificates. The
VOMS PIP parses VOMS attributes and stores them in the GT runtime. The VOMS PDP allows or
denies requests based on these attributes and its configuration. The available VOMS PDPs are simple
driven by configuration file. The authorization may be based on subject DN’s (gridmap file) or
accepted VOMs attributes, e.g.:

"/SOMEVO/SomeAttribute/Role=someRole/Capability=NULL"
"/SOMEVO/Role=NULL/Capability=NULL"

The PIP and PDP can be used together to allow or deny access to a service based on the requester’s
VOMS attributes.

The GT4 authorization framework enables other systems to be plugged in as well, e.g. the GridShib
PIP which integrates SAML attributes. The GridShib authorization modules for GT support the
simultaneous use of VOMS and SAML attributes (by optionally making a callout to the VOMS
authorization modules).

3.2.1.1 Globus VOMS modules
When Globus VOMS modules [26] are installed by a user to a particular Globus installation, they are
essentially just making Java libraries available to any service that needs them. In order to actually
activate any authorization logic, the service configurations need to:

• list the VOMS modules in the authorization section of the relevant security descriptor

• include the VOMS module configurations, providing necessary per-module information (such as
what VOMS servers to trust). The full list is below.

Like all authorization modules for the Java container, they can be used to protect the container as a
whole, particular services, or particular WSRF resources.

3.2.1.2 Security descriptors

Security descriptors [27] contain various security properties like credentials, the gridmap file
location, the required authentication and authorization mechanisms and so on. There are four types of
security descriptors in the code base for setting container, service, resource and client security
properties:

container security descriptor determines the container level security

requirements that need to be enforced.

service security descriptor determines the service level security
requirements that need to be enforced.

resource security descriptor determines the resource level security
requirements that need to be enforced.

client security descriptor determines the security properties that need
to be used for a particular invocation.

Figure 7. Security descriptors

 ©University of Kent, 2008 Page 19 of 30

http://gridshib.globus.org/
http://www.globus.org/toolkit/docs/4.0/security/key-index.html#grid-map-file

VPMan WP 1.1

Each of these is represented as an object and can be altered programmatically. Service and container
security descriptors can be configured as XML files in the deployment descriptor as shown below.
Resource security descriptors can only be created dynamically, either programmatically or from a
descriptor file. A client security descriptor can be configured as an XML file and set as a property on
the client Stub.

3.2.2 Grid map file
The gridmap-file, is a simple mechanism for allocating local user privileges to grid users. It is a
simple list, resident at resource sites, which maps authorized grid users (expressed as Distinguished
Names) to local credentials, e.g. usernames on Unix system.)

The format of the file is very simple: one line for each user which is allowed access. Each line has
two fields separated by whitespace: the distinguished name and the local user account. For example,
a gridmap file which maps a distinguished name to local account “bn29” could be the following:

Distinguished Name Local account
"/O=Kent/OU=ISSRG/CN=Bassem" bn29

3.2.3 PRIvilege Management and Authorization (PRIMA)
PRIMA [45] is an authorisation model and system. It has been implemented as an extension of the
Globus Toolkit Grid middleware namely the Globus Gatekeeper with the Grid-map callout
introduced in GT3.2 and Globus Web service gatekeeper (globus-ws) introduced in GT4.
In PRIMA, a privilege is a platform independent, self contained representation of a fine-grained right
(subject, action, resource) signed by an issuer.
Resource administrators create and manage polices for their resources. They externalize privileges
by delegating them to other users. The PRIMA representation uses an XACML construct to encode
the externalized form of the privilege.

Figure 8. Privilege container

The holder of privileges can selectively provide individual privileges to grid resources when
requesting access. The PRIMA PEP validates the supplied privileges and verifies that the issuer is
authoritative to issue the specific privileges for the resources (calling the PDP for that). A set of valid
privileges is then determined.
The PRIMA PDP is a policy engine for an XACML policy and is built using Sun’s java XACML
library. It is queried to evaluate user requests against the set of valid privileges and the access control
policies set up by the system administrators. The PDP returns an authorization decision along with a

 ©University of Kent, 2008 Page 20 of 30

VPMan WP 1.1

set of instructions termed “obligations”, from the PDP to PEP, on how the requested service should
be confined and monitored.

3.2.4 LCAS and LCMAPS
The Local Centre Authorization Service (LCAS) [33] is a site-local service that can authorise users
based on their name, their VO affiliation, and the resources requested. In order to run jobs or store
files within a traditional UNIX system, the Local Credential Mapping Service (LCMAPS) can make
sure that user requests are sandboxed in local accounts with unique group memberships. Such
accounts can span a machine or a cluster, or an entire administrative domain.

To keep track of tasks sent to the fabric, the relation between the identity and authorization tokens
presented on the Grid side, and their mapping into local credentials (unix groups, account names,
etc), the Job Repository (JR) was developed. Based on a backend ODBC-interface, it is a database
containing this essential information.

LCAS, LCMAPS and the JR were developed in the context of the EU DataGrid project, and are now
also incorporated into gLite (described previously).

Figure 9. LCAS+LCMAPS

3.2.4.1 LCAS
LCAS [33] is the authorisation decision engine that adds access controls to the "gatekeeper". The
gatekeeper accepts job requests from external sources (like the end user or the workload management
system) over an authenticated channel. The concept is that different independent authorisation
modules may be plugged-in to LCAS, thus creating a flexible system. The plug-in framework
enables multiple independent authorisation modules to collectively grant or deny access to the
resource. The decision is based on the requested resources (expressed via the Resource Specification

 ©University of Kent, 2008 Page 21 of 30

http://www.glite.org/

VPMan WP 1.1

Language RSL), the identity of the requester, and the authorisation credentials presented by the end-
user in the proxy certificate. If VOMS is used this will be the VO, Group and Role combinations the
user has acquired from VOMS. A basic policy language allows selection of which authorisation
plug-ins are to be invoked, and the access decision is the logical "and" of the answers of the
individual plug-ins. So it would be fair to say that LCAS performs the same functionality for GT2
that the GT4 authorisation framework provides, in that it is configured with the various PDPs to be
called in which order, and it then combines the results of their decisions.

LCAS is a shared library integrated into the Globus Toolkit v2 (pre-webservices), which is written in
C, and called when an authorization decision is needed. LCAS provides three default authorization
modules, also written in C: lcas_userallow.mod, lcas_userban.mod, and lcas_timeslots.mod. An
additional optional plugin lcas_voms.mod decides if the user is authorized based on the VOMS
credentials stored in the user’s proxy X509 certificate. It therefore would be possible to add another
module to LCAS, say lcas_permis.mod, that calls the PERMIS decision engine from a C program (in
a similar way to which Shibboleth/Apache calls PERMIS via mod_permis).

• lcas_userallow.mod module checks if the user is allowed on the fabric (currently the gridmap file
is checked). This plugin checks a file that contains a list of DNs (subjects of the X509
certificates) of allowed users. If the DN of the user for which the authorization request is made is
found in the list, the plugin grants access to the site.

• lcas_userban.mod module checks if the user should be banned from the fabric. This plugin checks
a file that contains a list of DNs (subjects of the X509 certificates) of users to be banned from the
site. If the DN of the user for which the authorization request is made is found in the list, the
plugin denies access to the site.

• lcas_timeslots.mod module checks if the fabric is open at this time of the day for datagrid jobs.
This plugin makes an authorization decisions based on available time slots. Currently it reads a
text file that contains the available time slots of the form

If the fabric is open on working days from 8:30-18:00 h, from 1 July 2002 till 15 January 2003
 30-0 8-18 1-15 7-1 2002-2003 1-5

All three modules get their information from simple configuration files: allowed_users.db,
ban_users.db and timeslots.db respectively.

In addition a plugin is provided that decides if the user is authorized based on the VOMS (VO
Membership Service) information stored in the user’s proxy X509 certificate:

• lcas_voms.mod plugin forms the link between the VOMS data found in the user’s grid credential
(X509 certificate) and the LCAS system. It retrieves the VOMS data through the VOMS API. In
order to control user access to the site, the VOMS data will be checked against either:

1. a text file containing just a list of allowed VO-GROUP-ROLE combinations

"/VO=wilma/GROUP=wilma/*"
"/VO=fred/GROUP=fred/*"

2. a policy file in GACL [36] format (GACL is an XML Access Control Language).

 ©University of Kent, 2008 Page 22 of 30

http://www.gridpp.ac.uk/authz/gacl/

VPMan WP 1.1

<?xml version="1.0"?>
<gacl version="0.0.1">
<entry>
<voms-cred>
<voms>/O=dutchgrid/O=hosts/OU=nikhef.nl/CN=asen.nikhef.nl</voms>
<vo>wilma</vo>
<group>wilma</group>
</voms-cred>
<allow><read/><write/></allow>
<deny><list/></deny>
</entry>
<entry>
<person>
<dn>/O=dutchgrid/O=users/O=knmi/CN=Wim Jan Som de Cerff</dn>
</person>
<allow><read/></allow>
<deny><list/></deny>
</entry>
</gacl>

3. a policy file in XACML [21] format (the OASIS access control policy language)

External parties can develop their own plug-ins to provide additional functionality, without the need
to re-compile the LCAS framework software. LCAS reads from a configuration (lcas.db) the plugins
that it should load along with their configuration parameters. For example:

pluginname="lcas_userallow.mod",pluginargs="allowed_users.db"
pluginname="lcas_userban.mod",pluginargs="ban_users.db"
pluginname="lcas_timeslots.mod",pluginargs="timeslots.db"
pluginname="lcas_plugin_example.mod",pluginargs="Some bogus arguments"
pluginname="lcas_voms.mod",pluginargs="-vomsdir /etc/grid-security -certdir /etc/grid-
security/certificates -authfile /opt/edg/etc/lcas/lcas_voms.gacl -gacl_use_voms_dn always”

We envisage plugging a PERMIS module into LCAS to decide if a request should be allowed or not
according to the PERMIS policy and the VOMS attributes extracted from the proxy certificate.
PERMIS authorisation is more advanced than most of the methods shown here (apart from the
XACML PDP) and enables enforcement of many more features (see section 2.1).

3.2.4.2 LCMAPS
LCMAPS [34] is the local credential mapping service. It is a pluggable system that controls how an
incoming grid request obtains a User Id (UID) and Group Id (GID) on the system.

LCMAPS can load and run one or more 'credential mapping' plugins. The use of a plugin-framework
architecture for LCMAPS makes it very easy for sites/organizations to add new functionality to
LCMAPS by writing new plugins. The LCMAPS framework consists of the following components:

1. The plugin manager, which is responsible for managing, loading and running the LCMAPS

plugins.

2. The evaluation manager, which is responsible for the order in which the LCMAPS plug-ins
are called. In fact, it is responsible for creating an appropriate environment based on the users
set of credentials. In order to accomplish this, the system must know about policies for

 ©University of Kent, 2008 Page 23 of 30

http://www.oasis-open.org/committees/xacml/

VPMan WP 1.1

assigning resources to a user or service. The proposed policy language is based on graphical
representation, translated into text format [35]. For example, according to which VO a user is
a member of, the system is able to tell how much disk space may be used, how many
processors are reserved for the VO, billing, etc (even if it is mapped to a local account). The
evaluation manager is driven by this policy.

Based on the user’s global credentials (more specifically the user's X509 certificate) and the job
specification (JDL), the LCMAPS plugins have to perform either of these two tasks:

- Acquire local credentials (e.g. uids, gids).
- Enforce (apply) the local credentials.

The following LCMAPS plugins are available for acquiring credentials:

1. non-VOMS-aware plugins, e.g.:
 lcmaps_localaccount.mod: this plugin maps the user’s DN into a the local account name

using a gridmap file.
 lcmaps_poolaccount.mod: this plugin maps the user’s DN into a pool account name using

a gridmap file.
2. VOMS-aware plugins that use VOMS attribute in the user certificate for the credential mapping.

 lcmaps_voms.mod: this plugin extracts the VOMS information from the user’s X509
proxy certificate.

 lcmaps_voms_localaccount.mod: this module tries to find a local account (UID) based on
the VO information in a gridmapfile.

 lcmaps_voms_localgroup.mod: this plugin tries to find a local group Ids (GIDs) based on
the VO information and a groupmapfile which is similar to the gridmapfile, only the
groupmapfile defines the group Id (i.e. GID) for a particular set of users in a VO.

 lcmaps_voms_poolgroup.mod: this plug-in tries to find a pool group Ids (GIDs) based on
the VO information and a groupmap file.

 lcmaps_voms_poolaccount.mod: this plug-in tries to find a pool account based on the VO
information and a gridmapfile.

The following plug-ins are available for enforcing credentials:

 lcmaps_posix_enf.mod sets the real and effective user and group ID for the current
process. The (BSD/POSIX) functions setreuid(), setregid() and setgroups() are used to
change the privileges of the process from root to that of a local user.

 lcmaps_ldap_enf.mod updates a fabric-central user directory for userid and groupid
information. It alters the user and group settings in the ldap database [43], using the user
and groups settings provided by the credential acquisition plugins.

 lcmaps_afs.mod is an Acquisition and Enforcement Plugin that maps the DN onto local
Kerberos and AFS tokens [44].

LCMAPS reads in the file lcmaps.db, the options for the various plugins and the policies, i.e. the
order that the plugins should be executed.

As described, LCMAPS is dedicated to acquiring and enforcing local credentials for accomplishing
the required tasks. PERMIS may supply an equivalent functionality of acquiring the local credentials
by returning them via obligations. We may have a PERMIS policy that indicates if a particular VO
member is authorised to run a particular task, and if so, to indicate, for instance, a UID and GID to be
used. LCMAPS has already specialised plug-ins for enforcing these credentials, however, PERMIS
doesn’t indicate how obligations are enforced by the system, although a separate Obligations Service

 ©University of Kent, 2008 Page 24 of 30

http://www.nikhef.nl/grid/lcaslcmaps/lcmaps_apidoc/html/lcmaps_posix_enf.mod.html
http://www.nikhef.nl/grid/lcaslcmaps/lcmaps_apidoc/html/lcmaps_afs.mod.html

VPMan WP 1.1

will be provided that will return the obligated local user Ids.

3.3 VOMS administration

We present here the administrative tools available for managing the system (VOMS, users, roles,
accounts). Note that in VPMan we are less concerned with how VOMS is managed, since we focus
on the authorisation process of users who have already acquired VOMS credentials.

3.3.1 VOMS-ADMIN

Voms-admin constitutes the administrative tool for VOMS whose basic functionality is implemented
in C++ by INFN [29]. The extended functionality is implemented as a web service, with command
line and web interfaces:
• Admin: provides the administrative functionality.

• Compatibility: provides access to the user list for gridmap-file generation.

• Request: handles user requests for administrative events and provide a simple framework for
administrators to process them.

• History: provides a lookup functionality of current and past events, to answer questions like "was
this user a member of my VO last summer?"

• Core: provides the basic functionality for users.

3.3.2 VOMRS
VOMRS [30, 31] stands for Virtual Organization Management Registration Service and is another
service used with VOMS. Its main purpose is to offer a comprehensive set of services facilitating
secure and authenticated management of VO membership, grid resource authorization and privileges.

VOMRS implements multiple features on the top of the basic voms-admin API. For example, it
implements a registration workflow providing means for collaborators to register in a Virtual
Organization (VO), provides email notifications of selected events, supports VO-level control over
which set of Certificate Authorities (CA) are trusted and permits delegation of responsibilities within
the various VO administrators. It is also capable of interfacing to third-party systems and pulling or
pushing relevant member information from/to them.

Through VOMS admin APIs, any modification and reorganization of the VO membership are
propagated to VOMS. A clear picture summarizing the system is given in figure 10.

 ©University of Kent, 2008 Page 25 of 30

VPMan WP 1.1

Figure 10. VOMRS management system

3.3.3 Grid User Management Systems (GUMS)
The GUMS system [32] proposes an alternative architecture to VOMS for user authorisation within a
virtual organisation. The user registers once for a virtual organisation and this information is stored
in a VO database server (which could be a VOMS server, but it does not have to be). A site daemon
(Cron Job in Fig 11) pulls user information from this database and invokes local tools that track and
manage the status of the user with respect to a local user account. According to local policies (user
info, banned user, name mapping etc) the user may be accepted and thus a local account is created
for him and the local gridmap file is updated with his DN (see Figure 11).

 ©University of Kent, 2008 Page 26 of 30

VPMan WP 1.1

Figure 11. Grid User Management System architecture

GUMS may work with VOMS, in which case GUMS may poll VOMS Admin periodically to update
its local list of users. In another way of functioning, GUMS may do dynamic role/group-based
mappings according to the credentials pushed by the user, which may include his VOMS attributes.

4. Requirements

Though PERMIS and VOMS were included in the security infrastructures of many middleware,
there is still work to do in order to seamlessly integrate VOMS and PERMIS within the same
infrastructure. This is the motivation behind the VPMan project and constitutes the main part of its
requirements. These requirements are:

1- Allow resources already protected by PERMIS to accept and make decisions based on VOMS
ACs. PERMIS should be able to make authorization decisions based on the VOMS attributes: VO,
group, subgroup, role and generic attributes (Gas).

2- PERMIS should be able to function with VOMS in either pull and push mode, though the former
will be dependent upon enhancements to the VOMS server which are being carried out by INFN and
are out of scope of this project.

3- The integration work in VPMan must not require any changes to VOMS or VOMS ACs which
would prevent interworking with current VOMS's systems (although extensions for additional
functionality may be OK).

4- The integration work with OMII-UK and the NGS shouldn’t require major changes in their
security infrastructures.

5- The integration should take into consideration compatibility with different grid middleware
especially pre-GT4 releases.

 ©University of Kent, 2008 Page 27 of 30

VPMan WP 1.1

6- VPMan should allow resources owners who currently use VOMS authorization to
implement/enhance their local policies using PERMIS tools. This includes offering a user-friendly
policy editor adapted to the VO and particularly to VOMS terminology (VO, group, subgroup, role).

7- VPMan should also permit the integration of the security components in order to support the
defined use cases in the accompanying document D1.2.

5. Conclusion
Both VOMS [1] and PERMIS [2] provide security management infrastructures for Grids but have
addressed the problem from different ends of the spectrum. VOMS has concentrated on the
management of user credentials, whilst PERMIS has concentrated on policy based decision making.
Each has its strengths and weaknesses and their combination will be a powerful solution to Grid
security management.

We believe that integrating VOMS and PERMIS, more specifically the VOMS user management and
attribute assignment function with the PERMIS policy based authorisation decision function is of
great benefit to the grid community including end users, service providers and administrators.
Moreover, the integration work is motivated by use-cases being provided by the project partners.

6. References

[1] Alfieri, R., Cecchini, R., Ciaschini, V., Dell'Agnello, L., Frohner, A., Lorentey, K., Spataro, F., From
gridmap-file to VOMS: managing authorization in a Grid environment, Future Generation Computer
Systems. Vol. 21, no. 4, pp. 549-558. Apr. 2005

[2] D.W. Chadwick, A. Otenko The PERMIS X.509 Role Based Privilege Management Infrastructure.
Future Generation Computer Systems, 936 (2002) 1–13, December 2002. Elsevier Science BV.

[3] The Globus Alliance, http://www.globus.org/toolkit/

[4] The Open Middleware Infrastructure Institute UK, http://www.omii.ac.uk/

[5] The Shibboleth project, http://shibboleth.internet2.edu/

[6] R.O. Sinnott, A. Asenov, D. Berry, S. Furber, C. Millar, A. Murray, S. Pickles, S. Roy, A. Tyrell, M.
Zwolinski, Meeting the Design Challenges of nanoCMOS Electronics: An Introduction to an EPSRC Pilot
Project, UK e-Science All Hands Meeting, Nottingham UK, September 2006.

[7] W. Xu, D.W. Chadwick, A. Otenko. Development of a Flexible PERMIS Authorisation Module for
Shibboleth and Apache Server, Proceedings of 2nd EuroPKI Workshop, University of Kent, July 2005

[8] Chadwick, D.W., Novikov, A., Otenko, O. GridShib and PERMIS Integration. Terena Networking
Conference (TNC 2006), Scicily, May 2006.

[9] See http://www.omii.ac.uk/downloads/project.jsp?projectid=68

[10] The Shebangs project, http://www.mc.manchester.ac.uk/research/shebangs

[11] ShibGrid project, http://www.oerc.ox.ac.uk/activities/projects/index.xml?ID=ShibGrid

 ©University of Kent, 2008 Page 28 of 30

VPMan WP 1.1

[12] ISO 9594-8/ITU-T Rec. X.509 (2001) The Directory: Public-key and attribute certificate frameworks

[13] The VOMS Attribute Certificate Format
http://forge.gridforum.org/sf/docman/do/downloadDocument/projects.ogsa-
authz/docman.root.attributes/doc13797

[14] R.O. Sinnott, D.W. Chadwick, Experiences of Using the GGF SAML AuthZ Interface, Proceedings of
UK e-Science All Hands Meeting, September 2004, Nottingham, England.

[15] D.W. Chadwick, L. Su, R. Laborde. Use of XACML Request Context to access a PDP. OGSA-Authz
WG Draft Standard. 28 March 2006.

[16] D. Chadwick, G. Zhao, A. Otenko, R. Laborde, L. Su, T.A. Nguyen. Building a Modular
Authorization Infrastructure, presented at All Hands Meeting, Nottingham, Sept 2006.

[17] Von Welch, Rachana Ananthakrishnan, Frank Siebenlist, David Chadwick, Sam Meder, Laura Pearlman. “Use
of SAML for OGSI Authorization”, GFD.66. March 2006, Available from
http://www.ggf.org/documents/GFD.66.pdf

[18] D. W Chadwick, A. Otenko and T.A. Nguyen. Adding Support to XACML for Dynamic Delegation of
Authority in Multiple Domains, to be presented at IFIP CMS 2006, October 2006

[19] S. Brostoff, M. A. Sasse, D. Chadwick, J. Cunningham, U. Mbanaso, A. Otenko. R-What?
Development of a Role-Based Access Control (RBAC) Policy-Writing Tool for e-Scientists Software:
Practice and Experience, Volume 35, Issue 9, Date: 25 July 2005, Pages: 835-856

[20] OASIS. Assertions and Protocol for the OASIS Security Assertion Markup Language (SAML) V2.0,
OASIS Standard, 15 March 2005.

[21] OASIS. eXtensible Access Control Markup Language (XACML) Version 2.0, OASIS Standard, 1 Feb
2005

[22] See http://middleware.internet2.edu/signet and http://middleware.internet2.edu/dir/groups/grouper

[23] Chadwick, D.W., Delegation Issuing Service, in NIST 4th Annual PKI Workshop, pages 62-73,
Gaithersberg, USA, April 2005.

[24] See: http://littleblue.cnaf.infn.it/twiki/bin/view/VOMS/WebArchitecture

[25] See: http://www.globus.org/alliance/events/sc06/AuthZ.pdf

[26] Globus VOMS plugin http://dev.globus.org/wiki/VOMS

[27] See: http://www.globus.org/toolkit/docs/4.0/security/authzframe/security_descriptor.html

[28] VOMS guide, https://edms.cern.ch/file/571991/1/voms-guide.pdf

[29] VOMS administrative interface, http://edg-wp2.web.cern.ch/edg-wp2/security/voms/

[30] VOMRS guide, http://www.uscms.org/SoftwareComputing/Grid/VO/vox.pdf

 ©University of Kent, 2008 Page 29 of 30

http://forge.gridforum.org/sf/docman/do/downloadDocument/projects.ogsa-authz/docman.root.attributes/doc13797
http://forge.gridforum.org/sf/docman/do/downloadDocument/projects.ogsa-authz/docman.root.attributes/doc13797
http://littleblue.cnaf.infn.it/twiki/bin/view/VOMS/WebArchitecture
http://www.globus.org/alliance/events/sc06/AuthZ.pdf
http://dev.globus.org/wiki/VOMS
http://www.globus.org/toolkit/docs/4.0/security/authzframe/security_descriptor.html
https://edms.cern.ch/file/571991/1/voms-guide.pdf

VPMan WP 1.1

[31] VOMRS functionality, https://twiki.cern.ch/twiki/bin/view/LCG/VomrsFunctionality

[32] See: http://www.atlasgrid.bnl.gov/testbed/gums/,

http://www.atlasgrid.bnl.gov/testbed/gums/VO_AAA_new.pdf and
http://grid.racf.bnl.gov/GUMS/guide_architecture.html

[33] See:
http://glite.web.cern.ch/glite/packages/R3.0/R20060502/doc/installation_guide_3.0-2.html
http://grid-it.cnaf.infn.it/fileadmin/sysadm/voms-integration/voms-
integration.html#SECTION00043000000000000000
http://wiki.ngs.ac.uk/index.php?title=LCAS

[34] See:
https://twiki.cern.ch/twiki/bin/viewfile/LCG/LhcbPage?rev=1;filename=A_quick_introduction_to_VOM
S.pdf
http://grid-it.cnaf.infn.it/fileadmin/sysadm/voms-integration/voms-
integration.html#SECTION00043000000000000000
[35] PDL module, see: http://www.dutchgrid.nl/DataGrid/wp4/lcmaps/edg-lcmaps-
0.0.3/pdl_requirements.pdf

[36] GACL, see: http://www.gridpp.ac.uk/authz/gacl/

[37] D.W. Chadwick, S. Anthony. “Using WebDAV for Improved Certificate Revocation and
Publication” Paper submitted to Europki 2007 conference

[38] Vincenzo Ciaschini, Valerio Venturi, Andrea Ceccanti. “The VOMS Attribute Certificate Format”.
OGF OGSA Authz WG draft, Sept 2006. Available from
http://forge.gridforum.org/sf/go/doc13797?nav=1

[39] See: http://ref.web.cern.ch/ref/CERN/CNL/2003/001/DataTAG/

[40] MyProxy Credential Management service, See: http://grid.ncsa.uiuc.edu/myproxy/

[41] Grix project, See: http://www.grid.apac.edu.au/repository/trac/grix/

[42] See: https://twiki.cern.ch/twiki/bin/view/EGEE/EGEE2JRA1Mandate

[43] RFC 2307, “An Approach for Using LDAP as a Network Information Service”, See
http://www.faqs.org/rfcs/rfc2307.html

[44] AFS system, http://www.psc.edu/general/filesys/afs/afs.html

[45] Markus Lorch, Dennis Kafura, “The PRIMA Grid Authorization System”, Journal of Grid Computing, March
24, 2005

[46] Tom Barton, Jim Basney, Tim Freeman, Tom Scavo, Frank Siebenlist, Von Welch,
Rachana Ananthakrishnan, Bill Baker, Kate Keahey. “Identity Federation and Attribute-based Authorization through
the Globus Toolkit, Shibboleth, GridShib, and MyProxy”. Presented at NIST PKI Workshop, April 2006.

 ©University of Kent, 2008 Page 30 of 30

http://www.atlasgrid.bnl.gov/testbed/gums/
http://www.atlasgrid.bnl.gov/testbed/gums/VO_AAA_new.pdf
http://grid.racf.bnl.gov/GUMS/guide_architecture.html
http://glite.web.cern.ch/glite/packages/R3.0/R20060502/doc/installation_guide_3.0-2.html
http://wiki.ngs.ac.uk/index.php?title=LCAS
https://twiki.cern.ch/twiki/bin/viewfile/LCG/LhcbPage?rev=1;filename=A_quick_introduction_to_VOMS.pdf
https://twiki.cern.ch/twiki/bin/viewfile/LCG/LhcbPage?rev=1;filename=A_quick_introduction_to_VOMS.pdf
http://www.dutchgrid.nl/DataGrid/wp4/lcmaps/edg-lcmaps-0.0.3/pdl_requirements.pdf
http://www.dutchgrid.nl/DataGrid/wp4/lcmaps/edg-lcmaps-0.0.3/pdl_requirements.pdf
http://www.gridpp.ac.uk/authz/gacl/
http://forge.gridforum.org/sf/go/doc13797?nav=1
http://ref.web.cern.ch/ref/CERN/CNL/2003/001/DataTAG/
http://grid.ncsa.uiuc.edu/myproxy/
http://www.grid.apac.edu.au/repository/trac/grix/
https://twiki.cern.ch/twiki/bin/view/EGEE/EGEE2JRA1Mandate
http://www.psc.edu/general/filesys/afs/afs.html
http://www.springerlink.com/content/111140/

	1. Introduction
	1.1 Purpose
	1.2 Definitions, Acronyms, and Abbreviations
	1.3 Overview
	2. Background
	2.1 Background to PERMIS
	2.1.1 Security policy
	2.1.2 Dynamic delegation
	2.1.3 Separation of duty
	2.1.4 PERMIS user’s attributes

	2.2 Background to VOMS
	2.2.1 Globus Security Infrastructure GSI
	2.2.2 VOMS server
	2.2.3 VOMS Architecture
	2.2.4 VOMS user management

	2.3 Related projects and middleware infrastructure
	2.3.1 OMII-UK
	2.3.2 Globus Toolkit
	2.3.3 gLite
	2.3.4 Shebangs
	2.3.5 GridShib
	2.3.6 ShibGrid
	2.3.7 OGF SAML AuthZ Grid API
	2.3.8 SIPS
	2.3.9 GridShibPERMIS
	2.3.10 NeSC Glasgow Shibboleth work

	3. Complementary security system components
	3.1 User side infrastructure components
	3.1.1 VOMS UI
	3.1.2 MyProxy
	3.1.3 Acacia
	3.1.4 Gridsite

	
	3.2 Resource side infrastructure components
	3.2.1 VOMS and GT4
	3.2.1.1 Globus VOMS modules
	3.2.1.2 Security descriptors

	3.2.2 Grid map file
	3.2.3 PRIvilege Management and Authorization (PRIMA)
	3.2.4 LCAS and LCMAPS
	3.2.4.1 LCAS
	3.2.4.2 LCMAPS

	3.3 VOMS administration
	3.3.1 VOMS-ADMIN
	3.3.2 VOMRS
	3.3.3 Grid User Management Systems (GUMS)

	4. Requirements
	5. Conclusion
	6. References

