
MSoD User Guide and Test Guide

Bassem Nasser, Wensheng Xu, David Chadwick University of Kent

Document History

	Version
	Date
	Comments

	1.0
	1 August 2006
	First beta release

	4.0.1
	1 March 2007
	Release

	4.0.2
	17 May 2007
	Release including SAWS version 4.0.2

Table of Contents

Document History
Introduction
I. Before you start
II. Installation steps for PERMIS with MSoD on your computer
III. Acceptance tests
IV. PERMIS MSoD policy

Introduction

Multi-session Separation of Duty (MSoD) module is an enhancement to PERMIS, so when you get a copy of PERMIS (issrg.jar), you’ve already got MSoD in it.
This guide aims to highlight MSoD features in PERMIS. For this reason, we offer in this package an environment where MSoD policy is enforced by the PERMIS authorization engine. It contains a test application that queries the authorization engine for different actions with different roles and shows the result of this query (access granted or denied). Since MSoD requires a SAWS server, we included it (SAWS) in the permisMSoD.jar. That facilitates the usage of this package; however you should still pass through the SAWS and PERMIS configuration steps to use the system.

Please, note that SAWS server is being developed independently. The SAWS server included in this package may not be the latest version. Please, refer to this document in order to configure SAWS.
I. Before you start

The following systems should be installed and working prior to installing PERMIS.

1. Java Runtime Environment - is required to run the Tomcat components. The version of JRE you need is 1.4. JRE is available from:
http://java.sun.com/
The Kent PERMIS installation kit comprises the following items.

1. The PERMIS library for the PERMIS engine:
permisMSoD.jar
2. The following support Java libraries in the folder “include”:

· iaik_jce.jar
· soap.jar

· servlet-2_3-fcs-classfiles.jar
· axis.jar
· AbsoluteLayout.jar
· log4j-1.2.13.jar
· serializer.jar
3. MSoD related files:

· MSoD test input files: msodInput1.txt, msodInput2.txt, msodInput3.txt, msodInput4.txt.
· msodInputAll.txt brings together all the data already in msodInput1.txt, msodInput2.txt, msodInput3.txt, msodInput4.txt.

· sample1.cfg: MSoD test configuration file

· MSoD testing attribute certificates and PERMIS policy
· Test*.bat files to run the different tests
4. The SAWS configuration files:

· saws.xml

5. The following files for SAWS:

· rootCA.key – This is a demo Root CA signing key in PEM format. Before you get your own Root CA, you can use this Root CA for testing purposes. Its password is “rootca123”.

· rootCA.crt – The self-signed public key certificate for the Root CA.

· vt.p12 – The SAWS Viewing Tool (VT) p12 key file, used for VT to read SAWS log files. Its password is “changeit”.

· vt.crt – The VT public key certificate, exported from the VT key file vt.p12.
· signing.keystore and encryption.keystore – These are given for test only, however you can create yours if needed (as described below). The password for both included files is the same “test2”
II. Installation steps for PERMIS with MSoD on your computer

Step 1. Copy files

After you download a copy of PERMIS with MSoD (i.e. the PERMIS MSoD package) – permisMSoD.zip, and unzip it to </home/permisMSoD>, you will see all the items listed in Section I. Then you need to add the jar files indicated above (permisMSoD.jar, iaik_jce.jar, soap.jar, servlet-2_3-fcs-classfiles.jar, axis.jar, …) into your class path. Now PERMIS with MSoD is ready for your use.

Step 2. Edit java.security for Java environment
Edit the file $JAVA_HOME/jre/lib/security/java.security, add a line at the end of the “security.provider” configuration as indicated below:
If the last security.provider configured looks like:

security.provider.5= some.security.provider

Then, add:

security.provider.6=iaik.security.provider.IAIK

Of course the number “6” may differ in your system. If you have the last security.provider.6, the added line should start by security.provider.7=…

Step 3. Edit the SAWS configuration file saws.xml

The default file /home/permisMSoD/saws.xml will contain the following contents:

<SAWSParameters>

 <SAWSBasic

 encryptionKeystoreLocation="/home/permisMSoD/encryption.keystore"

 numberOfEncPasswordShares = "3"

 logFileRoot="/home/permisMSoD/log/"

 heartbeatInterval ="3000"

 signRecordNumber="500"

 SAWSInterface = "api"

 logEncryption = "yes"

 vtPKC="/home/permisMSoD/vt.crt"

 rootCA="/home/permisMSoD/rootCA.crt"

 debugLevel = "5"

 />

 <TPMAdvanced

 signingKeystoreLocation="/home/permisMSoD/signing.keystore"

 numberOfPasswordShares = "3"

 trustedLocation="/home/permisMSoD/TCBLocation.dat"

 />

<CallbackHandler class="issrg.SAWS.callback.SAWSGUICallbackHandler" />

</SAWSParameters>

You need to edit this configuration file to fit your needs:

In the <SAWSBasic> section:

(1) encryptionKeystoreLocation should point to an encryption keystore location in your machine. This encryption keystore will be generated by the SAWS initialization process later, which will be used to securely store some secrets in the log files.

(2) numberOfEncPasswordShares refers to how many shares the password to this encryption keystore has. If its value is 3, then SAWS will subsequently require 3 SAWS administrators to input a password share respectively to form the final password to the encryption keystore.

(3) logFileRoot refers to the log file root for holding SAWS log files.

(4) heartbeatInterval refers to the interval at which the heart beat records are generated by the SAWS server. Its unit is milliseconds.

(5) signRecordNumber is the maximum number of log records a log file will hold. When the number of log records in a log file reaches this number, the SAWS server will close this log file, sign it, and then start a new log file.

(6) SAWSInterface is the client interface for this SAWS deployment. It should be “api” in this user guide. For web service interface, its value should be “webservice”.
(7) logEncryption indicates whether the logs are encrypted by a secret key. When its value is “yes”, then log records will be encrypted by a secret key. When its value is “no”, then all log records will be stored in the log files in the clear. The vtPKC and userPKC will be used to encrypt this secret key (see below) and store it in the logs.

(8) vtPKC refers to the SAWS Viewing Tool (VT) public key certificate file. The VT PKC will only be used if SAWS is configured to encrypt audit records. When confidentiality of audit records is needed (i.e. logEncryption is set to “yes”), SAWS will generate a secret key that will be used to encrypt the audit records in the log files. In this case the VT public key will be used to encrypt the secret key and then store it in the log files. So later the SAWS Viewing Tool can use its private key to decrypt this secret key and therefore decrypt the confidential log records.

(9) rootCA refers to the Root CA certificate which will be used to validate the signing key pair PKC issued by the Root CA. The Root CA will issue the PKC for the SAWS signing key pair. We provide a Root CA signing key in the SAWS package for testing purposes. If you do not have a Root CA and this parameter - rootCA - is missing, then SAWS will work in testing mode to use the SAWS self-signed PKC as its Root CA PKC.

(10) debugLevel indicates the different level of debug output information by SAWS. Its value is from 0 to 5. When its value is 0, then no debug information is outputted by SAWS. When its value is 5, then most debug information is outputted by SAWS.

In the < TPMAdvanced> section:

(11) signingKeystoreLocation should point to the signing keystore location in your system. This signing keystore will be generated by SAWS later which will be used to sign the log files (see Section III).

(12) numberOfPasswordShares refers to how many shares the password to this signing keystore has. If its value is 3, then SAWS will subsequently require 3 SAWS administrators to input a password share respectively to form the final password to the signing keystore.

(13) trustedLocation refers to a file in a trusted location. This file will be securely generated by SAWS and used to contain some secure SAWS system information.

(14) The callback handler indicates the type of the user-SAWS interaction (showing error, warning and information messages, asking for information like password or certificate data, etc.). By default it is the command line (console). In this guide, we use the SAWSGUICallbackHandler in order to obtain pop-up windows for user interaction as shown in the rest of the document.
Since SAWS is needed by MSoD, now you need to initialize SAWS for the first time.

Step 4. Generate the encryption keystore

In the directory </home/permisMSoD>, run the following command:

java issrg.SAWS.SAWSServer

You will see the following screen:

[image: image1.png]ecurs Amdit Wob-Sorvice vi.1.2

AU is now working in the keystare creatian mode. Please select the folloving optiol

ption 13 Create an encryption keystore.
ption 2: Create a signing keystore.

ption 3: Inport the rootCh specificd in the SAUS configuration file into the signin
127 h00cC 1nte the Signing kevators.

ption 4: Output a PAC request File from th

signing keyston

ption 53 Input the PKC issued by the ro0tCh inco the signing keystore.

ption 6: List all the entries in the signing keysto

ption 7: Export the Signing PKC Erom th

SAUS will create a new log file and check old log files, thon of

sining keyscore

oase input your choice (1, 2, 3, 4. 5. 6, 7 or 93 ox any other input o scop:

For the first time running, you need to input ”1” for option 1, then press the return key. The first SAWS administrator will be prompted to input his password share in the following window. Please note that the number of prompted passwords depends on the parameter numberOfEncPasswordShares in the saws.xml configuration file. Attention: This password window may be behind (i.e. hidden by) your current command window in your system.
[image: image2.png]e input password for the encryption kes

IPassword from SAWS administrator No. 1 out of 3

| ok |

If the parameter “numberOfEncPasswordShares” is set to “3” then other 2 SAWS administrators are required to input their password shares into the password input windows separately. Then the SAWS server will generate the encryption keystore and give the following results on the screen:

/home/permisMSoD/encryption.keystore has been created successfully.

Step 5. Generate the signing keystore

In the directory </home/permisMSoD>, run the following command:

java issrg.SAWS.SAWSServer

This time you need to select option 2 by inputting number “2”. This time SAWS administrator(s) are required to input their password shares separately. The number of password shares is indicated by the numberOfPasswordShares parameter in saws.xml configuration file. Please note that the password for the signing keystore can be different from the encryption keystore.

Then SAWS will generate the signing keystore and display the following result on the screen:

/home/permisMSoD/signing.keystore has been created successfully.

If you can have a Root CA to provide a public key certificate service for you, then proceed with the following steps. For testing purposes, you can ignore the following Step 6, Step 7 and Step 8.

Step 6. Output a public key certificate request file from the signing keystore

In the directory </home/permisMSoD>, run the following command:

java issrg.SAWS.SAWSServer

By selecting option 4, after inputting the password to the signing keystore in the pop-up windows, a SAWS signing key pair PKC request file will be generated, and the following message will be displayed on the screen.

The SAWS signing keypair PKC request file sawsRequest.csr has been created successfully in the current directory.

Please pass it to a RootCA for issuing a PKC.

Step 7. Import the Root CA public key certificate into the signing keystore

Now you need to import the Root CA public key certificate into the signing keystore.

In the directory </home/permisMSoD>, run the following command:

java issrg.SAWS.SAWSServer

By selecting option 3, after inputting the password to the signing keystore in the pop-up windows, the RootCA specified in the configuration file saws.xml (i.e. rootCA="/home/permisMSoD/rootCA.crt") will be imported into the signing keystore.

Step 8. Import the signing public key certificate into the signing keystore

Suppose you have got the signing key pair public key certificate saws.cer from the Root CA. Copy it to </home/permisMSoD/>. In the directory </home/permisMSoD>, run the following command:

java issrg.SAWS.SAWSServer

By selecting option 5, after inputting the password to the signing keystore in the pop-up windows, you will see the following prompt message on the screen:

Please input the SAWS signing key pair PKC file name:

Input “saws.cer” after the prompt, then return, the SAWS signing key pair PKC will be imported into the signing keystore.

You can choose to ignore the old log files, check the log files one by one, or check all the log files in a row in the above window. If any error is found by SAWS, the detailed information about this error will be displayed on the screen. If this error can be corrected, i.e. this error is caused by computer crash and the log file is only not complete, SAWS will try to complete the log by signing the log file – but you still have the full control over the diagnosis process as whether to do so.

III. Acceptance tests

You must run the following tests in sequence to test both MSoD and SAWS.

Test 1.

In the directory </home/permisMSoD/log/> (which is defined by logFileRoot="/home/permisMSoD/log/" in saws.xml), if there is any old log files, please remove them all for this testing.

In the directory </home/permisMSoD>, run the following command:

java issrg.test.MSoDTest sample1.cfg msodInput1.txt > out1.txt (the same for msodInput2.txt, msodInput3.txt, msodInput4.txt and msodInputAll.txt)
(In windows, you can use the test1.bat, test2.bat, test3.bat, test4.bat and testall.bat to run these tests)

The application administrator is prompted to introduce the SAWS log level that is needed. Note that SAWS provides a secure audit trail for Permis and not only for Separation of Duty enforcement.

The logging level is cumulative and separation of duty information is logged whenever there is an MSoD policy incorporated in a Permis policy, regardless of the logging level that has been chosen. For example, level 3 will log: all access requests that are denied (including exceptions), all Policy Changes and Permis ShutDown/Startup information as well as MSoD information if an MSoD policy exists. The lowest level is 0, no logging, will only log MSoD information if an MSoD policy exists.

[image: image3.png]Choose Secure Auditing Level

4 Allgranted requests.

3 Al denied requests

2 Policy changes. L

cancel

1 Permis ShutDownfStartUp

0 None

Logging:: Permis ShutDown/StartUp: Policy changes: All denied requests

Then the SAWS administrators will be prompted to input their password shares in the password input windows (note that the password of the supplied keystores is “test2”). For the first-time running, the following window will display:

[image: image4.png]. SAWS cannot find the Trusted Location.

Option 1: A Trusted Location does not exist becaus this is the first time SAWS has been started.
SAWS should create a new Trusted Location.

Option 2: The Trusted Location has been lost due to computer failure, or the configuration file is wrong.
SAWS should stop and then be manually restarted.

Option 3: The Trusted Location has been lost due to a compromise or computer failure.

SAWS should try to rebuild i

Greato ot Lovaon| | stop sAWS | Robua Trustod Loation

Choose the option 1: “Create Trusted Location”. If you didn’t perform Step 6, 7 and 8 above, then you will see the follow window. You can simply choose Option 2 to continue for testing purposes.

[image: image5.png]The rootCA PKC is missing in the SAWS configuration file or in the signing keystore Please select your choice:

Option 1: SAWS will stop.
Option 2: SAWS will continue for testing purposes.

The SAWS self-signed PKC will be seen as a rooiCA in this test running.

1.5top)

2.Continue for testing

Then you will see the following confirmation window:

[image: image6.png]f) Toiststhe fst time that SAWS has boen sared

After you click “OK” in this window, the SAWS server will start to record log messages from MSoD.

You can choose to ignore the old log files, check the log files one by one, or check all the log files in a row in the above window.

After all the initialization process is are finished, SAWS will display the following windows:

[image: image7.png]. SAWS has finished its initilisation process.
Now SAWS can start to record client log records. Do you want to continue?

You should choose to continue in the above window, then PERMIS will start to make decisions for access requests listed in the file msodInput1.txt. All decision results are outputted to the file out1.txt, and all decision results should be labelled as “result correct!!!!!” if they are correct, otherwise they are labelled as “result wrong??????”.

Test 2.

In the directory </home/permisMSoD>, run the following command:

java issrg.test.MSoDTest sample1.cfg msodInput2.txt > out2.txt

Input the passwords for the SAWS encryption keystore and signing keystore in the password windows. Since this is not the first time to run SAWS, you may need to recover a previous log file in the following window by choosing Option 2.

[image: image8.png]The error for the log file saws2006-08-01T15_34_57CST3.dat is: This log file is not completed.

Option 1: This log file has been tampered with.
SAWS will record this incident and stop The SAWS administrator needs to check it manually

Option 2: This error is a computer crash. SAWS will recover this log file and continue.
Option 3: SAWS wil ignore this log and continue.

After SAWS initialisation, PERMIS will start to make decisions for access requests listed in the file msodInput2.txt. All decision results are outputted to the file out2.txt, and all decision results should be labelled as “result correct!!!!!” if they are correct, otherwise they are labelled as “result wrong??????”.

Test 3.

In the directory </home/permisMSoD>, run the following command:

java issrg.test.MSoDTest sample1.cfg msodInput3.txt > out3.txt

Input the passwords for the SAWS encryption keystore and signing keystore in the password windows. Then you may need to recover a previous log file in the recovering window by choosing Option 2. After SAWS initialisation, PERMIS will start to make decisions for access requests listed in the file msodInput3.txt. All decision results are outputted to the file out3.txt, and all decision results should be labelled as “result correct!!!!!” if they are correct, otherwise they are labelled as “result wrong??????”.

If all the above 3 tests get all correct results, then you can be sure that PERMIS with MSoD is correctly installed on your machine.

IV. PERMIS MSoD policy

The testing PERMIS policy is in the file policy5WithMSoD.xml and policy5WithMSoD.ace in the testing package. The MSoD policy in the testing PERMIS policy is listed as follows.

 <MSoDPolicySet>

 <MSoDPolicy ContextName="bank=NatWest, year=*">

 <LastStep operation="CommitAudit" targetURI="http://bank.location.com/audit"/>

 <MMER ForbiddenCardinality = "2">

<Role type="employee" value="Teller"/>

 <Role type="employee" value="Auditor"/>

</MMER>

 </MSoDPolicy>

 <MSoDPolicy ContextName="bank=HSBC, year=test2004">

 <LastStep operation="CommitAudit" targetURI="http://bank.location.com/audit"/>

 <MMER ForbiddenCardinality = "2">

<Role type="employee" value="Teller"/>

 <Role type="employee" value="Auditor"/>

</MMER>

 </MSoDPolicy>

 <MSoDPolicy ContextName="bank=HSBC, year=test2003">

 <LastStep operation="CommitAudit" targetURI="http://bank.location.com/audit"/>

 <MMER ForbiddenCardinality = "2">

<Role type="employee" value="Teller"/>

 <Role type="employee" value="Auditor"/>

 <Role type="employee" value="Manager"/>

</MMER>

 </MSoDPolicy>

 <MSoDPolicy ContextName="bank=HSBC, year=test2002">

 <MMER ForbiddenCardinality = "3">

<Role type="employee" value="Teller"/>

 <Role type="employee" value="Auditor"/>

 <Role type="employee" value="Manager"/>

</MMER>

 </MSoDPolicy>

 <MSoDPolicy ContextName="country=uk, department=taxoffice, process=taxRefund, processID=*">

 <FirstStep operation= "prepareCheck" targetURI="http://www.myTaxOffice.com/Check"/>

 <LastStep operation="confirmCheck" targetURI="http://secret.location.com/audit"/>

 <MMER ForbiddenCardinality = "2">

<Role type="employee" value="Teller"/>

 <Role type="employee" value="Auditor"/>

</MMER>

<MMEP ForbiddenCardinality= "2">

 <Operation value= "prepareCheck" target="http://www.myTaxOffice.com/Check"/>

 <Operation value= "confirmCheck" target="http://secret.location.com/audit"/>

</MMEP>

 <MMEP ForbiddenCardinality= "2">

 <Operation value= "approve/disapproveCheck"
target="http://www.myTaxOffice.com/Check"/>

 <Operation value= "approve/disapproveCheck" target="http://www.myTaxOffice.com/Check"/>

 <Operation value="combineResults" target="http://secret.location.com/results"/>

 </MMEP>

 <MMEP ForbiddenCardinality= "3">

 <Operation value= "prepareCheck" target="http://www.myTaxOffice.com/Check"/>

 <Operation value= "approve/disapproveCheck" target="http://www.myTaxOffice.com/Check"/>

 <Operation value="combineResults" target="http://secret.location.com/results"/>

 </MMEP>

 </MSoDPolicy>

 <MSoDPolicy ContextName="country=us, department=taxoffice, process=$, processID=*">

 <FirstStep operation= "prepareCheck" targetURI="http://www.myTaxOffice.com/Check"/>

 <LastStep operation="confirmCheck" targetURI="http://secret.location.com/audit"/>

 <MMER ForbiddenCardinality = "2">

<Role type="employee" value="Teller"/>

 <Role type="employee" value="Auditor"/>

 </MMER>

<MMEP ForbiddenCardinality= "2">

 <Operation value= "prepareCheck" target="http://www.myTaxOffice.com/Check"/>

 <Operation value= "confirmCheck" target="http://secret.location.com/audit"/>

</MMEP>

 <MMEP ForbiddenCardinality= "2">

 <Operation value= "approve/disapproveCheck"
target="http://www.myTaxOffice.com/Check"/>

 <Operation value= "approve/disapproveCheck" target="http://www.myTaxOffice.com/Check"/>

 <Operation value="combineResults" target="http://secret.location.com/results"/>

 </MMEP>

 <MMEP ForbiddenCardinality= "3">

 <Operation value= "prepareCheck" target="http://www.myTaxOffice.com/Check"/>

 <Operation value= "approve/disapproveCheck" target="http://www.myTaxOffice.com/Check"/>

 <Operation value="combineResults" target="http://secret.location.com/results"/>

 </MMEP>

 </MSoDPolicy>

</MSoDPolicySet>

Please note in the above context name, "$" represents all contexts of a specific type (note the character "+" can’t be used here because the RFC2253NameParser will cause error exceptions by it), "*" represents any single context of a specific type. About the details of the MSoD policy, please refer to the paper “Multi-session Separation of Duties for RBAC”.

PAGE
4

_1215952061

_1215951823

